store 570506

UNIVERSITY COLLEGE, BRISTOL.

תinedical ILibratr.

Septemter $9^{\frac{\pi}{1}} 1$ sisq 9 .

> Medical Library University of Bristol

THIS BOOK/JOURNAL MUST BE RETURNED to the library by the last date

THE MICROSCOPE

ITS HISTORY, CONSTRUCTION, AND APPLICATION

Digitized by the Internet Archive in 2015

https://archive.org/details/b21443476

RADIOLARIS.

THE

MICROSCOPE

BEING A FAMILIAR INTRODUCTION TO THE USE OF
THE INSTRUMENT, AND THE STUDY OF MICROSCOPICAL SCIENCE

By JABEZ HOGG, M.R.C.S., F.R.M.S.,

FORMERLY AND FOR TUENTV-FIVE YEARS SURGEON TO THE ROYAL WESTMINSTER OHHTHALMIC HOSPITAL; PAST PRESIDENT OF THE MEDICAL MICROSCOPICAL SOCIETY; HONORARY FELLOW OF THE ACADEMY OF SCIENCES, PHILADELPHIA; OF THE MEDICO-LEGAL SOCIETY, NEW YORK ; OF THE BELGIAN MICROSCOPICAL SOCIETY, ETC.; AUTHOR OF "ELEMENTS OF NATURAL PHILOSOPHY, "A MANUAL OF OPHTHALMOSCOPIC SURGERY," ETC.

WTIU C'PU:1RDS OF NTNE HUNDRED

ENGRALID AND COIOURED

HLLUSTRATIONS BY゙ TUFFES H\%ST
A.VD

OTHER ARTISTS

An 18th Century Nieroscone.

FHFTEENTH EDITIOA

RIS-CONSTRCCTED. REURITTEN,

REIVSED, AND

I:WMRGED

THROCGHOL゙T

LONDON AND NEW YORK
GEORGE ROUTLEDGE \& SONS, LIMITED)
bradbury, agnew, \& Co. l.d., phinters, IONDON AND TONBRIDGE.

मसiVERSTY OF SRIETOK
MEOOLN

PREFACE TO THE FIFTEENTH EDITION.

T1HE First Edition of this work appeared in 1854, a time in the history of the Microseope when the instrument, as an aid to original seientifie researeh, may be said to have been in its infaney. Then eertainly it was seldom employed in the laboratory or the medical sehools. Now, however, as I antieipated, it has asserted its proper position, and has at length beeome one of the most important auxiliaries to seience, and a direet incentive to original work, while it has doubtless exereised considerable influenee over the student's power of observation, and materially assisted in his studies, let his ultimate objeet and pursuits be what they may.

The greater use made of the Mieroseope has likewise eonferred benefits of untold value upon the arts and industries of the eountry, thereby adding to the national prosperity in ways as manifold as unique. The Mieroseope has also proved of immense value in the promotion of the health of the community, and the art and seienee of healing, sinee the theory of medicine has beeome a seience, resting on the minute mieroseopieal examination of animal tissues.

The work of researeh in the sister seienees and by other methods has, during the last deeade, reeeived a corresponding impetus, while it has undoubtedly tended towards elaboration and speeialisation in all departments. In eonsequence, the progress of mieroseopieal seienee has become more dependent upon the specialist for gaining aceurate knowledge and for eertain important details seen to be braneling. out in many direetions. 'Ihere never was a time when the instrument was so eonstantly and generally resorted to and with so mueh confidence and advantage, as the present. It has shown itself equal to the task imposed-that of teaching the eye to see things that wre new, and also, what is perhaps of more importance, to pereeive things whieh had been entirely overlooked. The older defeets, perhaps, arose from two eauses; the want of more eareful training of the
organ of vision, and the want of sufficient power and precision in the optical part of the Microscope itself. Both of these obstacles have been to a considerable extent removed, and all educational systems are looked upon as incomplete without a knowledge of the Microscope.

A step has already been taken in another direction, that of furnishing special forms of instruments, better adapted to the uses to which they will hereafter be put, and purposely designed for chemical and analytical proeesses, for petrological pursuits, the geometrical measurement of crystals, for special work in comnection with manufacturing industries, for the dairyman, and the farmer. For the detection of adulterations-that of butter, for example-a newer form of instrument has been devised, namely, a "Butro-refractometer;" by the help of which any adulteration of this universal article of diet will at once be revealcd. The form of instrument upon whieh the optieian has expended a greater amount of skill than perhaps on any other is the Bacteriological Microscope, as may be iuferred from the larger space I have devoted to this important adjunet, since by original research, there can be no doubt a still greater future is in store for seience in this special department of mieroscopy. But perfect suecess in this direction remains very much with the practieal optician, and the further improvements made in the optieal part of the instrument, since it is dmitted that the highest theoretical perfection has not yet been reached.

It is a commonplace remark that every question solved is a step towards new problems waiting solution. It is equally obvious that many diffieulties must be encountered by every author who nses his best endeavours to supply a standard volume or even a fairly comprehensive text-book on the Microseope, one that will remain a smre guide for any lengthened period. Such a success I regard as scarcely possible. 1. may, however, notice that my earlier work has met with a great amount of appreciation, and its utility acknowledged in the past by a demand almost mprecedented, edition after edition being ealled for.

It is hardly necessary to add that my task has been accomplished with an earnest desire to assist in diffusing a love for an instrument which has been my eonstant companion for upwards of sixty years.* Moreover, I have a firm conviction of the real utility of the Microscope in the work of education, its practical value in many branches

[^0]of science, art, and manffacturing industries. 'These are my chicf reasons for applying myself once more to the task of revision, rewriting, and rearranging and bringing this book as far as possible into line with the knowledge gained in chemical pathology and bacteriology.

It will be noticed that in the first part, my subjects have as far as possible been treated from a historical point of view. This method has enabled me to affix dates of introduction of special inventions and improvements made in the instrument and its appliances. The enlargement of my pages has enabled me to devote more space to bacteriological processes, and by the further addition of plates and several hundred illustrations to more fully elucidate the subject matter of my text. In an Appendix I have introduced a sclection of "Formulæ and Methods" of staining, mounting, etc., also tables of the "Metrical System," now in general use in the laboratory; together with comparative thermometrie values, all of which I trust may prove of service to the student.

Before bringing these few prefatory remarks to a close, a pleasing duty devolves upon me-that of tendering my thanks for cordial aid received from Professor Dr. Edgar Crookshank in dealing with his special subject, Bacteriology. From his valuable "Text-Book on Bacteriology " I have extracted much useful matter. I am equally indebted to Professor Marshale Ward, F.R.S., Cambridge, for much information on "Economic Botany," and the great advances made in the knowledge of the uscs of plants, and the industrial value of bacteria in particular. My acknowledgments are also due to the Messis. Warne for many illustrations placed at my disposal, and for useful facts derived from their "Royal Natural History." It will, however, be seen that the results of a large amount of independent observation have been consigned to my pages. As the references show, recourse has been had to original sources for trustworthy, reliable information on many sulojects. These are constantly, almost daily, being added to, as is madc manifest by the mumerous periodical publications of the day devoted to this and kindred sciences ; the forcmost and most important among which is that almost exclusively given to microscopical science, "The Journal of the Royal Microscopical society of London," the parusal of which I commend to my readers.

PREFACE TO THE FIRST EDITION.

THE Author of this Publication entered upon his task with some hesitation and diffidence; but the reasons which influenced him to undertake it may be briefly told, and they at once explain his motives, and plead his justification, for the work which he now ventures to submit to the indulgent consideration of his readers.

It had been to him for some time a subject of regret that one of the most useful and fascinating studies-that which belongs to the domain of microscopic observation-should be, if not wholly neglected, at best but coldly and indifferently appreciated by the great mass of the general public; and he formed a strong opinion that this apathy and inattention were mainly attributable to the want of some concise, yet sufficiently comprehensive, popular account of the Microscope, both as regards the management and manipulation of the instrument, and the varied wonders and hidden realms of beauty that are disclosed and developed by its aid. He saw around him valuable, erudite, and splendid volumes, which, however, being chiefly designed for circulation amongst a special class of readers, were necessarily published at a price that renders them practically unattainable by the great bulk of the public. They are careful and beautiful contributions to the objects of sciencc, but they do not adequately bring the value and charm of microscopic studics home, so to speak, to the firesides of the people. Day after day, new and interesting discoveries, and amplifications of truth already discerned, have been made, but they have been cither sacrificed in serials, or, more usually, devoted to the pages of class publications ; and thus this most important and attractive study has been, in a great measure, the province of the few only, who have derived from it a rich store of enlightenment and gratification : the many not having, howevcr, participated, to any great cxtent, in the instruction and
entertamment which always follow in the train of microscopical science.*

The manifold uses and advantages of the Microscope crowd upon us in such profusion, that we can only attempt to enumerate them in the briefest and most rapid manner in those prefatory pages.

It is not many years since this invaluable instroment was regarded in the light of a costly toy; it is now the inscparable companion of the man of science. In the medical world, its utility and necessity are fully appreciated, even by those who formerly were slow to perceive its benefits; now, knowledge which could not be obtained even by the minutest dissection is acquired readily by its assistance, which has become as essential to the anatomist and pathologist as are the scalpel and bedside observation. The smallest portion of a diseased structure, placed under a Microscope, will tell more in one minute to the experienced cye than could be ascertained by long examination of the mass of disease in the ordinary method. Microscopic agency, in thus assisting the medical man, contributes much to the alleviation of those multiplied "ills which flesh is heir to." So fully impressed were the Council of the Royal College of Surgeons with the importance of the facts brought to light in a short space of time, that, in 1841, they determined to cstablish it Professorship of Histology, and to form a collection of preparations of the elementary tissues of both animals and vegetables, healthy and morbid, which should illustrate the value of microscopical investigations in physiology and medical science. From that time, histological anatomy deservedly became an important branch of the education of the medical student.

In the stndy of Vegetable Physiology, the Mieroscope is an indispensable instrument; it enables the student to trace the carliest forms of vegetable life, and the functions of the different tissues in the growth of plants. Valuable assistance is derived from its agency in the detection of adulterations. In the examination of flom, :un article of so much importance to all, the Mieroscope enables us to judge of the size and shape of the stareh-grains, their markings, their isolation and agglomeration, and thus to distinguish the starehgrains of one meal from those of another. It detects these and other ingredients, invisible to the naked eye, whether combined in

[^1]atoms or aggregated in crystals, which adulterate omr food, our drink, and our medicines. It discloses the lurking poison in the minnte crystallisations which its solutions precipitate. "It tells the murderer that the blood which stains him is that of his brother, and not of the other life which he pretends to have taken; and as a witness against the criminal, it on one occasion appealed to the very sand on which he trod at midnight."
'The zoologist finds in the Microscope a necessary coadjutor. 'To the geologist it reveals, among a multiplicity of other facts, "that our large coal-beds are the ruins of a gigantic regetation ; and the vast limestone rocks, which are so abundant on the earth's surface, are the catacombs of myriads of animal tribes, too minute to be perceived by the unaided vision."

By "conducting the eye to the confines of the visible form," the Microscope proves an effective auxiliary in defining the geometric properties of bodies. Its influence as an instrument of research upon the structure of hodies has been compared to that of the galvanic battery, in the hands of Davy, upon Chemistry. It detects the smallest structmral difference, heretofore inappreciable, and, as an ally of Chemistry, emables us to discover the very small changes of form and colour effected by test-fluids upon solids; and dissects for us, so to speak, the most multiplex compounds. It opens out to the mind an extended and vast tract, opulent in wonders, rich in beauties, and boundless in extent.

The Microscope not only assists studies, and develops objects of profound interest, but also opens up innumerable sources of entertainment and amusement, in the ordinary conventional acceptation of these terms; disclosing to ns peculiarities and attractions in abundance; impressing us with the wonderful and beautifully skilful adaptation of all parts of creation, and filling our minds with additional reverence and admiration for the bencficent and Almighty Creator.

The Author will conclude these prefatory observations with a few words in explanation of his arrangements, by way of dealing with the instrument and development of his subject. He has sought, in the volnme that he now lays before the public, to point out and elucidate at once in a practical mamer and in a popular style, the vast fund of utility and amusement which the Microscope affords, and lans endeavoured to touch upon most of the interesting sulojects for microscopic observation as fully as the restrictions of it limited space,
and the nature of the succinct summary, would permit. To have dwelt upon each in complete detail would have necessitated the issue of many expensive volumes-and this would have entirely frustrated the aim which the writer had in view; he has, therefore, contented himself with the humble, but, he trusts, not useless, task of setting up a finger-post, so to say, to direct the inquirer into the wider road. In the section of the work devoted to the minuter portion of creation, he has ventured to dwell somewhat longer, in the belief that that department is more espeeially the provinee of the microseopist. He has arranged his topies under special headings, and in separate chapters, for the sake of perspicuity and precision; and has brought the ever-welcome aid of illustration to convey his explanatory remarks more vividly to the minds of his readers.

Finally, it is the Author's hope that, by the instrumentality of this volume, he may possibly assist in bringing the Microscope, and its valuable and delightful studies, before the general public in a more familiar, eompendious, and economical form than he found it at the period of its publication, so that, in these days of a diffused taste for reading and the spread of cheap publications, he may thus supply further exercise for the intellectual faculties; contribute to the additional amusement and instruction of the family circle, and aid the student of nature in investigating the wonderful and exquisite works of the Almighty. If it shall be the good fortume of this work, which is now confided with great diffidence to the consideration of the public, to succeed, in however slight a degree, in furthering this design, the Author will feel fully repaid for the amount of time and labour expended.

London, May, 1854.

CONTENTS.

PART I.

PAGE
Eariay History of the Microscole 1

CHAPTER I.

Light-Its Propagation-Refraction-Spherical and Chromatig Aberration-Human Eye-Formation of Images-Visual Angle - Abbe's Theory of Microscopic Vision-Definition of Aper- ture-Numerical Aperture-Abbé's Apertometer-Stereoscopio Binoculali Vision 12

CHAPTER II.

Siniple and Compound Microscopes-Evolution of the Modern Achromatic Microscore-Improvements in the Modern Micro- score : The Ross-Jackson, Powfil and Lealand, Beck's, Baker's, P'illischer, Ziesss, Leitz, Watson's, Van Heurck's Edinburgh Stulents', Swift's, and Bactehiological 72

CHAPTER III.

Applied Optics-Eye-pieges-Achionatic Odjectives and Condensers -Magnifying Power of Eye-pieces and Objectives-Method of Emiloying the Condenser-Its Illumination MirrorAccessonies of the Michoscope - Finders - Michometers-Camera-Lucida--Microscope in Position for Drawing-Abbés Test-Plate-Miuro-Piotogiapif-Polarigation of Ligitt-The Micho-Siectrooscore.

CHAP'IER IV.

Phactical Michoscopy-Manipulation-Mode of Employing the Microscope - Wonking Accessories - Methods of Prepllinc, Hardening, Staniog, and Section Cuttiag - Cutting Harb Structutes-Injecting Apparatus, Material, etc., employtid in Bacteriolocical lnvestigations-Warm Chambers and Incu- bators - Preparing, Mounting, Cementing, And Collecting Objects $25 S$

PART II.

CHAP'IER I.

> Michoscopic Foras of Life-Thallophytes, Ptehidophyta, Phanerogame-Strecturis ami Proherties of the Cell-Pathogenic Fungi and Moulds-Parastic Diseases of Plants, Man, ant Animals - Industrial Uses of Funge and Saccharomycetes Desmidacee and Dhatomacee - Lichens, Mosses, Ferts, Flowering Plants 353

CHAPTER II.

Sub-Kingdom Photozoa-Rhizopoda-Gromi and Foraminiferi- Infugoria-Clilata-Rotifera-Porifera-Sponges 478
CHAPTER III
Zoopiytes-Celenterata-Meduse-Corals-Hydrozoa-Mollusca -Annulosa-Worm-Extozoa-Annelida-Crustacea 515
CHAPTER IV.
Arthropoda-lnsheta-Ahachnida-Acarina-homene-Mites and Ticks. $58: 3$
CHAPTER Y.
Vertebrata-Interial and Extrinal Structures $63: 3$

CONTENTS.

CHADTER VI.

The Mineral and Grological Kingmoms 6io

APPENDIX.

Dr. Mercer on Illumination, and Abbés Theory-Micho-Siectro-scope-Fonmule, Methods, Cementing, Clearing, Hardening, and Mounting-Tables, Metric and Thermometric . . . 672

INDEX 691

DESCRIPTION OF PLATES,

COLOURED AND PLAIN.

FRONTISPIECE.

RADIOLARIA.

In this Plate Fiy. 1 shows the elegant lattice-sphere of Rhizosphrera; Fiy. 2 represents Sphærozoun, whose skeleton consists of loose spieules, arranged tangentially ; Aetinouma, Fig. 3, possesses three concoutric lattice-spheres, joined by radiating spines ; Figs. 4, 5, and 6, represent Lithomespilus, Ommatoeampe, and Carpocanium; Fig. 7 represents a deep-sea form (Challengeria), whose oval ease is formed of a regular, very fine-meshed, network; Fig. 8 depicts the elegant lattiee-sphere of Heliosphrera; Figs. 9 and 10, Clathrocyclas and Dictyophinns.

PLA'TE I.-Page 400.

PROTOPHYTA. THALLOPHYTES.

Fig. 1. l'eziza bicolor-2. Trufle : a. ascus of spores ; b. mycelium-3. Spheria herbarum : a. piece of dead plant, with S. herbarum natural size ; b. section of same, sliglitly magnified ; d. Ascus with spores, and paraphyses more magnified-4. l'eziza pygmæa-5. Apical form of same-6. P. corpulasis: Aseus with spores and parapliyses, merely given as a further illustration of structure in Peziza--7. Yeast healthy-8. Yeast exhansted-9. Plyyllactinia guttata-10. Yeast with favus spores and mycelium of fungus-11. Favus ferment, with oidium and bacteria-12. Pueeinia spores, growing in a saccharine solution-13. Aerobie baeteria-14. Spores and mycelia from eczema produced by yeast-15. Volvox globator-16. Amceboid condition of portion of volvox-17. Pueeinia buxi-18. Ditto, more en-larged-(17 to 20 illustrate Aseonycetes.)-19. Ecidium grossularia from transverse seetion of leaf of currant: a. spermogones on upper surface; b. perithecia with spres-20. Pliragmidium bulbosum, development of21. Palmella parietina, trans. seetion through a spermogone, slowing green gonidia and spermatia escaping-22. Fcidium berberida, from leaf of berbery-23. Vatucheria sessilis-24. Stephanosplara pluvialis: a. Fullgrown example, germ cells spindle-shaped with flagella: b. Resting-cell ; \therefore division into four ; d. Free-swimning eiliated young specimen ; e. Amoboid eondition-25. a, b, c, c, c, f and g, Development of liehen gonidia26. Palmella stellaris (lichen), vertical section throngh apothecium, showing asci, spores, and paraplyses, with gonidia and filamentons medulla: a. Spermatophore with splermatia-27. Moss gonidia assuning anceboid form.
Typical forms of Protophyta; 7 to 14, modes of development or rudimentary conditions; Confervoidero, 23; Vaucheria, Stephanosphara, 24: Volvox, $1 \mathrm{z}, \mathbb{E} \mathrm{C}$.

PLAT'E 11.—Page 412.

PROTOPHYTA. ALGE.

Fiy. 27. Ceramium acanthonotım-28. Closterium, Tripluecras gracilis29. Cosmarium radiatum-30. Mierasterias denticulata-31. Docidinm pristidæ-32. Callithamnion plumula-33. Diatoma, livinof: a. Liemophora spleudida; b. Aehanthes longipes ; c. Grammatophora mariua. These figures are intended to show the general charaeter of the endochrome and growth of frustule-34. Callithamnion refractum-35. Jungermania albieans; b. represeuting elater and spores-36. Leaf with antheridia, or male elements, represeuted more magnified at a to the left of the figure37. Ceramium echinotum - 38. Pleurosigma angulatum, side view 39. Delesseria hypoglossum-40. Pleurosigma angulatum, front view, endochrome not represented-41. Ceramium flabelligerum.

PLATE III.—Page 479.

PROTOZOA.

Fiys. $43,44,45,46,47,48,49,50,51,52$. These ligures are from drawings mate by Major Owen, to illustrate lorms of living Polyeystina, sketehed from life; these convey a faint idea of the richly colouved appearance of the uatural structure ; Figs. 48 to 52 -53. Gregarina lumbricorum, round form54. Gregarina lumbricorum, the usual elougated form-55. Gregarina serpulæ-56. Gregarina Sieboldii ; illustration of septate form, with reflexed hook-like processes-57. Gregarina lumbricorum, eneysted-58. Gregarina lumbricorvm, more advanced and pseudo-navicellæ forming-59. Gregarina lumbricorum, fiee pseudo-navicella of-60, 61. Gregarina lumbricorun, amoboid forms of - 62. Crueiate sponge-spicule-63. Astromma Hum-boldtii-64. Eözoon Canadense, represents appearance of a portion of the natural size-65. Fözoon Canadense, magnified, showing portious of eellwalls left nneoloured, the animal sareode inhabiting it coloured dark green as in mature, and eonverted by fossilisation into a silieious mineral; the narrow bands passing between these are processes (stolons) of the same substance-66. Aetiuophrys sol, budding-67. Englena viridis: a. contractod; b. elongated form-68. Acineta tuberosa-69. Eeistes longicornis (Davis) - 70. Oxytricha gibba (side view)-71. Oxytricha pellionella72. Thmicola valvata, expanded-73. Cyelidium (glaucoma)-74. Oxytricha seintillans- 75 to 79,80 to 85 , illustrate types of Foraminifera diseovered by Major Owen, living-75. Globigerina acerosa, n. sp., broken open to show interior-76. Globigerina, 11. s.p., broken open to show interior-77. Gilobigerina lirsuta-78. Globigerina miversa-79 and 81. (7. Bulloides-80. Conoehilus vorticella-82. Globigeriua inflata, sinistral shell-S3. l'ulvinulina Micheliniana-84. P. Canariensis-85. P. Menardii.

PLATE IV.—Page 514.

METAZOA. BRIOZOA.

s'ig. 86. Hartea elegans-87. Side view of Synapta spicula-88. Ophioglypha rosula (very inmature speeinen): a. Claw hooks; b. paluate spicula. The development ol this speeies is deseribed by C. Hodge, in "Iransaetions of Tyuesicle Naturalists' Field-Clul)"-89. Spine of a star-lish, partieularly interesting as showing the retienlar ealcareous network obtaining in this as in all other hard parts of the lehinoderuata-90. Very wime Spatangus,
ohtained from stomael of a bream: many of the spines aro gone, but the strueture of the shell is intact and forms a heantifnl objeet, interesting in comeetion with the sonrce whenee obtained-91. Ophioglypla negleeta: wriggling or brittle starlish. The plate does not admit of a figure on a seale suffieient to show the full beauty of this object-92. Tubnlaria Dumortierin -93 . Pediecllaria mandibulata from Uraster glacialis -94 . Pedieellaria foreepiforma, from the same-95. Cristatella mueedo; 96. Edge-view of statoblast; 97. early stage in development of same-98. Lophopus erystal-linus-99. Plumatella repens with ova, on submerged stem-100. Tænia celinocoecus-101. Hydatids from human liver-102. Bilharzia hematobia103. Amphistoma eonicum-104. Triehina spiralis from fleshy part of Hambre' pork-105. Triehina spiralis male, separated from musele.-106, 107. Fasciola gigantea.

PLATE V.—Page 556.

MOLLUSCA.

Fig. 108. Velutina levigata, portion of lingnal membrane-109. Velutina levigata, part of mandible-110. Hybocystis blemius, portion of palate-111. Sepia officinalis, portion of palate-112. Aplysia hybrida, part of mandible113. Loligo vnlgaris, part of palate-114. Haliotis tubereulatus, part of palate - 115. Cistula eatenata, part of palate-116. Patella radiata, part of palate-117. Aemecea virginea, part of palate-118. Cymba olla, part of palate-119. Seapender ligniarius--120. Oneidoris hilamellata, part of palate-121. Testaceila Mangei, part of palate-122. Pleurobranehus plumula, part of mandible-123. Turbo marmoratus, part of palate.
Lingual membranes of Mollusea; drawings made from specimens in the collection formed by F. E. Edwards, Esq., now in the British Museum. Typical examples of the numerous forms of Odontophors met with in Gasteropod and Cephalopod Mollusca.

PLATE VI.—Page 582.

INSECTA.

Fiy. 124. Egg of Caradrina morphens, mottled rustie moth-125. Egg of tortoiseshell butterfly, Vanessa urtice-126. Egg of common footman, Lithosia emmplanula-127. Egg of shark moth, Cueullia monbratiea-128. Maple-aphis-129. Egg shell of aearns, empty-130. ligg of house-fly-131. Month of Tsetse-fly, Glossina morsitans-132. Yapourer moth, Orgyia antiqua : antenna of male- 133 . Vapourer moth: antenna of female; u. branch more magnified to show rudimentary eondition of the parts- 134. Tortoise-shell buttertly ; head in profile, showing large componnd eye, one of the 1alpi, and spiral tongue-135. Tortoise-beetle, Cassida viridis; under surface of left fore-foot, to show the bifureate tenent appendages, one of whieh is given at a more magnified. This form of appendage is eharaeteristie of the family. "West on Feet of lnseets," Limn. Trans. vol. xxiii, tab. 43-136. Egg of blue argus butterfly, Polyomnatus argus137. Egg 'of mottled umber, Erannis defoliaria-138. Ligg of Ennomos erosaria, thorn-moth-139. Kige of Aspilates gilvaria, straw-belle- 140 . Blow-lly, Musea vomitoria: left fore-foot, under-surface, to show tenent hairs; a b more magnified ; a from below, b from the side-141. House-fly larva-142. Anara communis: left fore-font, mider-surface, to show form of tenent appendages, of which one is given more magnified at a. These, in
gronnd beetles, are met with only in the males, believed to be used for sexmal purposes. These appendages are carefully protected when not in use, as explained by West-143. Ephydra riparia : left fore-foot, under-surface. This fly is met with sometimes in immense numbers on the water in saltmarshes; it has no power of climbing on glass, as seen by the structure of the tenent liairs; the central tactile organ also is peculiar, the whole acting as a float, one attaelied to cach foot, enabling the fly to rest on the surface of the watcr ; a an enlarged extermal hair-144. Egg of bot-fly: the larva just escaping-145. Egg of parasite of pheasant-146. Egg of Scatoplaga-147. Egg of parasite of magpie-148. Egg of Jollis reruaria, small emerald moth.

PLATE VII.-Page 633.

VERTEBRATA.

Fig. 149. Toe of monse, integuments, bone of foot, and vessels-150. Tongue of monse, showing erectile papillæ and muscular layer-151. Brain of rat, showing vascular supply-152. Vertical section of tongne of cat, fungi-form papillse and capillary loops passing into them, vessels-153. Fidney of cat, showing Malpighian turfts and arteries-154. Small intestine of rat, with villi and layer of mncous membrane exposed-155. Nose of mouse, shorring vascular supply to roots of whiskers-156. Vascular supply to internal gill of tadpole, during one phase of development-157. Section through selerotie coat and retina of eat's eye, showing vascular supply of choroid ressels cut cross-ways-158. Interior of fully-developed tadpole, exhibiting lieart, vascular arrangement and vasenlar system throughont body and tail.
This plate is designed to show the value, in certain cascs, of injected preparations in the delineation of animal structures. By thus artificially restoring the blood and distending the tissmes, a better idea is obtained of the relative condition of parts during life.

$$
\text { PLATE VIII.-Page } 220 \text {. }
$$

POLARISCOPE OBJECTS.

Fig. 158. New Red Sandstone-159. Quartz-163. Gianite-161. Sulph. Copper -162. Saliginiue-163. Sulph. Lron and Cobalt, crystallized in the way described by Thomas-164. Borax-165. Sulph. Nickel and Potaslı-166. Kreatine-167. Starch granules-168. Aspartie Acid-]69. Fibro-cells, orchid.-170. Equisetum cnticle-171. Holothuria spicula, Anstralia-1i2. Holothuria spicula, Port Essington-173. Deutzia scabra; upper and muder surface-174. Cat's tongnc, process-175. Prawn shell, exuria with crystals of lime-176. Grayling scale-177. Scyllium canienlmm scale-17S. Rhinoceros horn, transverse section-179. Horse hoof-180. Dytiscus, elytra with crystals of lime.

PLATE IX.-Page 36…

TYPICAL PLATE OF BACTERIA AND SCH1ZOMYCETES.

Fig. 1. Cocci, singly, and varying in size-2. Cocci in chains or rosaries (strepto-coccus)-3. Cocei in a mass (stuphylococens)-4 and 5. Coeci in pairs (diplococcus)-6. Cocci in groups of fonr (merismopedia)-7. Cocci in packets (sarcina)-8. Bacterime termo-9. Bacterimm fermo $\times 4000$
(Dallinger and Drysdale)-10. Bacterimu septicemis hamornagica11. Baeterium pheumoniae crompose-12. Bacillns subtilis-13. Bacillus murisepticus-14. Baeillus diphtheria-15. Bacillus typhosns (Eberth) -16. Spirillun undula (Colun)-17. Spirillunn volutans (Cohn)-18. Spirillum cholere Asiatice-19. Spirillum Obermeieri (Koch)-20. Spirochreta plicatilis (Fliigge)-21. V'ilnio mgula (Prazmowski)-22. Cladothrix F̈̈rsteri (Cohn)-23. Cladothrix dichotoma (Cohn)-24. Monas Okenii (Cohn)-25. Monas Warmingii (Cohn) - 26. Rhabdomonas rosea (Colm)27. Spore-formation of Bacillus alvei-28. Spore-formation (Bacillus anthracis)-29. Spore-formation in bacilli cultivated from rotten melon (Frainkel and Pfeiffer)-30. Spore-formation in bacilli cultivated from earth (Fränkel and Peifler)-31. Involution-form of Crenothrix (Zopf)-32. Involntion-forms of Vibrio serpens (Warning)-33. Involution-forms of Vibrio rugula (Warming)-34. Involution-forms of Clostridiun polymyan (Prazmowski)-35. Involntion-forms of Spirilhm cholere Asiaticæ36. Involution-forms of Bacterium aceti (Zopf and Hansen)-37. Spirulinaform of Beggiatoa alba (Zopf)-38. Varions thread-forms of Bacterinm merismopedioides (Zopf)-39. False-branehing of Cladothrix (Zopf).

PLATE X.-Page 420.

DESMIDIACEA.

Fig. 1. Luastrum oblongnm-2. Nicrasterias rotata-3. Desmidimmt quarlran-gnlatum-4. Didymoprium Grevillii-5. Micrasterias, sporangium of-6. Didymoprinm Borreri-7. Cosmarimm Ralfsii-8, 9. Xanthidire- 10. X. armatum-11. Cosmarium crenatum-12. C. Spherozosma verte bratum -13, 17. Sporangia of Cosmarium-14. X. fasiculatmm-18. Stanrastrum hirsutum-19. Arthrodesmus convergens-15. Staurastrum tumidum-16. Staurastrum dilitatum-21. Peuium-22. Euastrum Didelta-23. Doeidinm clavatum-24. Pediastrum biradiatum-25. Closterium, showing conjugation or self-division-26. Volvox, parent cell about to brcak up-27. Penium Jeunerii - 28. Aptogonum desmidiun-29. Pediastrum pertusum - 30 . Ankistrodesmus falcatus-31. Parent eell of Closterium-32. Staurastrum gracilis.-33. Conjugation of Peniun margaritaceum-34. Spirotrenia35. Closteriun

PLATE XI.-Page 428 .

DIATOMACEA.

Fig. 1. Arachnoidiseus - 2. Actinocyclus (Bermuda) - 3. Cocconeis (Algoa Bay)-4. Coccinodiscus (Bermuda)-5. Isthmia enervis-6. Zygoceros rhombus-7. Campilodiscus clypens-8. Biddulphia-9. Gallionella sulcata -10. Triecratim, fonnd in Thames mud-11. Gomphonema geminatnm, with their stalk-like attachments-12. Dictyocha filonla-13: Eunotia14. Cocconema-15. Fragilaria pectimalis-16. Meridion eirculare-17. Diatoma floceulosum.

PLATE XII.-Page 438.

MICRO-PHOTOGRAPH OF TEST DIATOMS.

Taken with Zeiss's 3 mm. N.A. $1 \cdot 40$ ly Mr. A. A. Carvell for the Author.
Fiy. 1. l'ortion of Surirella genma, magnified $\times 1,000-2$ Broken Frustule of Pleurosigma angulatum, $\times 750-3$ and 5. Triceratium favis $\times-1,000-4$. Navicula rhomboides $\times 1,300-6$. Plenrosigna formosum, showing black dote-7. P. formosum, showing white dots, $\times 750$.

PLATE XTIT.-Prage 454.

PHANEROGAMIE-ELEMENTARY TISSUE OF PLANTS.

Fig. 1. Elementary ovid eells-2. Branehing tissue-2A and 3. Spiral ressels from Opuntia vulgaris-4. Stellate tissue, section of rush-5. Mushroom spawn-6. Stareh from Tous-les-mois-7. Starch from sago-S. Stareh from rice-9. Wheat-starch-10. Khubarb stareh in isolated cells-11. Maize-starel-12. Oat-starel-13. Barley-starch-14. Section of Potato cells, filled with healthy stareh-15. Potato stareh more lighly magnified-16. Section of Potato with nearly all starch absent-17. Potato with starel destroyed by fungoid disease-18. Ciliated spermagones-19. Hairs of stinging-nettle-20. Section of eellular parenchyma of ripe strawbery.

PLATE XIV.--Page 472.

STELLATE AND CRYSTALLINE TISSUE.

Fig. 1. Epidermis of husk of wheat, spiral vessels and silicious crystals-2. Section of eane, silicious cell walls, internal portion filled with granular bodies-3. Cntienlar layer of the onion, showing erystals of ealeimm earbonate and oxalate-4. Cells of garden rhubarb, with erystalline bodies and raphides-4 4 . Another layer filled with starch grains-5. Section of pear, testa, selerogenous and granular tissue-6. Stellate hairs, sinions cells and silicious parenchyma of leaf of Deutzia scabra, under surface- 7 . Silicious cuticle layer of grass, Pharus cristatus.

$$
\text { PLATE XV.—Page } 482 .
$$

RHIZOPODA.-GROMIA.-FORAMINIFERA.

Fig. 1. Astrorhiza limicola-2. Lieberkuihnia paludosa-3. Miero-gromia socialis undergoing fission-4. A colony of Hertwig's Miero-gromia socialis-5. G. Lieberkiilmia-6. Egg-shaped Gromia, G. oviformis, with pseudopodia extended, magnified 500 diameters. "Hertwig Ueber Miero-gromia, arehiv. -für Mickr. Anat. bdx."

PLATE XVT.-Page 510.

SPONGE SPICULES.

Fig. 1. A portion of sponge, Halichondria simnlans, showing silicious spienla imbedded in the sareode matrix-2. Spieula divested of its matrix by acid 3. Gemmule Spongilla Inviatallis enelosed in spieula-4. Birotulate spicula from same-5. Gemmule after being stecped in acid showing retienlated coating of birotulate spicula-6. Gemmules of Geotia-7. Gemmule in more advanced stage of growth-8. Skeleton of the aecrate form eorered by rows of spines-9. Showing rings of growth and horny eovering, and hundles of spicula of the gemus Verongia-10. Sphero-stellate spieula of Tethya-11. Trienspidanchorate and sphero-stellate spienla-12. Acnate-bi-elavate and other forms of spieula from Geodia-13. Clavate spieula eovered with short spines.

PLATE XVII.-Page 518.

ZOOPHYTES, ASTEROIDS, NUDIBRANCHS, AND ECHINOIDS.

Fiy. 1. a. Astrophyton scutatum-b. Doris pimmatifida, back and side view -c. Equoreal Forbesina-d. Meduse bud-c. Thammantias corynetesf. Echinus in au early free stage-g. Echinus sphera-h. Cydippe pyleusi. Ascidia-h: Botryllus violacens, on a Fucus-l. Corystes cossivelannus -m. Enrynome aspera-n. Ophiocoma rosula-o. Pagurus Pridetuxii-p. Ebalia Permantii.

PLATE XVIII.-Page 558.

SHELLS OF MOLLUSCA.
Fiy. 1. Transverse section of spine of Echinus-2. Another section of Echinus, showing reticulated structure, the calcareous portion dissolved out by acid -3. Horizontal section of shell of Haliotis splendens, showing stellate pigment-4. Shell of crab with granules in articular laycr-5. Another section of same shell, showing hexagonal structurc-6. Horizontal section of coach-spriug shell, T'crebratulata rubicunda, showing raliating perforations -7. Transverse section of sholl of the Pinna ingens-8. Crystals of carbonate of lime, from oyster shell.

PLATE XIX.—Page 636.

VERTEBRATA.

Fiy. 1. u. Sphcroidal epithelium cells, filled with central uuclei and grauular matter; b. mucous membrane of stomach, showing cells, with open mouths of tubes at the bottom of each, magnified 50 diametcrs- - . a. Diagram of a portion of the involuted mucous membrane, slowing continuation of its elements in the follicles and villi, with a nerve entering the submucous tissiue. The upper surface of one villus is covered with cylindrical epithelium ; the other denuded, and with dark line of basement membrane rumning around it; b. eprithelium cells, separated and magnifical 200 diameters, a central nuclens, with a nucleolus, seen in centre ; c. pavement epitheliun cells, from the mucous membrane of bronchial or air tubes with nuclei, and nucleoli in some; d. vibratilc or ciliated epithelium, nuclei visible, and cilia at the upper free surface, magnified 200 diameters3. a. is one of the tubular follicles from a pig's stomach, cut obliquely to display upper part of cavity, and the cylindrical epithelium forming its walls, a few cells detached; b. shows a section of a lymphatic, with capillary blood-vessels, distributed beneath the mucous surfices-4. Cells of adipose tissue, or fat, magnified 100 diameters- 5 . a single fat-cell separated, and magnified 250 diameters-6. A capillary of blood-vessels distrihuted through tissue-7. Section of the Tendo-Achillis as it joins the cartilage, showing stcllate cells of tendon, seen to be gradually coalescing to form round or oval cells of cartilage-8. A vertical section of cartilage, with clusters of cells arranged in columns previous to thicir conversion into bone-9. A suall transverse section of the same, showing the gradual change of the cartilage cells at a. into the true bone cells, leccence, at b. With characteristic canaliculi-10. A stellate nerve corpusele, with tubular processes issuing forth, at a. filled with corpuscles containing black pigment, above which is a corpuscle the nuclens of which is seen to lave nucteoli ; at b. a corpusele
enclosed within sheath, and filled with gramular matter taken from the rout of a spinal nerve-1]. The continuity of muscle, the unver portion, with connective tissue of the lower portion, from the tongue of a lamb- 12 . Branched muscle, ending in stellate connective cells, from the upper lip of the rat-13. Choroidal black pigment-cells from the liuman eye.

PLATE XX.-Page 658.

BONE STRUCTURE.
Fiys. 1. and 2. Transverse section of the human clavicle (collar bone), showing Haversian canals, conceutric lamina, and concentric arrangement of bone cells-3. Transverse section of the fenur of an ostrich-4. Tiansverse section of humerns (fore-arm) bone of a turtle, Chelonia inydas- 5 . Horizontal section of the lower jaw-bone of a conger eel, in which no Haversian canals are present-6. A portion of the cranium of a siren, Siren lacertina- 7 . Portion of bone taken from the shalt of humerns of a Pterodactyle, showing clongated bone-cells characteristic of the order Reptilia-S. Horizontal section of a scale, or Hattened spine, from the skin of a Trygon (sting-ray), showing large Haversian canals, numerous wavy parallel tubes, also bone-cells with canaliculi commonicating as in clentine.

ERRATA.

Prefaces, page vi., line 22
., x., line 13
xii.

Page 3.3, line 13
.. 486. 4th line from bottom
," 5ll, two lines from bottom
.. is4, 5th line from bottom
., $6: 2+$ line 12
,. 633, Plate VII. .

```
Insert "a " into " admitted."
Insert " the " before " assistance."
Insert "for" at commencement of
    line 24.
    For " Rabbit" read "Kitten."
    Strike out" The late."
For "Plate XIII." read " Plate XVI."
Insert "Stalk-Eyed" before
    "crustaceans."
For " or "read " and."
Numbering of figures-
    For " 152 " read " 1.5s."
    For "152a " radl " 152."
```

(Professor Abbe, erroneously referred to more than once as "the late," is, the author is happy to say, in excellent heatth).

THE MICROSCOPE.

PART I.

Early History of the Microscope.

The instriment known as the Microscope derives its designation from two Greek words, $\mu \iota \kappa$ pòs (mikros), small, and $\sigma \kappa о \pi \epsilon \epsilon \omega$ (skopeo), tó see or observe; and is an optical instrument by means of which objects are so magnified that details invisible or indistinct to the naked cye are clearly seen. Its origin, so far as yet can be traced back, seems to be of a doubtful nature. It is tolerably certain the ancients had little or no conception of the magnifying power of lenses ; this may be surmised from their writings. The elder Pliny incidentally states that the physicians of his day cauterised by means of "a globe of crystal." The learned Greek physician, Galen, however, demonstrates conclusively that in the first and second centuries of our era the use of magnifying lenses was quite unknown either to Greek or Roman. Moreover, the writings of Archimedes, Ptolemy, and other learned men, show that, although they had some idea of the action of refraction at plane surfaces, as of water, yet of the refraction at curved surfaces they had formed no conception. Indeed, they refer quite indiscriminately to the splicrical form, or the dise, or the plane surface of the water, but not one of them speaks of the lenticular form, or the cnrvature of their surfaces.

As to the more powerful optical instrinments, the telescope and microscope, although it wonld appear that Alhazen in the 10 th or 11th century, Roger Bacon in the 13 th, and liracastoro and Baptist

Porta in the 16 th, had formed some idea that lenses inight be made and combined so that distant objects might be seen elearer, or uear ones magnified beyond the power of normal vision ; yet we hold with Kepler, that no instrmment analogous to our telescope was known before the early part of the 17 th century.

The combination of lenses associated with the name of Galileo, was, he tells us, of Dutch origin, and of a date anterior to that of his telescope, constructed by him in 1609 ; and this would appear to be the probable origin of the microseope consisting of a combination of a convex objeet lens with a coneare eye lens.*

It now appears almost impossible to assign the exact date of the first production of the microscope (as distinguished from the simple maguifying lens), but those who have made a special investigation, agree that it must have been invented between 1590 and 1609 , and that either of the three spectaele-makers of Middelbturg, Holland, Hans Janssen, his sou Zacharias Jansseu, and Hans Lippersher, may have been the inventor, the probabilities being in farour of the Janssens, and there the question must remain.

The history of the modern mieroscope, like that of natious and arts, has had its brilliant periods, in whieh it shone with uneommon splendour, and was cultivated with extraordinary ardour; these periods have been sueceeded by intervals marked with no discovery, and in which the seience seemed to fade away, or at least to lie dormant, till some favourable cireumstance-the discorery of a new objeet, or some new improvement in the instruments of observation -awakened the attention of the eurious, and reanimated the spirit of research. Thus, soon after the invention of the mieroscope, the field it presented to observation was cultivated by men of the first rank in science, and who emriched almost every branch of natmral history by the diseoveries made by means of this instrument.

The Modern Microscope.

'To the eelebrated Dr: Hooke belongs the hononr of publishing an aeeount of the compound instrument in 1665 in his "Micrographia." His first elam, however, is founded on the application of a lamp adjustable on a pillar, together with a glass globe of water and a
*For fuller information, see the Cmint Leetures on the Microscope, by the late John Mayall, F.R.M.S., "Socicty of Arts Joumal," 1885.
deep plano-convex condensing lens. By means of this arrangement, he says, "The light can be directed more directly on the object under examination." In the further description given of his mieroseope, he explains: "It has four draw-tubes for lengthening the body, and a third lens to the optieal combination." This, it would appear, was only brought into use when he wished to see the whole object at once: "The middle-glass lens, eonveying a very great company of radiating pencils (of light) whiel would stray away ; but when I had occasion to examine the small parts of a body, I took out the middle glass and made use of one eye-glass with the objeet-glass."

From Hooke's description I gather that he also introduced the ball-and-soeket movement into the construetion of the body of his instrument. This has found many imitators since his day ; some of them have gone so far as to claim the invention as one quite new. For small accessories, where the leverage need not be considered, the ball-and-socket has proved convenient enough; but not, however, if applied to the stand of the microscope. Hooke, in his early work, expressed dissatisfaction with the English-made lenses le had in use. He complains of the "apertures of the object-glasses, which are so small that very few rays are admitted; none will admit a suffieient number of rays to magnifie the object beyond a determinate bigness." So we may take it that he thus early discovered the great importanee of an increase in the aperture of his microseope. Other improvements of importance were made, and he was the first to describe a useful method of estimating the magnifying power of his lenses, and the difficulty of distinguishing between a prominence and a depression in the object under investigation, which he was made more fully aware of when preparing drawings for the illustration of his "Mierographia Illustrata"; this would be in $166 t$, if not earlier. His book created no little sensation on its first appearance, and it soon became scarce. Hooke (says Mr. Mayall) "must undoubtedly be credited with the first suggestion of immersion lenses." Nevertheless, in his "Lectures and Collcctions," published in 1676, he appears to be no longer enthusiastie over his double microseope, and once more he reverts to the simpler instrument of his earlier days. Whether this change of opinion was due to the publication of Leeuwenhock's observations with his simple microscopes it is impossible to say.

As early as 1673 Leeuwenhoek commmicated some important discoveries made by a simple microseope of his own construction to the Royal Society; he, however, gave no particulars of the construetion of the instrument. Dr. Adams, writing to his friend (Sir) Hans Sloane, says: "They appear to be spherules lodged between two plates of gold or brass, in a hole whose diameter appears to be no bigger than that of a small pin's head." At his death he bequeathed to the Royal Society a cabinet containing twenty-six of these microseopes; the cabinet and the microscopes long ago disappearcd, but not before they were carefully examined and described by Mr. Henry Baker, F.R.S. In his report to the Royal Society, he says: "They consisted of a series of convex-lenses, ranging in power from $1 \cdot 20$ to $1 \cdot 5$, and magnifying from 160 to 40 diameters." This must now be regarded as an eventful period in the history of the microscope, since Leeuwenhoek's discoveries created a great sensation throughout Europe. And all further improvements in eompound instruments appear to have been laid aside for some considerable period in consequence: and the pocket instrument of Wilson, together with that of his scroll standard (seen on the cover of this book), and whieh was one of the first simple microscopes with a mirror mounted on the base in a line with the optie axis.

The diseoveries once more made, and at a much later period (1738), by Dr. Nathaniel Lieberkuhn with his simple mieroseopes, and by means of whieh he discovered the minute strueture of the mucous membrane of the alimentary canal, and which alone would have immortalised his name had we not preserved in use to this day an important adjunct of every modern instrument, the Lieberkuln reflector.

In the Museum of the Royal College of Surgeons of England, there is a small cabinet of two drawers, containing a set of twelve of his simple microscopes, each being provided with an original injection. The form of the instrument is shown in Figs. 1 and 2. a b represents a piece of brass tubing about an inch long and an inch in diameter and provided with a cap at each extremity. The one at a carries a small double-convex lens of half an ineh foeal length ; while at b there is fixed a eondensing lens three-quarters of an inch in diameter. In Fig. 2 the instrument is seen in section, and explains itself. It is held by the handle in sueh a position
that the rays of light, from a lamp or a white eloud, may fall on the condenser b, and concentrate on the speculum l. This again further condenses the rays on the dise c, where the object is held, and its adjustment made by the milled-head screw d, so as to bring it within the foens of the lens a.

From this digression I pass on to the evolution of the compound mieroseope. The earliest workable form known was that designed by Enstachio Divini, who brought it to the notiee of the Royal Society in 1668. It consisted of two plano-eonvex lenses, combined with their convex surfaees retained in apposition. His idea was subsequently improved upon by a London optician. Not long afterwards, Philip Bonnani published an aceount of his improved eompound microscope ; and we are certainly indebted to him for two or more forms of the movable horizontal microseopes, and for the compound condenser fitted with foeussing gear for illuminating transparent objeets by transmitted light. I must, however, pass by the many changes made in the strueture and form of the instrument by the eelebrated Dr. Culpeper, Searlet, Cuff, and many other inventors.

Benjamin Martin's Microscope. - Benjamin Martin, about 1742 , was busily engaged in making

Fig. 1. improvements in the mieroseope, and I may say he was certainly the first to provide accurate results for determining the exaet magnifying power of any objeet-lens, so that the observer might state the exact amplifieation in a eertain number of diametcrs. He devised numerous improvements in the meehanism and optieal arrangements of the instrument; the raek and pinion foeussing adjustments; the inelining movements to the pillar earrying the stage ; and the rectangular mechanical motions to the stage itself. He was familiar with the principles of achromatism, sinee

Fig. 2.-Lieberkulu's Mieroscopic. it appears he produced an aehromatie objcetive about 1759 , and he is said to have sent an achromatic objective to the Royal Soeicty
about that date. But an ingeniously constructed microseope by Martin found its way to Ceorge the Third, the grandfather of our Qucen, and afterwards came into the possession of the late Professor John Quekett, of the Royal College of Surgeons, who presented it to the Royal Microscopical Society of London. This mieroscope will cver associate Martin's mame with the earliest and best form of the instrument, cven should he not receive full reeognition as the inventor of the achromatic micro-

Fig. 3.-Martin's Univer'sal Microscoje. 1782. scope. On this accoment I introduee a carefully made drawing of so singularly perfect a form of the early English microscope to the notice of my readers. (Fig. 3.) The description given of it by the late Professor Quekett is as follows: -"It stands about two feet in height, and is supported on a tripod base, A; the central part of the stem, B, is of triangular figure, having a rack at the back, upon which the stage, O, and frame, D, supporting the mirror, E , are capable of being moved up or down. The compound body, F, is three inches in diameter ; it is composed of two tubcs, the imner of which contains the eye-piece, and can be raised or depressed by raek and pinion, so as to increase or diminish the magnifying power. At the base of the triangular bar is a eradle joint, G, by which the instrument can be inclined by turning the screwhead, H (connceted with an endless screw aeting upon a wormwheel). The arm, I, supporting the compound body, is supplied with a rack and pinion, K , by which it ean be moved backwards and forwards, and a joint is placed below it, upon which the body can be turned into the horizontal position ; another bar, carrying a stage and mirror, can be attached by a screw, L N, so as to convert it into a horizontal microscope. The stage, O, is provided with all
the usual apparatus for clamping objects, and a condenscr can be applied to its under surface ; the stage itself may be removed, the arm, P , supporting it, turned round on the pivot, C , and another stage of exquisite workmanship placed in its stead, the under surface of which is shown at Q.

This stage is strictly a micrometer onc, having rectangular movements and a fine adjustment, the movements being accomplislied by the fine-threaded screws, the milled hcads of which are graduated. The mirror, E , is a double one, and can be raised or depressed by rack and pinion ; it is also capable of removal, and an apparatus for holding large opaque objects, such as minerals, can be substituted for it. The accessory instruments are very numerous, and amongst the more remarkable may be mentioned - a tubc, M, containing a speculum, which can take the place of the tube, R, and so form a reflecting microscope. The apparatus for holding animalcules or other live objects, which is represented at S, as avell as a plate of glass six inches in diameter, with four concave wolls ground in it, can be applied to the stage, so that each well may be brought in succession under the magnifying power. The lenses belonging to this microscope are twenty-four in number ; they vary in focal length from four inches to one-tenth of an inch; ten of them are supplied with Lieberkuhns. A small arm, capable of carrying single lenses, can be supplicd at T, and when turncd over, the stage of the instrument becomes a single microscope ; there are four lenses suitable for this purpose, their focal length varying from one-tenth to one-fortieth of an inch. The performancc of all the lenses is excellent, and no pains appear to have bcen spared in their construction. Therc are numcrous other pieces of accessory apparatus, all remarkablc for the beauty of their workmanship.*

In addition to the movements described by Quckett, the bodytube with its support can be moved in an arc concentrically with the axis of the triangular pillar, on the top of which it is fitted with a worm-wheel and endless-screw mochanism, actuated by the screwhead, T', below. It must therefore be admitted that Martin led the way far beyond his contemporaries, both in the design and the cvolution of the microscope. Furthermore, in his "New Elements

[^2]of Optics," 1759 , he dealt with the principle of achromatism, by the construction of an achromatic telescopc.

At a somewhat later period there lived in London a philosophical instrument maker of some repntc, Gcorge Adams, who published in 1746 a quarto book, entitled "Micrographia Illnstrata, or the Knowledge of the Microscope Explaincd." This work fairly well describes "the nature, uscs, and magnifying powers of microscopes in general, together with full directions how to prepare, apply, examine, and preserve minutc objects." Adams' book was the first of the kind published in this country, and it contributed in no small degree to the advancement of microscopical science. Adams writes: "We owe the construction of the variable microscope to the ingenuity and generosity of a noble person. The apparatus belonging to it is morc convenient, more certain, and more extensive than that of any other at present extant; consequently, the advantage and pleasure attending the observations in viewing objects through it must be as extensive in proportion." This is believed to apply to Martin's several microscopes, and that especially constructed for the king, afterwards improved upon by Adams. Another early form of microscope, Wilson Simple Scroll (1746), stamped on the cover of this book, and has thus become familiar to microseopists, was also made by Adams.

We now closcly approach a period fertile in the improvemont of the microscope, and in the discoveries made by its agency. The chief of those among the honomred names of the time we find Tremblcy, Ellis, Baker, Adams, Hill, Swammerdam, Lyonet, Needham, and a fcw others. Adams somowhat sarcastieally obscrves "that cvery optician exercises his talents in improving (as he calls it) the microscope, in other words, in varying its eonstruction and rendering it different in form from that sold by his neighbonr ; or at the best rondcring it more complex and tronblesome to manage." There were no doubt good reasons for these and other strictures npon inventors as well as makers of microscopes, even in the Adams' day. In the year 1787 the "Microscopical Essays" of his son were published, in which he described all the instruments in use up to that period.

Looking back, and taking a general survey of the work of nearly two centurics in the history of the microseope, it cannot be said that
either in its optieal or mechanical construetion any great amount of progress was made. This in part may have ariscn from the faet that no pressing need was felt for either delicate focussing or higher magnification. At all events, it was not until the application of achromatism to the instrument that new life was infused into its use, and a great impetus was given to its development, both optically and mechanically.

In the year 1823 a strong desire became manifest for improved forms of the instrument, in France by M. Selligue, by Frauenhofer in Munich, by Amici in Modena, by M. Chevalier in Paris, and by Dr. Goring, Mr. Pritchard, and Mr. Tully in London. The result was that in 1824 a new form of aehromatic object-glass was constructed of nine-tenths of an inch focal length, composed of three lenses, and transmitting a pencil of eighteen degrees ; and whieh, as regards accurate correction throughout the field, was for some years regarded as perfect.

Sir David Brewster was the first to suggest the great importance of introducing materials of a more highly refracting nature into the construction of lenses. Hc wrote: "There can be no essential improvement expected in the microscope unless from the diseovery of some transparent substance which, like the diamond, combines a high refractive with a low dispersive power." Having experienced the greatest difficulty in getting a small diamond cut into a prism in London, he did not conceive it practicable to grind, polish, and form it into a lcus.

Mr. Pritchard, however, was led to make the experiment, and on the 1st of December, 1824, "he had the pleasure of first looking through a diamond microscopc." Dr. Goring also tried its performance on various objects, both as a single microscope and as an objective of a eompound instrument, and satisficd himself of its superiority over other kinds of lenses. But herc Mr. Pritchard's labours did not end. He subscquently found that the diamond used had many flaws in it, which led him to abandon the idea of finishing it. Having been prevented from resuming his operations on this refractory material for a time he made a third attempt, and met with another unexpected defect; he found that some lenses, unlike the first, gave a double or triple image instead of a single one, in consequence of some of their parts being either harder or softer than others. These
defeets were found to be due to polarisation. Mr. Pritehard having learned how to dceide whether a diamond is fit for a magnifier or not, subsequently sueceeded in making two planoconvex lenses of adamant; these proved to bo perfeet for mieroseopie purposes. "Onc of these, of one-twentieth of an inch in foeal length, is now in the possession of his Grace the Duke of Buckingham ; the other, of one-thirtieth of an inch focus, is in his own hands."
"In eonsequence of the high refraeting power of a diamond lens over a glass lens, the formor material may be at least one-third as thin as that of the latter, and if the foeal length of both be equal, say, one-eightieth of an inch, the magnifying power of the diamond lens will be 2,133 diameters, whercas that of glass will be only 800 ." At a datc (1812) before Brewster proposed diamond lenses he demonstrated a simple method of rendering both single and eompound mieroseopes achromatic. "Starting," he says, " with the prineiple that all objeets, however delieate, are best secn when immersed in fluid, he placed an objeet on a slip of glass, and put above a drop of oil, having a greater dispersive power than the single concave lens, whieh formed the objeet-glass of the mieroseope. The lens was then made to touch the fluid, so that the surface of the fluid was formed into a eoncave lens, and if the radius of the outward surfaee was sueh as to eorreet the dispersion, we should have a perfect achromatie mieroseope." Here we have the immersion system foreshadowed. Shortly after these experiments of Brewster's were in progress, Dr. Goring is said to hare discovered that the structure of eertain bodies could be readily seen in some mieroscopes and not in others. Thesc bodies he named test objeets. He then examined these tests with the achromatie eombinations of the Tullys, and was led to the discovery that "the penetrating power of the mieroseope depends upon its angle of aperture."
"While these practieal investigations were in progress," writes Andrew Ross, "the subject of aehromatism engaged the attention of some of the most profound mathematicians in England, Sir John Herschel, and Professors Airy and Barlow. Mr. Coddington and others eontributed largely to the theoretieal examination of the subject; and although the results of their labours were not applieable to the mieroseope, they cssentially promoted its improvement."

About this period (1812) Professor Amiei, of Modena, was experi-
mentally cngaged in the improvenent of the achromatic object-glass, and he invented a reflecting microscope superior to those of Newton, Baker, or Smith, made as early as 1738, and long ago abandoned. In 1815 Amici made further cxperiments, and introduced the immersion system ; while Frauenhofcr, of Munich, about the same time constructed object-glasses for the microscope of a single achromatic lens, in which the two glasses, althongh placed in juxtaposition, were not cemented together.

Dolland, it has becn said, introduced achromatic lenses; but although he constructed many achromatic telescopes, he did not apply the same principle to microscopes, and those which he sold were only modifications of the compound microscope of Cuff.

Dr. Wollaston employed a new form of combination in a microscope constructed for his own use, and by which " he was able to sce distinctly the finest markings upon the scalcs of the Lepisma and Podura, and upon those of the gnat's wing." His doublet is still employed, and to which I shall refer under "Simple Mieroscopes."

Fig. 3 α_{n} - Sir David Brewster's Microscope, of the enrly part of the century, recently presented to the British Muscum.

CHAPTER I.

Elementary Optics.

Value of Inductive Science-Light: Its Propagation, Refraction, Reflection -Spherical and Chromatic Abcrrations-Human Eyc, formation of Images of Extermal Objects in-Visual Angle increased-Abbe's Theory of Microscopic Vision.

The advances madc in physics and mechanics during the 17 th and 18 th centuries fairly opened the way to the attainment of greater perfection in all optical instruments. This has been particularly exemplified with reference to the invention of the microseope, as briefly sketched out in the previous ehapter. Indecd, in the first half of the present contury the microscope can scarccly be said to have held a position of importance among the scientific instruments in frequent usc. Since then, however, the zoologist and botanist by its aid have laid bare the intimato structurc of plants and animals, and thereby have opencd up a vast kingdom of minute forms of life previously undreamt of ; and in conneetion with chomistry a now scionee has bcen founded, that of bactcriology.

For these reasons it will be of importance to the student of microscopy to begin at the beginning, and it will be my cndearour to introduce to his notice such facts in physical optics as are closely associated with the formation of images, and, so to spcak, systematise such stepping stoncs for work hercafter to be accomplished. Elementary principles only will be adduced, and without attempting to involve my readers in intricate mathematical problems, and which for the most part are umecessary for the attaimment of the object in view. I therefore pass at once to the consideration of the propagation of light through certain bodies.

The microscope, whether simple or compound, depends for its magnifying power on the influence exerted by lenses in altering the eourse of the rays of light passing through them being refracted.

Refraction takes place in accordance with two well-known laws of optics. When a ray of light passes from one transparent medium to another it undergoes a change of direction at the surface of separation, so that its course in the second medium makes an angle with its course in the first. This change of direction is a resultant of refraction. The broken appearance presented by a stick partly immersed in water, and viewed in an oblique position, is an illustration of the law of refraction. Liquids have a greater refractive power than air or gases. As a rule, with some few exceptions, the denser of the two substances has the greater refractive power ; hence it is customary in enumerating some of the laws of optics to speak of the denser medium and the rarer medium. The more correct designation would be the more refractive and the less refractive.*

Let R I (Fig. 4) be a ray incident at I on the surface of separation of two media, and let I S^{\prime} be the course of the ray after refraction. Then the angles which R I and IS make with the normal are the angle of incidence and the angle of refraction respectively,

Fig. 4.-Law of Refraction. and the first law of refraction is that these angles lie in the same plane, or the plane of refraction is the same as the plane of incidence. The law which commects the magnitudes of these angles, and which was discovered by Snell, a Dutch philosopher, can only be stated either by reference to a geometrical construction, or by using the language of trigonometry. Describe a circle about the point of incidence, I as a centre, and drop perpendiculars from the points where it cuts the rays on the nommal. The law is that these perpendiculars, $\mathrm{R}^{\prime} \mathrm{P}^{\prime}, \mathrm{S}^{\prime} \mathrm{I}$, will have a constant ratio, or the sinos of the angles of

[^3]incidence and refraction are in a constant ratio; that is, so long as the media through which the ray first passes, and by which it is afterwards refraeted, remain the same, and the light also of the same kind, then it is referred to as the law of simes.

Indices of Refraction.

The ratio of the sine of the angle of incidence to the sine of the angle of refraction, when a ray passes from one medium to another is termed the relative index of refraetion. When a ray passes from vacuum into any medium, this ratio is always greater than unity, and is called the absolute index of refiaction, or simply the index of refraction for the medium in question.

The absolute index of air is so small that it may be neglected in eomparison with those of solids and liquids; but strictly speaking, the relative index for a ray passing from air into a given substance must be multiplied by the absolute index of the air; in order to obtain the true index of refraction.

Critical Angle.-It will be seen from the law of sines that, when the ineident ray is in the less refraetive of the two media, to every possible angle of ineidence there

Fig. 5.-Vision through a Glass Plate. is a eorresponding angle of refraction. The angle referred to is termed the critical angle, and is readily computed if the relative index of refraetion bo given. When the media are air and water, this angle is about $48^{\circ} 30^{\prime}$. For air and ordinary kinds of glass its value varies from 38° to 41°.
The phonomenon of total refleetion may be observed in several familiar instances. For example, if a glass of water, with a spoon in it, is held above the level of the cye, the under side of the surfaee is seen to shine like a mirror, and the lower part of the spoon is seen reflected in it. Effeets of the same kind are observed when a rat of sunlight passes into an aquarium-on the other hand rays falling normally on a unform transparent plate of glass with parallel faces keep their course ; but objeets viewed obliquely throngh the same
are displaced from their true position. Let S (Fig .5) be a luminous point which sends light to an eye not directly opposite to it, on the other side of a parallel plate. The emergent rays which enter the eye are parallel to the ineident rays ; but as they have undergone lateral displaeement, their point of coneourse is elanged from S to S^{\prime}, and this is aceordingly the image of S . The rays in sueh a ease which compose the peneil that enters the eye will not exactly meet in any one point ; there will be two foeal lines, just as in the case of spherieal mirrors. The displacement produeed, as seen in the figure referred to above, inereases witl the thickness of the plate, its index of refraction, and the obliquity of ineidenee. This furnishes one of the simplest means of measuring the index of refraetion of a glass substanee, and is thus employed in Piehot's refractometer ("Desehanel").

Refraction through a Prism.-A prism is a portion of a refracting medium bounded by two plane surfaees, inelined at a definite angle to one another. The two plane surfaces are termed the faces of the prism, and their inelination

Fig. 6. - Refraction through a Prism. to one another is the refracting angle of the prism. A prism preserves the property of bending rays of light from their original course by refraetion. A eylinder may be regarded as the limit of a prism whose sides inerease in number and diminish in size indefinitely : it may also be regarded as a pyramid whose apex is removed to an indefinite distance.

Let S I (Fig. 6) be an ineident ray in the plane of the prineipal seetion of the prism. If the external medium be air, or other substanee of less refractive power than the prism, the ray on entering the same will be bent nearer to the normal, taking sueh a eourse as I E, and on leaving the prism will be bent away from the normal, taking the course E B. The effcet of these two refractions is, there:fore, to turn the ray away from the edge (or refracting amgle) of the prism. In practiee, the prism is usually so plaeed that I E, the path of the ray through the prism, makes equal angles with the
two faces at which refraction occurs. If the prism is turned very far from this position, the course of the ray may be altogether different from that represented in the figure ; it may enter at onc face, be internally reflected at another, and come out at the third.

It is evident, therefore, that the minimnm number of sides, i.e., the bounding faces, exclusive of the ends, which a prism can have is three. In this form, it constitutcs a most valuable instrument of research in physical optics. A convex lens is practically merely a curved form of two prisms combined, their bases being brought into contact ; on the other hand the concare lens is simply a reversal of the position of the apices brought into contact, as shown in Fig. 11. Both convex and concare lenses are therefore closely related to the prism.

Reflection.-The laws that govern the change of direction which a ray of light experiences when it strikes upon the surfaces of separation of two media and is thrown back into the same medinm from which it approached is as follows:-When the reflecting surface is plain the direction of the reflected ray makes with the normal to the surface the same angle which the incident ray makes with the same normal ; or, as it is usually expressed, the angles of reflection and incidence are cqual. When the surfaces are curved the same law holds good. In all cases of reflection the energy of the ray is diminished, so that reflection must always be accompanied by absorption. The latter probably precedes the former. Most bodies are visible by light reflected from their surfaces, but before this takes place the light has undergone a modification, namely, that which imparts colour peculiar to the bodies vicwed. When light impinges upon the surface of a denser medium part is reflected, part absorbed, and part refracted. But for a certain angle depending upon the refractive index of the refracting medium no refraction takes place. This angle is termed the angle of total reflection, since all the light which is not absorbed is wholly reflected.

Multiple images are prodnced by a transparent parallel plate of glass. If the glass be silvered at the back, as it usually is in the microscope-mirror, the sccond image is brighter than the first, but as the angle of incidence increases the first image gains upon the second; and if the luminons object be a lamp or candle, a number of images,
one behind the other, will be visible to an oye properly placed in front. This is due to the fact that the reflecting power of a surface of glass increases with the angle of incidence.

Concave Surfaces.- Rays of light procceding from any given point in front of a concave spherical mirror, are reflected so as to meet in another point, and the line joining the two points passes through the contre of the sphere. The relation between them is or should be mutual, honce they are tormod conjugate foci. By a focus in general is meant a point in which a number of rays of light mect, and the rays which thus mect, taken collectively, are termed a pencil. Fig. 7 represents two pencils of rays whose foci, S s, are conjugate, so that, if cither of them be regarded as an incident pencil, the other will be the corresponding reflected pencil. Each point, in fact, sends a

Fig. 7. - Conjugate Foci of Curved Surfaces.
pencil of rays which converge, after reflection, to the conjugate focus. The principal focal distance is half the radius of curvature. But it will not cscape attention that concave mirrors have two reflecting surfaces, a front and a back. This, however, docs not practically disturb its virtual focus, sinee the achromatic condenser when brought into use collcets and concontrates the light received from the mirror upon an object for the purpose of rendering it more distinctly visible to the eye when viewing an object placed on the stage of the microscope. The images seen in a plane mirror are always virtual, and any spherical mirror, whether concave or convex, is nearly equivalent to a plane mirror when the distance of the object from its surface is small in comparison with the radius of curvature.

Lenses.

Forms of Lenses.-A lens is a portion of a refracting medium bounded by two surfaces which arc portions of spheres, having a eommon axis, termed the axis of the lens. Lenses are distinguished by different names, aceording to the nature of their surfaces.

Lenses with sharp cdges

Fig. 8.--Converging and Diverging Lenses. (thieker at the centre) arc convergent or positive lenses. Lenses with blunt cdges (thinner at the centre) are divergent or negative lenses. The first group eomprises :-(1) The bi-eonvex lens; (2) the plano-convex lons; (3) the eonvergent meniscus. The second group :-(4) The concave lens; (5) the plano-concave lens; (6) the divergent meniscus (Fig. 8).

Principal Focus.-A lens is usually a solid of revolution, and the axis of revolution is termed the principal axis of the lens. When the surfaces are spherieal it is the line joining the centre of eurvature.

From the great importance of lenses, espeeially convex lenses, in

Fig. 9.-Prineipal Focus of a Convex Leus.
practical opties, it will be necessary to explain their propertics somewhat at length.

Principal Focus of Convex Lons.-When rays whieh wore originally parallel to the principal axis pass throngh a convex lens (Fig. 9), the effect of the two refractions which they undergo, one on entering and the other on leaving the lens, is to make them all
converge approximately to one point F , which is ealled the principal focus. The distance A F of the principal focus from the lens is called the prineipal focal distance, or more briefly and usually, the focal length of the lens. The radiant point and its image after refraction are known as the conjugate foci. In every lens the right line perpondicular to the two surfaces is the axis of the lens. This is indicated by the line drawn through the several lenses, as seen in the diagram (Fig. 8). The point where the axis cuts the surface of the lens is termed the verte.

Parallel rays falling on a double-convex lens are brought to a focus in the centre of its diameter ; conversely, rays diverging from that point are rendered parallcl. Hence the focus of a double-convex lens will be at just half the distance, or half the length, of the focus of a plano-convex lens having the same curvature on one side. The distance of the focus from the lens will depend as much on the degree of curvature as upon the refracting power (termed the index of refraction) of the glass of which it may be formed. A lens of crown-glass will have a longer focus than a similar one of flint-glass ; since the latter has a greater refracting power than the former. For all ordinary practical purposes we may consider the principal focus-as the focus for parallel rays is termed-of a double-convex lens to be at the distance of its radius, that is, in its centre of curvature ; and that of a plano-couvex lens to be at the distance of twice its radius, that is, at the other end of the diametcr of its sphere of curvature. The converse of all this occurs when divergent rays are madc to fall on a convex lens. Rays already converging are brought together at a point nearcr than the principal focus; whereas rays diverging from a point within the principal focus are rendered still more diverging, though in a diminished degrec. Rays diverging from points more distant than the principal focus on cither side, are brought to a focus beyond it: if the point of divergence be within the circle of curvature, the focus of convergence will be beyond it; and vice-versá. The same principles apply equally to a plano-convex lens; allowance being made for the double distance of its principal focus ; and also to a lous whose surfaces have diffcrent curvatures; the principal focus of such a lens is found by multiplying the radius of one surface by the radius of the other, and dividing this product by half the sum of the radii.

In the ease of a concave lens (Fig. 10), rays incident parallel to the principal axis diverge after passing through; and their directions, if produced backwards, would approximately meet in a point F ; this is its mincipal focus. It is, however, only a virtual focus, inasmuch

Fig. 10.-1'rincipal Focus of Concave Lens.
as the emergent rays do not actually pass through it, whereas the principal focus of a converging lens is real.

Optical Centre of a Lens.-Secondary Axes.-Let 0 and 0^{\prime} (Fig. 11) be the centres of the two spherical surfaces of a lens. Draw any two parallel radii, O I, O^{\prime} E, to mect these surfaces, and let the joining line I E represent a ray passing

Fig. 11.- Principal Centre of Lens. through the lens. This ray makes equal angles with the normals at I and E , since these latter are parallel by eonstruetion; henee the incident and emergent rays $\mathrm{S} \mathrm{I}, \mathrm{E} \mathrm{R}$ also make equal angles with the normals, and are therefore parallel. In fact, if tangent planes (indicated by the dotted lines in the figure) are drawn at I and E, the whole course of the ray S I E R will be the same as if it had passed through a plate bounded by these planes.

Let C be the point in which the line I E ents the principal axis, and let R, R^{\prime} denote the radii of the two spherical surfaces. 'Then from the similarity of the triangles $\mathrm{O} \mathrm{C} \mathrm{I}, \mathrm{O}^{\prime} \mathrm{C} \mathrm{E}$, we have
$\frac{\mathrm{OC}}{\mathrm{CO}}=\frac{\mathrm{R}^{\prime}}{\mathrm{R}}$; which shows that the point C divides the line of centres $0 O^{\prime}$ in a definite ratio depending only on the radii. Every ray whose direction on emergence is parallel to its direction before entoring the lens, must pass through the point C in traversing the lens; and conversely, every ray which in its course through the lens traverses the point C, has parallel dircetions at incidence and emergence. The point C whieh possesses this remarkable property is called the centre, or optical centre, of the lens.

This diagram may also be taken to prove my former proposition, that the convex lens is practically a form of two prisms combined.

Conjugate Foci, one Real, one Virtual.- When two foci are on the same side of the lens, one (the most distant of the two) must

Fig. 12. - Conjugate Foci, one Real, the other Virtual.
be virtual. For example, in Fig. 13 , if S, S^{\prime} are a pair of conjugate foei, one of them S being between the prineipal focus F and the lens, rays sent to the leus at a luminons point at S , will, after emergenee, diverge as if from S^{\prime}; and rays eoming from the other side of the lens, if they converge to S^{\prime} before ineidenee, will in reality be made to meet in S. As S moves towards the lens, S^{\prime} moves in the same direetion more rapidly; and they become coincident at the surface of the lens.

Formation of Real Images.-Let A B (Fig. 13) be an object in front of a lens, at a distance less than the prineipal focal length. It will have a real image on the other side of the lens. To determine the position of the image by eonstruction, draw through any point A of the object a line parallel to the prineipal axis, meeting the lens in Λ^{\prime}. The lay represented by this line will, after rofretetion, pass
through the principal foens, F , and its intersection with the secondary axis, A O, determines the position of a, the focus conjugate to A. We can in like manner determine the position of l, the focus conjugate to B, another point of the object; and the joining line $a b$ will then be the magnified image of the line $A \mathrm{~B}$. It is evident that if a b were the object, A B would be the image.

The figures 12 and 13 represent the cases in which the distance

Fig. 13. - Real and Magnitied Image.
of the object is respectively greater and less than twice the focal length of the lens."

The focal length of a lens is determined by the convexity of its surfaces and the refractive power of the material of which it is composed, being shortened either by an increase of refractive power, or diminution of the radii of curvature of the faces of the lens. The increase or decrease of spherical aberration is determined by the shape or curvature of the lens; it is less in the bi-convex than in other forms. When a lamp or other souree of light is placed at the focus of the rays constituting that portion of its light which falls upon the lens, the light is so refracted as to become parallel. Should the source of light be brought nearer to the lens than the focus the refracted rays are still divergent, though not to the same extent; on the other hand, if the source be beyond the foens, the refracted rays are rendered convergent so as to meet at a point which is mathematically related to the distance of the luminous somec from the focus. The former arrangement is that with which we are most familiar, since it is the ordinary magnifying glass.

Concave Lenses.

The refracting influenee of a concave lens (Fig. 14) will be preeisely the opposite of that of a convex. Rays which fall upon it in a parallel direction will be made to diverge as if from the principal foeus, which is here called the negative foeus. This will be, for a plano-concave lens, at the distanee of the diameter of the sphere of eurvature ; and for a double-concave, in the eentre of that sphere.

In Fig. 14 A B is the objeet and $a b$ the image. Rays ineident from A and B parallel to the prineipal axis will emerge as if they eame from the principal focus F ; hence, the points $a b$ are determined by the intersections of the dotted lines in the figure with the

Fig. 14.-A Virtual Image formed by Concave Lens.
seeondary axis, $0 \mathrm{~A}, 0 \mathrm{~B}$. An eye on the other side of the lens sees the image $a b$, whieh is always virtual, crect and diminished.

In the construetion of the microscope, cither simple or compound, the curvature of the lenses employed is usually spherieal. Convergent lenses, with spherical curvatures, have the defeet of not bringing all the rays of light whieh pass through them to one and the same foens. Each circle of rays from the axis of the lens to its eircumference has a different foeus, as shown in Fig. 15. The rays $a b$, whieh pass through the lens near its circumference, are seen to be more refiracted, or come to a foeus at a shorter distanee behind it than the rays $b b$, which pass through near its contre or axis, and are less refracted. The consequence of this defect of lenses with spherieal curvatures, which is called spherical aberration, is that a well-defined image or pieture is not formed by them, for when the objeet is focussed, for the cireumferential rays, the picture projeeted to the eye is rendered indistinet by a halo or confusion produced by
the contral lays falling in a circle of dissipation, before they have come to a focus. On the other hand, when placed in the focus of the central rays, the picture formed by them is rendered indistinct by the halo produced by the circumferential rays, which have already come to a focus and crossed, and now fall in a state of divergence, forming a circle of dissipation. The grosser defects of spherical aberration are corrected by cutting off the passage of the rays a a, through the circumferences of the lens, by means of a stop diaphragm, so that the central rays, $b l$, only are concomed in the formation of the image. This defect is reduced to a minimum, by

Fig. 15.--Sphencal Aberration of Lens.
using the moniscus form of lens, which is the segment of an cllipsoid instcad of a spherc.

The ellipse and the hyperbola are forms of lenses in which the curvature diminishes from the central ray, or axis, to the circumference b; and mathematicians have shown that spherical abcrration may be practically got rid of by employing lenses whose sections are ellipses or hyperbolas. The remarkable discovery of these forms of lenses is attributed to Descartes, who mathematically domonstrated the fact.

If a l, a l^{\prime}, for example (Fig. 16) be part of an cllipse whose greater axis is to the distance between its foci $f f^{\prime}$ as the index of refraction is to unity, then parallel rays $r l^{\prime}, r^{\prime \prime} l$ incident upon the elliptical surface l^{\prime} a l, will be refracted by the single action of that surface into lines which would meet exactly in the farther focus f, if there were no second surface iutervening between l a l^{\prime} and f. But as every useful lens must hawe two surfaces, we have only to describe a circle $l a^{\prime} l^{\prime}$ round f^{\prime} as a centre, for the second surface of the lens $l^{\prime} l$.

As all the rays refracted at the surface l a l^{\prime} converge accurately to f, and as the circular surface $l a^{\prime} l^{\prime}$ is perpendicular to every one of the refracted lays, all these rays will go on to f without suffering any refraction at the cireular surface. Hence it should follow, that a meniscus whose convex surface is part of an ellipsoid, and whose

Fig. 16. - Converging Meniscus.
concave surface is part of any spherieal surface whose eentre is in the farther focus, will have no appreeiable spherieal aberration, and will refract parallel rays incident on its convex surface to the farther foeus.

The spherieal form of lens is that most generally used in the construetion of the microseope. If a true elliptical or hyperbolic curve eould be ground, lenses would very nearly approach perfection, and spherieal aberration would be considerably reduced. Even this defeet can be further redueed in practiee by observing a eertain ratio between the radii of the anterior and posterior surfaces of lenses; thus the spherical aberration of a lens, the radius of one surface of whieh is six or seven times greater than that of the other, will be mueh reduced when its more convex snrfaee is turned forward to receive parallel rays, than when

Fig. 17.Aplanatic Doublet. its less convex surface is turned forwards. It should be borme in mind that in lenses having curvatures of the kind the object would only be eorrectly seen in focus at one point-the mathonatical or geometrieal axis of the lens.

Chromatic Aberration.-We have yet to deal with one of the most important of the phenomena of light, chironatic aberration, upon the eorrection of which, in eonvex lenses in partieular; the
perfection of the objective of the microscope so much depends. Chromatism arises from the unequal refrangibility and length of the different coloured rays of light that together go to make up white light; but which, when treated of in optics, is always associated with achromatisn, so that a combination of prisms, or lenses, is said to be achromatic when the coloured rays arising from the dispersion of the pencil of light refracted through them are combincd in due proportions as they are in perfectly white light.

A lens, however, of uniform matcrial will not form a single white image, but a series of images of all colours of the spectrum, arranged at different distances, the violet being nearest, and the red the most remote, every other colour giving a blurred image ; the supcrposition of these and the blending of the different elementary rays furnishing a complete explanation of the beautiful phenomenon of the rainbow. Sharpness of outline is rendered quite impossible in such a case, and this source of confusion is known as chromatic aberration.

In order to ascertain whether it is possible to remedy this evil by combining lenses of two diffcrent materials, Newton made some trials with a compound prism composed of glass and water (the latter containing a little sugar of lead), and he found it impossible by any arrangement of these two, or by other substances, to produce deviation of the transmitted light without separation into its component colours. If this ratio were the same for all substances, as Newton supposed, achromatism would be impossible; but, in fact, its value varies greatly, and is far greater for flint than for crown glass. If two prisms of these substances, of small rcfracting angles, be combined into one, with their edges turned in opposite directions, they will achromatise each other.

The chromatism of lenses may, however, be somewhat further reduced by stopping out the marginal rays, but as the most perfect correction possible is required when lenses are combincd for microscopic uses, other means of correction are resorted to, as will be scen hereafter. I shall first proceed to show the deviations which rays of white light undergo in traversing a lens.

If parallel rays of light pass through a double-convex leus the violet rays, the most refrangible of them, will come to a focus at a point much nearer to the lens than the focus of the red rays, which are the least refrangible ; and the intermediate rays of the spectrom
will be foeussed at points between the red and the violet. A sereen held at cither of these foei will show an image with prismatie fringes. The white light, A $\mathrm{A}^{\prime \prime}$ (Fig. 18), falling on the marginal portion of the lens is so far deeomposed that the violet rays are brought to a foeus at C , and erossing there, diverge again and pass on to F F , while the red rays, $B B^{\prime \prime}$, do not eome to a foeus until they reaeh the point D , and eross the divergent violet rays, $\mathrm{E} \mathrm{E}^{\prime}$. The foei of the intermediary rays of the speetrum (red, green, and blue) are intermediate between these extremes. The distance, C D, limiting the blue or violet, and the red is termed the longitudinal ehromatic aberration of the lens. If the image be reeeived upon a sereen plaeed at C, violet will predominate and appear surrounded by a prismatic fringe, in which violet will predominate. If the sereen be

Fig. 18. - Chromatic Aberration of Lens.
now shifted to D, the image will have a predominant red tint, surrounded by a series of coloured fringes in an inverted order to those seen in the former experiment. The line $\mathrm{E} \mathrm{E}^{\prime}$ joins the points of intersection between the violet and red rays, and this marks the mean foeus, the point where the eoloured rays will be least apparent.

In the early part of this century the optieal eorrection of chromatie aberration was partially bronght about by eombining a eonvex lens of crown-glass with a coneave lens of flint-glass, in the proportion of whieh these two kinds of glass respeetively refraet and disperse rays of light; so that the one medium may by equal and contrary dispersion neutralise the dispersion eaused by the other, without at the same time wholly neutralising its refraction. It is a eurious fact that the media found most available for the purpose should be a eombination of. crown and flint-glass, of crown-glass whose index of refraction is
1.519 , and dispersive power 0.036 , and of fint-glass whose index of refraction is 1.589 , and dispersive power 0.0393 . The focal length of the convex crown-glass lens must be $4 \frac{1}{3}$ inches, and that of the coneare flint-glass lens $7 \frac{2}{3}$ inches, and the combined focal length 10 inches. The diagram (Fig. 19) shows how rays of light are brought to a focus, nearly free from colour. The small amount of residual colour in such a combination is termed the secondary spectrum ; the violet ray F Y, crossing the axis of the lens at V, and going to the upper end P of the spectrum, the red ray F B going to the lower end T. But as the flint-glass lens $l l$, on the prism A a C, which receives the rays F V, F R, at the same points, is interposed, these rays will unite at f, and form a small circle of

Fig. 19. - Correction of Chromatic Alerration.
white light, the ray S E being now refracted without colour from its primitive direction S F Y into the direction F f. In like manner, the corresponding ray $S \mathrm{~F}^{\prime}$ will be refracted to f, and a white colourless image be the result.

The achromatic aplanatic objective constructed on the optical formula enunciated, did not meet all the difficulties experienced by the skilled microscopist, in obtaining resolution of the finest test objects, and whereby the intrinsic valne of the objective (in his estimation) must stand or fall. There were other disturbing residuary elements besides those of the secondary spectrum, and which at a later period were met by the practical skill of the optician, who applied the serew-collar, and ly means of which the back lens of the objective is made to approach the front lens, thus more acenrately shortening the distance between the eye-piece, where the image is eventually formed, and the back lens of the objective.

In this diagram L L is a convex lens of crown-glass, and $l l$ a concave one of flint-glass. A convex lens will rofract a ray of light (S) falling at F on it exactly in the same manner as the prism A B C, whose faces touch the two surfaces of the lens at the points where tho ray enters, and quits. The ray S F , thus refracted by the lens L L, or prism A B C, would have formed a spectrum (P T) on a sereen or wall, had there been no other lens.

Formation of Virtual Images.-The normal eye possesses a considerable power of adjusting itself to form a distinct image of objects placed at varying distances; the nearer, within a certain limit, the larger it appears, and the more distinctly the details are brought out. When brought within a distance of two or three

Fig. 20. - Virtual Image formed by Convex Lens.
inches, the images become blurred or quite indistinct, and when brought closer to the eye, cannot be seen at all, and it simply obstructs the light. Now the utility of a convex lens, when interposed between the object and the eye, consists in reducing the divergence of the rays forming the several pencils which issue from it, and send images to the retina in a state of moderate divergenee, that is, as if they had issued from an object beyond the nearest point of distinet vision, and so that a more clearly defined image may reach the sensitive membrane of the eye. But, not only is the eourse of the several rays in each pencil altered as regards the rest, but the course of the peneils themselves is changed, so that they enter the cye under an angle corresponding with that minder which they would have arrived from a larger object situated at a greater distance, and thus the picture formed by any object corresponds in all respects with one which would have been made
by the same object increased in its dimensions and viewed at the smallest ordinary distance of distinct vision. For instance, let an object A B (Fig. 20) be placed between a convex lens and its principal focus. Then the foci conjugate to the points A B are virtual, and their positions can be found by construction from the consideration that rays through A, B, parallel to the principal axis, will be refracted to F , the principal focus on the other side. The refracted rays, if produced backwards, must meet the secondary axis $O A, O B$ in the required points. An cyc placed on the other side of the lens will accordingly see a virtual image crect, magnificd, and at a greater distance from the lens than the object. This is the principle of the simple microscope.

The Human Eye.

To gain a clear insight into the mode in which a single lens serves to magnify objects, it will be necessary to revert to the phenomena of ordinary vision. An cye free from any defect has a considerable power of adjusting itself to very considerable distances. One of the special functions of the eye is bringing the rays of light, by it serics of dioptric mechanisms, to a perfect focus on its nervous sensitive layer, the retina. The eye in this respect has been compared to a photographic camera. But this is not quite correct. The retina is destined simply to receive the images furnished by the dioptric apparatus, and has no influence upon the formation of these images. The luminous rays are refracted by the dioptric apparatus; the images would be formed quite as well-indeed, even better in certain cascs-if the retina were not there. The dioptric apparatus and its action are absolutely independent of the retina.

The same laws with regard to the passage of the rays of light into the human cye hold good, as those already enunciated in the previous pages. As to change of direction when rays are passing obliqucly from a medium of low density to that of a higher density, i.e., it changes its course, and is bent towards the perpendicular. On learing the denser for the rarer medimm it is bent onee more from the perpendicular. Again, by means of a convex lens, the mys of light from one source will be refracted so as to meet at a point tormed the mincipal focus of vision.

In the eye there are several surfaces separating the different media where refraction takes place. The refractive index of the aqueous humour and the tears poured out by the lachrymal gland is almost equal to that of the cornea. We may, therefore, speak of the refracting surfaces as three, viz.: Anterior surface of cornea, anterior surface of lens, and posterior surface of lens; and also of the refracting media as three-the aqueous humour, the lens, and vitreous humour. These several bodies

Fig. 21. - Nerve and Stellate Cell Layer of Cornea, ${ }^{*}$ stained by chloride of gold ; magnified 300 diameters. a, Nerve cells. b, Stellate cells.
are so adapted in the normal eye that parallel rays falling on the cornea are converged to a focus at the most sensitive spot (the yellow spot, or fovea centralis) in the retina, a point reprosenting to the principal focus of the eye. A line drawn from this point through the centre of the cornea is called the optic axis of the cye-ball.

* The cornea of the eye is not so entirely the simple transparent structure as it at first sight may appear to be. It is composed of several layers, the most impertaint of which is the nerve layer, consisting of innumerable ganglionic stellate plexus of cells held together by a network, as seen in Fig. 21, a small section stained by chloride of gold, and magnified 300 diameters. Beneath the nucleated nerve cells is a sceond layer of stellate cells, varying a little in their form. These nerve and stellate eels serve the purpose of maintaining the cornea in health, and must play a significant part in the dioptric system.

But as we are able to form a distinct image of near objects, and as we notice when we turn our gaze from far to near objects there is a distinct feeling of muscular effort in the eyes, there must be some means whereby the eye can readily adapt itself for focussing near and distant objects. In a photographic camera the focus can be readily altered, either by elanging the lenses, employing a lens of greater or less curvature, or by altering the distance of the screen from the lens. The last method is obviously impossible in the rigid eye-ball, and therefore the act of focussing for near and distant objects is associated with a change in the curvature of the lens, a faculty of the eye termed accommodation (Fig. 22), a change chiefly accomplished by the ciliary (muscle) processes, which pull the lens forwards and inwards by virtual contracting power of the ciliary

Fig. 22.-Anterior section of Eye, showing changed form of lens during the act of accommodation, a voluntary action in the eye. M, Ciliary muscle; I, Iris; L, Lens; V, Vitreous Humour ; A, Aqueous Humour; C, Cornea and optic axis.
muscle, and by which its suspensory ligament is relaxed, and the front of the lens allowed to bulge forward. In every case, howerer, accommodation is associated with contraction of the iris, the special function of which is that of a limiting diaphragm (an iris-diaphragm), Fig. 23.

In an ordinary spherieal bi-convex lens, as already pointed out, the rays of light passing through the periphery of the lens come to a focus at a nearer point than the rays passing through the central portion. In this way a eertain amount of blurring of the image takes place, and which, in optical language, is termed spherical aberration. This defect of the eye is capable of correction in three possible ways, and which it may be well to repeat: 1. By making the refractive index of the lens higher at its centre than at its circumference ; (2) By making the curvature of the lens less near the
eireumferenee than at the eentre ; (3) By stopping out the peripheral rays of light by a diaphragm. The two latter methods are those resorted to in most optical instruments.

In the human eye an attempt is madc to apply all these methods, but the most important is the third, that of applying the diaphragm formed by the iris, a eireular semi-museular curtain lying just in front of the anterior surfaec of the lens. The iris is also furnished with a layer of pigmental eells which effectually stop out all peripheral rays of light that otherwise would pass into the eye, ereating cireles of diffusion of a disturbing nature to perfeet

Fig. 23.-1. Equatorlal section of Eycball, showing Iris and Ciliary Processes, after washing away the pigment, x three diameters.
2. Nerves of the Cornea of Rabbit's Eye, stained with iodine.
3. Fibres or Tubules of Lens, $\times 250$, seen to be made up of superimposed crenated layers, and is therefore not homogeneous in structure, but made up of a number of extremely fine tubules, whose curvatures are nearly spherical.
vision. This delieate membrane, then, is kept in constant aetion by a two-fold nerve supply, derived from five or six sourees, which it is unnecessary to deseribe at length. But the cye, with all its marvellous adaptations, has an obvions dcfeet, that of sceondary or uneorreeted ehromatie abcrration.

Chromatic Aberration of the Eye. - White light, as previously explained, is eomposed of different wave lengths ; and aecordingly as these mndulations are either longer or shorter, so do they produce on the cye the impression of different colours. We have seen how a. pencil of white light may, by means of a prism, be dceomposed into a multi-coloured band. In an ordinary magnifying reading-glass these coloured fringes are always seen around the margins. In practieal optics chromatic aberration is partially eorrected by
M.
employing two different kinds of glass in the eonstruetion of eertain combined lenses. In the human eye eliromatism cannot be eorrected in this way; henee a blue light and a red light placed at the same distance from the oye appears to be unequally distant: the red light requiring greater aecommodation in the eye than the blue, and this aecordingly appears to be the nearer of the two.

This visual error may be experimentally shown and explained. There is a kind of glass which at first sight appears dark blue or violet, but which really contains a great deal of red. Take an

Fig. 24. - Chromatic Aberration of Eye, showing the wave differences of the blue and red rays of light (Landolt).
ordinary mieroscope lamp, having a metal or opaque elimney, and drill a eireular hole in it, about 3 mm . in diameter. This opening should be just at the height of the flame; cover it over with a pieee of ground glass and a pieee of the red-blue glass. Thus will be formed a luminous point whose light is eomposed of red and blue, i.e., of colours far apart from each other in the spectrum.

If rays eoming from this point enter the eye, the blue rays (Fig. 24), being more strongly refleeted than the red, will come to a foeus sooner than the latter. 'The red rays, on the contrary, will be brought to a foeus later than the blue, while the latter, past their foeus, are diverging. Let A BCD (Fig. 24) be the section of a peneil of rays
given off from a red-blue point sufficiently distant so that these rays may be regarded as parallel. The focus of the blue is at b, that of the red at r :

An cye is adapted to the distance of the luminous point when the circle of diffusion, received upon the retina, is at its minimum. This is the case when the sentiont layer of the retina lies between the two foci E . In this case the point will appear as a small cirele, composed of the two colours, that is to say-violet. If the retina be in front of this point, at the focus of the blue rays for instance, the eye will perceive a blue point surrounded by a red circle, the latter being formed by the periphery of the luminous cone of red rays, which are focussed only after having passed the retina. The blue point will become a circle of diffusion larger in proportion as the retina is nearer the dioptric system, or as the focus for blue is farther behind it. But the blue circle will always be surrounded by a red ring. If, on the contrary, the retina is behind the focus for red, the blue cone will be greater in diameter than the red, and we shall have a red circle of difficsion, larger in proportion as the retina is farther from the focus, but always surrounded by a blue ring M. If the bluc-red point is five metres, or more, distant, the emmetropic* cye will evidently see it more distinctly, i.e., as a small violet point ; the hyperopic eyc, whose retina is situated in front of the foeus of its dioptric system, will see a blue circle, surrounded by red; the myopic eye, whose retina is belind its foeus, will see a ired circle, surrounded by blue. The size of these circles will be either larger or smaller when the principal focus of the cye is cither in front of or behind the retina.*

The refractive surfaces of a perfectly formed cye are very like an ellipsoid of revolution with two axes, one of which, the major axis of the ellipse, is at the same time the optic axis and that of rotation; the other is perpendicular to it, and is equal in all meridians. Eyes, however, perfectly construeted are rarely met with. The curvature of the cornea is nearly always greater in one meridian thim in another. Tts surfaces then cimnot be regarded as entirely belonging. to an ellipsoid of revolution, since the solid figure, of which the former would constitute a part, has not only two axes, but three, and these

* 1. The standard condition of perfect vision is termed emmetropic.

2. Leneloll: "The Aecomnolation and Refraction of the Eye," 1886.
nnequal This irregnlarity is not, however, always great enough to produce diseomfort and it is therefore disregarded. But in other cases the difference of curvature in the different meridians of the cye attain to a higher degree, and vision falls far below the arerage.

The refractive anomaly alluded to is termed astigmatism (from the Greek, a privative, $\sigma \tau \iota \gamma \mu a$, a point-imability to see a point). The way in which objects appear to such a person will mainly result from the way in which he sees a proint. Take, for example, the vertieal to be the most, and the horizontal to be the least, refractive meridian : place a vertical line (Fig. 25, I) at a stated distance before the eye, and the line will appear elongated, owing to the diffusion image of each of the points composing.

Fig. 25.-Lines as seen by the Astigmatic. it. It will also seem to be somewhat broadened, as at II. If the vertical meridian is adapted to the distance of the vertical, the line will appear very diffuse and broadened, as at III. All these little diffusion lines overlap each other, and give the line an elongated appearance. Hence a straight line is seen distinetly by an astigmatic eye only when the meridian to whieh it is perpendicular is perfectly adapted to its distance. A vertical line is sem distinetly when the horizontal meridian is adapted to its distance. It appears indistinct when its image is formed by the vertical meridian. The way in which an astigmatic person sees points and lines led to the diseovery of this remarkable irregularity in the refraction of the eyc. The late Astronomer Royal, sir George Airy, suffered for some years until, indeed, he discovered how it conld be corrected. This anomaly of eurvature of the refractive surfaces of the eye is now known to prevail largely among the more civilised races of mankind. It is, then, of very great importance when using high powers of the microscope. In most persons the visual power of both eyes is rarely quite equal ; on the other hand, the mind exerts an important influence, dominates, as it were, the cye in the interpretation of visual sensations and images. An example of this is presented in Wheatstonc's psendoscope, known to produee precisely the opposite
cffect of his stcreoseope-convey's, in faet, the converse of relief produced by the latter and better known instrument.

Visual Judgment.-The apparent size of an object is determined by the magnitude of the image formed on the retina, and this is inversely proportional to the distance. Thus the size of an image on the retina of an object two inches long at a distanee of a foot, is equal to the image of an object four inches long at a distance of two fect. An object can be seen if the visual angle subtended by it is not less than sirty sceonds. This is equivalent to an image on the fovea centralis of the retina of about $4 \mu^{*}$ aeross, and which corresponds to the diameter of a cone: so that while we have had under consideration the optical and physical conditions of human vision, we have likewise taken a lesson on the action of lenses used in the eonstruetion of the microscope.

The Theory of Microscopical Vision.

It has been said that no comparison can be instituted between mieroscopie vision and macroscopic ; that the images formed by minute objeets are not delineated microscopically under ordinary laws of diffraction, and that the results are dioptrical. This assertion, however, camot be accepted umeonditionally, as will be scen on more eareful examination of the late l'rofessor Abbe's mastcrly cxposition of "The Mieroscopieal Theory of Vision," and also his subsequent investigations on the estimation of aperture and the value of wide-angled immersion objcetives, published in the "Journal of the Royal Mieroscopical Socicty."

The essential point in Abbc's theory of microscopieal vision is that the images of minute objeets in the microscope are not formed exclusively on the ordinary dioptric method (that is, in the same way in which they are formed in the camcra or telcseope), but that they are largely affected by the peculiar manner in which the minute construction of the object breaks up the incident rays, giving rise to diffraction.

The phenoment of diffraction in general may be observed experimentally by plates of glass ruled with finc lines. Fig. 26 shows the appearance presented by a single candle-flame seen through such

* $\mu=001$ of a millimetre. This measurement is now universally employed in mieroscopy.
a plate, an meoloured image of the flame occupying the centre, flanked on either side by a row of eoloured speetra of the flame, whieh become dimmer as they reeede from the centre. A similar phenomenon may be produced by dust scattered over a glass plate, and by other objects whose strueture contains very minute partieles, or the meshes of very fine gauze wire, the rays suffering a eharaeteristie ehange in passing through sueh objeets; that ehange eonsisting in the brenking up of a parallel beam of light into a group of rays, diverging with wide angle and forming a regular series of maxima and minima of intensity of light, due to difference of phase of vibration.*

In the same way, in the mieroscope, the diffraetion peneil originating from a beam incident upon, for instance, a diatom, appears as a fan of isolated rays, deereasing

Fig. 26. in intensity as they are further removed from the direetion of the ineident beam transmitted through the strueture, the interference of the primary waves giving a number of sueeessive maxima of light with dark interspaees.

When a diaphragm opening is interposed between the mirror, and a plate of ruled lines plaeed upon the stage sueh as Fig. 27 , the appearance shown in Fig. $27 a$, will be observed at the baek of the objeetive on removing the eye-picee and looking down the tube of the microseope. The eentre eireles are the images of the diaphragm

* Diffraction effects may be observed withont a mieroseope, indeed, the more striking are seen in comnection with teleseopic vision. A beautifnl series of phenomena in illustration of the diffraction of light may be produced as follows: Draw on a large sheet of paper a series of geometrieal fignres, arranged at eynal distanees in a cirele. Λ collodion photographie pieture of these being taken, a series of small trunsparent apertmes in the elsewhere opaque film will result. This film is then mounted, so that it may be in turn brought before the centre of a small hand teleseope, previously adjnsted to view an image of the smin. In this way we have an apparatus of the most compaet form, and by means of which a series of fifty or more phenomena may be bronght into view in a few minntes. These pictures leing very small (oceupying on an arerage area one-tenth of an inch in diameter), inacenacies of surface and substance of the glass may be neglected. A film of Camada balsam with which the glass is cemented over the pieture Froduces no disturbanee. There is a manifest adrantage in the figmes being small, as the size of the image is in inverse propurtion to the size of the aperture.
opening produced by the direct rays, while those on the other side (always at right angles to the direction of the lines) are the diffraction images produced by the rays which are bent off from the ineident pencil. In homogeneous light the central and lateral images agrec in size and form, but in white light the diffraction images are radially drawn out, with the outer edges red and the imner blue (the reverse

Fig. 27.

Fig. $27 a$.
of the ordinary spectrum), forming, in fact, regular spectra the distance separating each of which varies inversely as the closencss of the lines, being for instance with the same objective twice as far apart when the lines are twice as close.

The influence of these diffraction spectra may be demonstrated by some very striking experiments, which show that they are not by

Fig. 28.

Fig. 28 a.
any means aceidental phenomena, but are directly comected with the image which is seen by the eye.

The first experiment shows that with the ecntral beam, or any one of the spectral beams alone, only the contour of the object is seen, the addition of at least one diffraction speetrum being essential to the visibility of the structure.

When by a diaphragm placed at the back of the oljoetive, as in Fig. 28, we cover up all the diffiraction spectra of Fig. 27 ar, and allow only the central rays to reach the image, the object will appear to be
wholly deprived of fine details, the outline alone will remain, and every delineation of minute structure will disappear, just as if the microscope had suddenly lost its optical power, as in Fig. 28 a.

This experiment illustrates a case of the obliteration of structure by obstructing the passage of the diffraction spectra to the eye-piece. The next experiment shows how the appearance of fine structure may be created by manipulating the speetra.

Fig. 29.

Fig. 29a.

When a diaphragm such as that shown in Fig. 29 is placed at the back of the objective, so as to cut off each alternate one of the upper row of spectra in Fig. $27 a$, that row will obviously become identical with the lower one, and if the theory holds good, we should find the image of the upper lines identical with that of the lower. On replacing the eye-piece, we see that it is so, the upper set of

Fig. 30.

Fig. 30a.
lines are doubled in number, a new line appearing in the centre of the space between each of the old (upper) ones, and upper and lower set having become to all appearance identical, as seen in Fig. 29a.

In the same way, if we stop off all but the outer spectra, as in Fig. 30, the lines are apparently again doubled, is seen in Fig. 30 a.

A case of apparent ereation of structure, similar in prineiple to the foregoing, though more striking, is afforded by a network of squares,
as in Fig. 31, having sides parallel to this page, which gives the spectra shown in Fig. 31 a, eonsisting of vertieal rows for the horizontal lines and horizontal rows for the vertical ones. But it is readily seen that two diagonal rows of spectra exist at right angles to the dingonals of the squares, just as would arise from sets of lines in the direction of the diagonals, so that if the theory holds good we ought to find, on obstructing all the other spectra and allowing only the diagonal ones to pass

Fig. 31.

Fig. 31a.
to the eye-pieee, that the vertical and horizontal hines have disappeared and are replaced by two new sets of lines at right angles to the cliagonals.

On inserting the diaphragm, Fig. 32, and replacing the eye-piece, we find in the place of the old network the one shown in Fig. 32a, the squares being, however, smaller in the proportion of $1: \sqrt{ } / 2$, as they should be in aecordanee with the theory propounded.

Fig. 32.

Fig. $32 a$.

An objeet sueh as Pleurosigma angulatum, which gives six diffraetion speetra arranged as in lig. 33, should, aecording to this theory, show markings in a lexagonal arrangement. For there will be one set of lines at right angles to b, a, e, mother set at right angles to c, a, f, and a third at right angles to g, a, d. These three sets of lines will obviously produce the appearance shown in Fig. $33 a$.

A great raricty of appearances may be prodneed with the same arrangement of spectra. Any two adjacent spectra with the central
beam (as l, c, a) will form equilateral triangles and give hexagonal markings. Or by stopping off all but g, c, e (or b, d, f), we again have the spectra in the form of equilateral triangles; but as they are now further apart, the sides of the triangles in the two cases being as $\sqrt{ } / 3: 1$, the hexagons will be smaller and three times as mumerous. Their sides will also be arranged at a different angle to

Fig. 33.

Fig. 33a.
those of the first set. The hexagons may be entirely obliterated by admitting only the spectra g, c, or g, f, or b, f, etc., when new lines will appear at right angles, or obliquely inclined, to the median line. By varying the combinations of the spectra, thercfore, different figures of varying size and positions are produeed, all of which camnot, of course, represent the tric strueture. Not only, however, may the appearanee of particular structure be obliterated or ereated, but it may even be predicted before being seen under the mieroscope. If the position and relative intensity of the spectra in any partieular ease are given, the charaeter of the resultant image, in some instanees, may be worked out by mathematical ealeulations. A remarkable instance of such a prediction is to be found in the case recorded by Mr. Stephenson, where a mathematical student who had never seen a diatom, worked out the purely mathematical result of the interfercnce of the six spectria $b-g$ of Fig. 33 (identical with P. angulatume), giving the drawing copiod in lig. 3.4. The special feature was the small markings betwoen the hexagons, which had not, before this time, been noticed on P '. angulatum. On more closely serutinizing a valve, stopping ont the contral beinn and allowing the six spectra
only to pass, the sniall markings were found actually to exist, though they were so faint they had previously eseaped observation until the result of the mathematieal dednction had shown that they ought to be seen.

These experiments seem to show that diffraetion plays a very essential part in the formation of microseopieal images, since dissimilar struetures give identieal images when the differenees of their diffiractive effect is removed, and conversely similar structures may give dissimilar images when their diffractive images are made dissimilar. Whilst a purely dioptrie image answers point for point to the objeet on the stage, aud enables a safe inferenee to be drawn as to the actual mature of that objeet, the visible indieations of minute strueture in a mieroseopieal image are not always or neeessiurily conformable to the real nature of the object examined, so that nothing more ean safely be inferred from the image as presented to the eye, than the presence in the objeet of sueh structural peeuliarities as will produee the partieular diffraetion phenomena on which these images depend.

Further investigations and experiments led Abbe to diseard so much of his theoretieal eonelusions relating to superimposed images having a distinct charaeter as well as a different origin, and as to their capability of being separated and examined apart from each other. In a later paper he writes: "I no longer maintain in prineiple the distinetion between the absorption image or direet dioptrieal image and the diffraction image, nor do I hold that the mieroseopieal image of an object consists of two superimposed images of different origin or a different mode of produetion. Thus it appears that both the absorption image and the diffraetion image he held to be equally of diffraction origin; but while a lens of small aperture would give the former with faeility, it would be powerless to reveal the latter, becauso of its limited eapacity to gather in the strongly-deflected rays due to the excessively minute bodies the microscopieal objeetive has to deal with." *

Able's theory of vision has been questioned by mathenatieians, and sinee his death Lord Rayleigh went more deeply into the question of "the theory of the formation of optical images," with speeial refurence to the microscope and telescope. He has shown

[^4]that two lines eannot be fairly resolved unless their components subtend an angle execeding that subtended by the ware-length of light at a distance equal to the aperture ; also, that the moasure of resolution is only possible with a square aperture, or one bounded by straight lines, parallel to the lines resolved.

Lord Rayleigh's Theory of the Formation of Optical Images, with Special Reference to the Microscope.*

Of the two methods adopted, that of Helmholtz's consists in tracing the image representative of a mathematical point in the objeet, the point being regarded as self-luminous; that of Abbe's the typical object was not, as we have seen, a luminous point, but a grating, illuminated by plane waves of light. In the latter method, Lord Rayleigh argues that the eomplete representation of the object requires the eo-operation of all the spectra whieh are foeussed in the prineipal focal plane of the objective; when only a few are present the representation is imperfect, and wholly fails when there is only one. He then proceeds to show, by the aid of diagrams and mathematical formula, how the resolving power can be adduced.

On further criticism of the Abbe spectrum theory, he observes "that, although the image ultimately formed may be considered to be due to the spectra focussed to a given point, the degree of conformity of the image to the object is another question. The consideration of the case of a very fine grating, whiel might afford no lateral spectra at all, shows the incorrectness of the usually accepted idea that if all the spectra are utilised the image will still be incomplete, so that the theory (originally promulgated by Abbe) requires a good deal of supplementing; while it is inapplicable when the ineident light is not parallel, and when the object is, for example, a double point and not a grating. Even in the ease of a grating, the spectrum theory is inapplicable, if the grating is self-luminous; for in this case no speetra can be formed since the radiations from the different elements of the grating have no permanent phase-relations." For these reasons Lord kayleigh advises that the question should be reconsidered from the older point of view, according to which the typical objeet is a point and not a grating. Sueh treatment will show that the theory of resolring power is essentially the same for all instruments.

* "Plit. Mag.," viii., 1. 167 (1596).

The peculiarities of the microscope, arising from the divergenceanglos not being limited to be small, and from the different character of the illumination, are theoretically only differences of detail. These investigations can be extended to gratings, and the results so obtained confirm for the most part the conclusions of the spectrum theory.

Furthermore, that the function of the condenser in microscopic practice in throwing upon the object the image of the lamp-flame is to cause the objoct to behare, at any rate in some degree, as if it were self-luminous, and thus to obviate the sharply-marked interference bands which arise when permanent and definite phase-relations are permitted to exist between the radiations which issue from various points of the object. This is capable of mathematical proof ; and in the case where the ithmination is such that each point of the row or of the grating radiates independently, the limit to resolution is seen to depend only on the width of the aperture, and thus to be the same for all forms of aperture as for those of the rectangular. That Abbe's theory of microscopic vision is fairly open to the criticisms passed on it by Lord Rayleigh must be taken for granted.

Definition of Aperture; Principles of Microscopic Vision.

It must be well within tho last half-century that the achromatic objective-glass for the microscope was brought to perfection and its value became generally recognised. Prior to the discovery of the achromatic principle in the construction of lenses it was assumed that the formation of the microscopic image took place (as we have already seen) on ordinary dioptric principles. As the image is formed in the camera or telescope, so it was said to be in the microscope. This belief existed, it will be remembered, at a time when dry objectives only were in favour and the use of the term angle of aperture was misunderstood, when it was supposed that the different media with diffraction-indices were used; and the angle of the radiant pencil was believed not only to admit of a comparison of two apertures in the same medium, but likewise to admit of a standard of comparison when the media were entirely different in their refractive qualities.

It was during my tenure of office as secretary of the Royal Microscopical Society (1867 to 1873), that the aperture question, and also
that of numericul aperture, came under discussion, both being met by the majority of the Fellows of the Society and practical opticians by a non-possumus.

Opticians alleged, that is, before the value of aperture became fully recognised (1860), that the achromatic objective had reached a stage of perfection, beyond which it was not possible to go ; indeed, not only opticians, but physicists of high standing, as Profossor Helmholtz, who made many important contribntions to the theory of the microscope, and who, after duly weighing all the known physical laws on which the formation of images can be explained, emphatically stated that in his opinion "the limit of possible improvement of the microscope as an instrument of discovery had been very nearly reached." A quarter of a century ago I ventired to throw a doubt upon so questionable a statement. I determined, if possible, to submit the aperture question to an exhaustive examination. My views were accordingly submitted to two of the highest authorities in this country-Sir George Airy, the then Astronomer Royal, and Sir George Stokes, Professor of Physics at Cambridge Universityboth of whom agreed with me that the possible increase of aperture would be attended with great adrantage to the objective, and open the way to an extension of power resolution in the microscope.* The discussion afterwards took a warm turn, as will be seen on reference to "The Monthly Microscopical Journals" of 1874, 1875 and 1876.

The confusion into which the aperture question at this period had lapsed was no doubt due to the fact that its opponents had not yet grasped the true meaning of the term apertare. It was believed to be synonymous with "angular aperture," much in use at the time. It will, however, appear quite unaccountable that even the older opticians should have confomeded the latter with the former ; and so ontirely disregarded the fact that the angles of the pencil of light admitted by the objective cannot serve as a measure of its aperture,

[^5]and that high refractive media can greatly reduce the value length of waves of light.

When the medium in which the objective works is the same as air, it is not that a comparison can be made by the angles of the radiant pencils only, but by their sines. For cxample, if two dry objectives admit pencils of 60° and 180°, their real apertures are not as $1: 3$, but as $1: 2$ only. Aperture in fact is computed by mathematicians by tracing the rays from the back focus through the system of lenses to the front focus, the front focus being the point at which the whole cone of rays converge as free as may be from aberration. If the front focus be in air, no pencil greater than 82°, "double the angle of total reflection," can emerge from the plane front of the lens; and, obviously, if no greater cone can emerge to a focus one way, neither can any greater cone enter the body of the lens from the radiant. This angle, then, of 82°, must be regarded as the limit for dry lenses or objectives.

This limit, it will be seen on more careful examination, is very nearly the maximum angle that can be computed for a lens to have a front focus in air. This can be proved by the consideration of the angle of the image of rays, as they are radiated from the object itself in balsam: for although this angle of image rays viewed as nascent from a self-luminous object capable of scattering rays in all directions, may be 180° in the substance of the balsam and cover-glass, of the 180° only 82° of the central portion will emerge into air-all rays beyond this limit are internally reflected at the cover-glass. This cone, then, of 82° becomes 180° in air, and a large part must necessarily be lost by reflection at the first incidence on the plane front of the lens. But with a formula permitting the use of a water medium between the front lens and the cover-glass, the aperture of the image rays may reach 126°-double the critical angle from glass to water ; and with an oil medium, the apcrture will be found to be limitcd only by the form of the front lens that can be constructed by the optician.

To sum up, then, the effect of the immersion systcm, greatly assists in the correction of aberration, gives increased magnification and angular aperture, increasc of working distance between the objective and object, and renders admissible the use of the thicker glass-cover.

The aperture question would in all probability have remained unsolved many years longer (ten or twelve years elapsed after I brought the question under discussion before opticians gave way), but for the fortunate circumstance that the cminent mathematieal and practical optician, Professor Abbe, of Jena, was about to visit London. This came off in the early part of the seventies, when the late Mr. John Mayall and myself had the good fortune to interview him. The subject discussed was naturally the increase of aperture and the theory of microscopieal vision. He readily at our request undertook to re-investigate the question in all its bearings on the microscope. It is almost unneeessary to add that the conclusions he eame to, and the results obtaincd, have proved of inestimable value to the microscopist and practical optician, and it may well seem necessary to explain somewhat at greater length the conclusions the learned Professor came to, and by the adoption of which the mieroscope has been placed on a more scientific basis than it had before attained to. Several papers were published in extenso in the "Journal of the Royal Mieroscopical Society," and I am greatly indebted to Mr. Frank Crisp, LL.D., for an excellent resumé of Abbe's Monograph.*

The essential step in the consideration of aperture is, as I have said, to understand clearly what is meant by the term. It will at once be recognised that its definition must necessarily refer to its primary meaning of opening, and must, in the case of an optical instrument, define its capacity for receiving rays from the object, and transmitting them to the image received at the eje-piece.

In the ease of the telescope-objective, its capacity for receiving and transmitting rays is necessarily mcasured by the expression of its absolute diameter or "opening." No such absolute measure ean be applied in the case of the microscope objective, the largest constructed lenses of which having by no means the largest apcrtures, bcing, in fact, the lower powers of the instrument, whose apertures are for the most part but small. The capacity of a microscope objective for receiving and transmitting rays is, however, as will be scen, estimated by its relative opening, that is, its opening in relation to

[^6]its focal length. When this relative opening has been ascertained, it may be regarded as synonymous with that denoted in the teleseope by absolute opening. That this is so will be better appreeiated by the following consideration :-

In a single lens, the rays admitted within one meridional plane evidently inerease as the diameter of the lens (all other eireumstanees remaining the same), and in the mieroseope we have, at the baek of the lens, the same conditions to deal with as are in front in the ease of the teleseope ; the larger or smaller number of emergent rays will therefore be measured by the elear diameter, and as no rays ean emerge that have not first been admitted, this will give the measure of the admitted rays under similar eireumstanees.

If the lenses compared have different foeal lengths but the same clear "openings," they will transmit the same number of rays to equal areas of an image at a definite distanee, because they would admit the same number if an objeet were substituted for the image ; that is, if the lens were used as a teleseope-objeetive. But as the foeal lengths are different, the amplifieation of the images is different also, and equal areas of these images eorrespond to different areas of the objeet from whieh the rays are eolleeted. Therefore, the higher power lens with the same opening as the lower power, will admit n greater number of rays in all from the same objeet, beearse it admits the same number as the latter from a smaller portion of the objeet. Thus, if the foeal lengths of two lenses are as 2:1, and the first amplifies N diameters, the seeond will amplify 2 N with the same distance of the image, so that the rays whieh are eolleeted to a given field of 1 mm . diameter of the image are admitted from a field of ${ }_{8}^{1} \mathrm{~mm}$. in the first ease, and of ${ }_{2.5}^{1} \mathrm{~mm}$. in the seeond. As the "opening" of the objeetive is estimated by the diameter (and not by the area) the higher power lens admits twice as many rays as the lower power, beeause it admits the same number from a field of half the diameter, and, in general, the admission of rays by the same opening, but different powers, must be in the inverse ratio of the foeal lengths.

In the case of the single lens, therefore, its aperture is determined by the ratio between the elear opening and the foeal length. The same considerations apply to the ease of a eompound objeetive, substituting, however, for the elear opening of the single leus the
diameter of the peneil at its emergence from the objective, that is, the elear utilised diameter of the baek lens. All equally holds good whether the medium in whieh the objective is placed is the same in the ease of the two objectives or different, as an alteration of the medium makes no differ-

180° Oil Angle. (Numerical Aperture 152.)
180° Water Angle.
(Numerical Aperture 133.)

180° Air Angle.
96° Water Angle.
82° Oil Angle. (Numerieal Aperture 1.00.)
97° Air Angle.
(Numerical Aperture 75.)

Fig. 35.-Relative diameters of the (ntilizel) baek lenses of various dry and immersion objeetives of the same power ($\frac{1}{-}-\mathrm{in}$.) from an air angle of 60° to an oil angle of 180°.

60° Air Augle.
(Numerieal Aperture 50.) enee in the power.

Thus we arrive at a general proposition for all kinds of objectives: 1st, when the power is the same, the admission of rays (or aperture) varies with the diameter of the peneil at its emergence ; 2nd, when the powers are different, the same aperture requires different openings in the ratio of the foeal lengths, or eonversely with the same opening the aperture is in inverse ratio to the foeal lengths. We see, therefore, that just as in the telescope the absolute diameter of the object-glass defines its aperture, so in the mieroseope the ratio between the utilised diameter of the back lens and the focal length of the objective defines its aperture also, and this is elearly a definition of aperture in its primary and only legitimate meaning as "opening;" that is, the eapacity of the objective for admitting rays from the objeet and transmitting them to the image.

If, by way of illustration, we eompare a series of dry and oilimmersion objeetives, and eommencing with small air angles, progress up to 180° air angle, and thon take an oil-inmersion of 82° and progress again to 180° oil angle, the ratio of opening to power
progresses also, and attains its maximum, not in the case of the air angle of 180° (when it is exactly equivalent to the oil angle of only 82°), but is greatest at the oil angle of 180°. If we assume the objectives to have the same power throughout we get rid of one of the factors of the ratio, and we have only to compare the diameters of the emergent beams, and can represent their relations by diagrams.

Fig. 35 illustrates five cases of different apertures of $\frac{1}{4}-\mathrm{in}$. objectives, viz. : those of dry objectives of $60^{\circ}, 97^{\circ}$, and 180° air angle, a water-immersion of 180° water angle, and an oil-immersion of 180° oil angle. The inner dotted cireles in the two latter eases are of the same size as that corresponding to the 180° air angle.

A dry objective of the maximum air angle of 180° is only able to utilise a diameter of back lens equal to twice the foeal length, while an immersion lens of even only 100° utilises a larger diameter, i.e.,

Fig. 36.
it is able to transmit more rays from the object to the image than any dry objective is capable of transmitting. Whenever the angle of an immersion lens exceeds twice the eritieal angle for the immersion fluid, i.e., 96° for water or 82° for oil, its aperture is in excess of that of a dry objective of 180°.

This excess will be seen if we take an oil-immersion objective of, say 122° balsam angle, illuminating it so that the whole field is filled with the incident rays, and use it first on an objeet not mounted in balsam, but dry. We then have a dry objective of nearly 180° angular aperture, for, as will be seen by reference to Fig. 36, the cover-glass is virtually the first surface of the objective, as the front lens, the immersion fluid, and the eover-glass are all approximately of the same index, and form, therefore, a front lens of extra thiekness. When the object is close to the cover-glass the peneil radiating from it will be very nearly 180°, and the emergent peneil (observed by
remoring the eye-picece will be seen to utilise as much of the back lens of the objective as is equal to twice the focal length, that is, the inner of the two circles at the head of Fig. 35.

If now balsam be run in beneath the cover-glass so that the angle of the pencil taken up by the objective is no longer 180°, but 122° only (that is, smaller), the diameter of the emergent pencil is lerger than it was before, when the angle of the pencil was $180^{\circ} \mathrm{in}$ air, and will be approximately represcnted by the outer circle of Fig. 35 . As the power remains the same in both cases, the larger diameter denotes the greater aperture of the immersion objective over a dry objective of even 180° angle, and the exeess of apertme is made plainly visible.

Having settled the principle, it is still necessary, however, to find a proper notation for comparing apertures. The astronomer can compare the apertures of his various objectives by simply expressing them in inches, but this is obviously not available to the microscopist, who has to deal with the ratio of two rarying quantitics.

In consequence of a discovery made by Professor Abbe in 1873, that a general relation existed between the pencil admitted into the front of the objective and that cmerging from the back of the objective, he was able to show that the ratio of the semi-diameter of the emergent pencil to the focal length of the objective could be expressed by the formula $n \operatorname{Sin} u$, i.e., by the sine of half the angle of aperture (u) multiplied by the refiactive index of the medium (n) in front of the objective (n being 1.0 for air, 1.33 for water, and 1.52 for oil or balsam).

When, then, the values in any given cases of the expression $n \operatorname{Sin} u$ (which is known as the "numerical aperture") has been ascertained, the objectives are instantly compared as regards their aperture, and, moreover, as 180° in air is equal to $1 \cdot 0$ (since $n=1 \cdot 0$ and the sine of half $180^{\circ}=1.0$) we see, with equal readiness, whether the aperture is smaller or larger than that corresponding to 180° in air. Thus, suppose we desire to compare the apertures of three objectives, one a dry objective, the second a water immersion, and the third an oil immersion ; these would be compared on the angular aperture view as, say 74° air angle, 85° water angle, and 118° oil angle, so that a ealculation must be worked out to arrive at the actual relation
betwecn them. Applying, howevcr, the numerical* notation, which gives $\cdot 60$ for the dry objective, $\cdot 90$ for the water immersion, and 1.30 for the oil immersion, their relative apertures are immediately recogniscd, and it is seen, for instance, that the aperture of the watcr immersion is somewhat less than that of a dry objective of 180°, and that the apcrturc of the oil immersion excecds that of the lattcr by 30%.

The advantage of immersion, in comparison with dry objectives, beeomes at once apparent. Instcad of consisting mercly in a diminution of the loss of light by reffection or increascd working distance, it is seen that a wide-angled immersion objective has a larger aperture than a dry objcctive of maximum anglc, so that for any of the purposes for which aperture is essential an immersion must nccessarily be preferred to a dry objective.

That pencils of identical angular extension but in different media arc different physically, will ccase to appear in any way paradoxical if we recall the simple optical fact that rays, which in air are spread ont over the whole hemisphere, are in a medium of higher refractive indce such as oil compressed into a cone of 82° round the perpendicular, i.e., twice the eritical angle. A cone cxcecding twicc the critical angle of the medium will thercfore cmbrace a surpolus of rays which do not exist even in the hemisphere when the object is in air.

* Numerical aperture is generally used in the sense in which it was introduced in 1873 by Professor Albbe, on the basis of his theoretieal investigations. Numerieal aperture represents the ratio between the ralins of the effective aperture (p) of the system on the side where the image is formed-more acemrately the radins of the emerging pencils measured in the mper foeal plane of the objective-and the ernivalent foeal length (f) of the latter, i.c.,

$$
\text { Numerieal aperture }=\frac{p}{f} \text {. }
$$

This ratio is equal to the product of the sine of half the angle of aperture u of the inedent pencils and the refractive index n of the medinn, situated in front of the oljjective. With dry lenses n has therefore the value 1 ; with immersion lenses it is equal to the refraetive index of the particnlar immersion fluid:

$$
\text { Numerieal aperture }=u \operatorname{Sin} u
$$

The numerieal aperture of a lens determines all its essential qualities; the brightuess of the image inereases with a given magnifieation and, other things being equal, as the sfinare of the aperture ; the resolving and defining powers are directly related to it, the foeal depth of differentiation of depths varies inversely as the aperture, and so forth. (Abbe, "The Estimation of Aperture," "Journal of the Royal Mieroseopical Society," 1881, 1, 389.)

The whole aperture question, notwithstanding the innumerable perplexities which heretofore surrounded it, is in reality completely solved by these two simple considerations : First, that "aperture" is to be applied in its ordinary meaning as representing the greater or less capacity of the objective for receiving and transmitting rays ; and second, that when so applied the aperture of an objective is determined by the ratio between its opening and its focal length; the objective that utilises the larger back lens (or opening) relatively to its focal length having neeessarily the larger aperture. It would hardly, therefore, serve any useful purpose if we were here to discuss the various erroneous ideas that gave rise to the contention that 180° in air must be the maximum aperture. Amongst these was the suggestion that the larger emergent beams of immersion objectives were due to the fact that the immersion fluid abolished the refractive action of the first plane surface which, in the case of air, prevented there being any peneil exceeding 82° within the glass. Also the very curious mistake which arose from the assumption that a hemisphere did not magnify an object at its centre because the rays passed through without refraction. A further erroneous view has, however, been so widespread that it seems to be desirable to devote a few lines to it, especially as it always appears at first sight to be both simple and conclusive.

If a dry objective is used upon an object in air, as in Fig. 37 , the angle may approach 180°, but when the object is mounted in balsam, as in Fig. $37 a$, the angle at the object cannot exceed 82°, all rays ontside that limit (shown by dotted lines) being reflected back at the cover-glass and not emerging into air. On using an inmersion objective, however, the immersion fluid which replaces the air above the cover-glass allows the rays formerly reflected back to pass through to the objective, so that the angle at the object may again be ncarly 180° as with the dry lens. The action of the immersion objective was, thercfore, supposed to be simply that it repaired the loss in angle which was occasioned when the object was transferred from air to balsam, and merely restored the conditions existing in Fig. 37 a with the dry objective on a dry object.

As the result of this crroneons supposition, it followed that an immersion objective could have no advantage over a dry objective, except in the case of the latter being used upon a balsam-mounted object, its aperture then being (as was supposed) "cut down." The error lies simply in overlooking the fact that the rays which are reflected back when the object is mounted in balsam (Fig. 37a) are not rays which are found when the object is in air (Fig. 37), but are additional and different rays which do not exist in air, as they cannot be emitted in a substance of so low a refractive index.

Lastly, it should also be noted that it is numerical and not angular aperture which measures the quantity of light admitted to the objective by different pencils.

First take the case of the medium being the same. The popular notion of a pencil of light may be illustrated by Fig. 38, which

Fig. 38.

Fig. 38a.
assumes that there is equal intensity of emission in all directions, so that the quantity of light contained in any given pencils may be compared by simply comparing the contents of the solid cones. The Bouguer-Lambert law, however, shows that the quantity of light emitted by any bright point varies with the obliquity of the direction of emission, being greater in a perpendicular than in an oblique direction. The rays are less intense in proportion as they are more inclined to the surface which emits them, so that a pencil is not correctly represented by Fig. 38, but by Fig. 38a, the density of the rays decreasing continuously from the vertical to the liorizontal, and the squares of the sines of the semi-angles (i.e., of the numerical aperture) constituting the true measure of the quantity of light contained in any solid peneil.

If, again, the media are of different refractive indices, as air ($1 \cdot 0$), water (1.33), and oil (1.52), the total amount of light emitted orer the whole 180° from radiant points in these media under a given
illumination is not the same, but is greater in the case of the media of greater refractive indices in the ratio of the squares of those indiecs (i.e., as $1 \cdot 0,1 \cdot 77$ and $2 \cdot 25$). The quantity of light in pencils of different angle and in different media must therefore be compared by squaring the product of the sines and the refractive indices, i.e. ($n \operatorname{Sin} u^{2}$), for the square of the numerical aperturc.

The fact is thercfore made clear that the aperture of a dry objective of 180° does not represent, as was supposed, a maximum, but that aperture increases with the increase in the refractive index of the immersion fluid ; and it should be borne in mind that this result has been arrived at in strict accordance with the ordinary propositions of geometrical optics, and without any reforence to or deductions from the diffraction theory of Professor Abbe.

There still remains one other point for determination, namely, the proper function of aperture in respect to immersion objectives of large aperture. The explanation of the increased power of rision obtained by increase of aperture was, that by the greater obliquity of the rays to the object "shadow effects" were produced, a ricw which overlooked the fact, first, that the utilisation of increased aperture dicpends not only on the obliquity of the rays sent to the object, but also to the axis of the microscope; and cxactly as there is no acoustic shadow produced by an obstacle, which is only a fow multiples of the length of the sound waves, so there can be no shadow produced by minute objects, only a fow multiples from the light waves, the latter then passing completely round the object. The Abbe diffiaction theory, however, supplies the true explanation of this, and shows that the increased performance of immersion objectives of large aporture is directly connected (as might liave been anticipated) with the larger "openings" in the proper sense of the term, which, as we have already explained, such objectives really possess. Furthermore, in order that the inage exactly corresponds with the object, all diffiacted rays must be gathered up by the objective. Should any be lost we shall lave not an actual image of the object, but a spurious one. Now, if we have a coarse object, the diffraeted rays are all eomprised within a narrow cone round the direct beam, and an objective of small aperture will transmit them all. With a minute object, howerer, the diffracted liass are widely spread out, so that a small aperture can admit only a fractional part-to admit the whole or a recy large
part, and eonsequently to see tho minute strueture of the object, or to see it truly, a large aperture is neeessary, and in this lies the value of aperture and of a ride-angled immersion olyjective for the observation of minute struetures.

Numerical Aperture.

Measure of Apertures of Objectives. N.A.-Numerieal aperture, as it is termed, is measured by the seale of measurement ealeulated by the late Professor Abbe, and whieh has sinee been generally reeognised and adopted. He showed that even in lenses made for the same medium (as air) their eomparative aperture as eomparod with their focus was not eorreetly measured by the angle of the rays grasped, but by the aetual diameters of the peneil of rays transmitted, whieh depend, as already seen, more upon the baek of the lens than the front. To get a geometrie measure for eomparison, he took the radii, or half diameters (whose relative proportions would be the same), and whieh geometrieally are the sines of the semi-angle of the outermost rays grasped. Abbe further showed that if this sine of half the outside angle were multiplied by the refraetive index of the medium used we should have a number whieh would give the eomparative aperture of any lens, whatever the medium. This number, then, determines both the numerieal aperture and the resolving power of the objeetive.

The following table of numerieal apertures shows the respeetive angular peneils whieh they express in air, water and eedar oil, or glass.* The first eolumn gives the numerieal apertures from 0.20 to 1.33 ; the seeond, third, and fourth, the air, water and oil (or balsam) angles of aperture from $23^{\circ} 4^{\prime}$ air angle to 180° balsam angle. The thenretieal resolving power in lines to the ineh is shown in the sixth colnmn; the line E of the spectrum being taken from about the middle of the green, the eolumn giving "illuminating power " being of less importanee ; while in using that of penctrating power, it must be remembered that several data beside that of $\frac{1}{a}$ go to make up the total depth of vision with the mieroscope.

[^7]ABRIDGED NUMERICAL APERTURE TABLE.

	Corresponding Angle (2 u) for			Limit of Resolving Power, inLines to an Inch.			$\left\|\begin{array}{c} \text { rllanni- } \\ \text { nating } \\ \text { Power } \\ \left(a^{2} .\right) \end{array}\right\|$	Panetrating $\binom{1}{a}$
	$\underset{(n=1 \cdot 00) .}{\substack{\text { Air }}}$	$\begin{gathered} \text { Water } \\ (n=1: 33) . \end{gathered}$	$\begin{gathered} \text { Honon } \\ \text { geneons } \\ \text { Innmer. } \\ \text { sion } \\ (n=1: 2) . \end{gathered}$					
		180	122°	128,22	13s,			
1.32		160° \% 3^{\prime}	$120^{\circ} 33^{\prime}$	127,261	137,944	167,637	1.742	8
		$1: 5{ }^{\circ} 38^{\prime}$	$117^{\circ} 35^{\prime}$	125,333	135,854	165,097	1.690	769
128		$145^{\circ}+22^{\prime}$	$114^{\circ} 44^{\prime}$	123,405	133,764	162,5.5	$1 \cdot 6: 38$	781
1.26		$142^{\circ} 39^{\prime}$	$111^{\circ} 59^{\prime}$	121.477	131,67.t.	160.017	1:58	$79 \pm$
		$137^{\circ} 33^{\prime}$	$109^{\circ} 20^{\prime}$	119,548	129,584	157. 177	1:3.38	S015
1.22		$1: 33^{\circ} 4^{\prime}$	106°	117,620	127,494	1.54.937	$1 \cdot 488$	820
1.20		128° 59'	$104^{\circ} 1{ }^{\prime}$	115,692	125, 404	152,397	$1 \cdot 440$	Si3
1.18		$125^{\circ} 3^{\prime}$	$101^{\circ} 50^{\prime}$	113,764	123,314	149,857	1:392	817
1		$121^{\circ} 26^{\prime}$	$99^{\circ} 29{ }^{\prime}$	111,835	121,224	147,317	1:346	862
$1 \cdot 14$		$118^{\circ} 0^{\prime}$	$97^{\circ} 11^{\prime}$	109,907	119,134	144,757	1:300	. 877
1.12		$114^{\circ} 44^{\prime}$	$94^{\circ} 55^{\prime}$	107,979	117.044	142,237	1-2:5	893
$1 \cdot 10$		$111^{\circ} 36^{\prime}$	$92^{\circ} 43^{\prime}$	106,051	114,954	139,698	1.210	909
1.08		$105^{\circ} 36^{\prime}$	$90^{\circ} 34^{\prime}$	104,123	112,864	137.158	-160	26
1.06		$105^{\circ}+2^{\prime}$	$88^{\circ} 27^{\prime}$	102,195	110,77t	134,618	1-124	943
1.04		$102^{\circ} 53^{\prime}$	$86^{\circ} 21^{\prime}$	100,266	108,68t	132,078	-082	962
1.02		$100^{\circ} 10^{\circ}$	$84^{\circ} 18^{\prime}$	98,338	106.593	129,538	1.040	0
1.00	$180^{\circ} 0^{\prime}$	$97^{\circ} 31{ }^{\prime}$	$82^{\circ} 17^{\prime}$	96,410	104.503	126,99	. 000	000
0.98	$157^{\circ} 2^{\prime}$	94° 万6' ${ }^{\prime}$	$80^{\circ} 17^{\prime}$	94,482	102.413	124.458	960	$1 \cdot 020$
0.96	$147^{\circ} 29{ }^{\prime}$	$92^{\circ} 2 t^{\prime}$	$78^{\circ} 20^{\prime}$	92,504	100.323	121,918	922	1.042
0.94	$140^{\circ}{ }^{6 \prime}$	$89^{\circ} 56^{\prime}$	$76^{\circ} 2 t^{\prime}$	90,625	98.223	119.378	sst	1.0
$0 \cdot 9$	$133^{\circ} 51^{\prime}$	$87^{\circ} 32^{\prime}$	$74^{\circ} 30^{\prime}$	S8,697	96.143	116.838	$8 \pm$	$1 \cdot 08$
$0 \cdot 90$	$128^{\circ} 19^{\prime}$	$85^{\circ} 10{ }^{\prime}$	$72^{\circ} 366^{\prime}$	86,769	94.0.3	114,298	- 810	1.111
0.88	$1223^{\circ} 17^{\prime}$	$82^{\circ} 51^{\prime}$	$70^{\circ} 4 t^{\prime}$	84,841	91,963	111.758	irt	$1 \cdot 136$
0.86	$118^{\circ} 38^{\prime}$	$80^{\circ} 34^{\prime}$	(is $8^{\circ} 5 t^{\prime}$	82,913	59.873	109,218	710	$1 \cdot 163$
$0 \cdot 8$	$114^{\circ} 17^{\prime}$	$78^{\circ} 20^{\prime}$	(ii $7^{\circ} 6^{\prime}$	80,984	87,7	106,678	706	190
$0 \cdot 82$	$110^{\circ} 10^{\prime}$	$76^{\circ} 8^{\prime}$	(6, $5^{\circ} 18^{\prime}$	79.056	85. 6.693	10t,138	6	$1 \cdot 220$
0:80	$11166^{\circ} 166^{\prime}$	$73^{\circ} \quad 58^{\prime}$	(i33 $31{ }^{\prime}$	77,128	\$3,603	101,598	(i)	1.250
0.78	$102^{\circ} 31^{\prime}$	$71^{\circ}+49^{\prime}$	$61^{\circ}+5^{\prime}$	75, 200	81,513	99.0.5	-7	1.282
0.7	$98^{\circ} 566^{\prime}$	$69^{\circ}+2^{\prime}$	$6.100^{\circ} 0^{\prime}$	73.272	79,423	96,518	8	$1: 31$
0.74	$95^{\circ} 28^{\prime}$	${ }^{6} 7^{\circ} 37^{\prime}$	$58^{\circ} 16^{\prime}$	71,343	7T,333	93,979	5	135
0.72	$92^{\circ} 6^{\prime}$	$65^{\circ} 32^{\prime}$	50 $0^{\circ} 32^{\prime}$	69.415	75.242	91.43!	518	$1 \cdot 389$
$0 \cdot 70$	$88^{\circ} \mathrm{ol} 1^{\prime}$	$63^{\circ} 31^{\prime}$	$54^{\circ} 50^{\prime}$	6,	73,152	88.899	190	$1 \cdot+29$
	$85^{\circ}+11^{\prime}$	$61^{\circ} 30^{\prime}$	$53^{\circ} 9^{\prime}$	(65).559	71.069	86.3359	-462	1.11
. 6	$82^{\circ} 36^{\prime}$	$59^{\circ} 30^{\prime}$	$51^{\circ} 28^{\prime}$	633.631	68.972	83.819	- 431	1:51.
$0 \cdot 64$	$79^{\circ} 36^{\prime}$	$57^{\circ} 311^{\prime}$	49° +18	61.702	66.882	81.27!	410	15
$0 \cdot 62$	$76^{\circ} 38^{\prime}$	$55^{\circ} 34^{\prime}$	$48^{\circ} \quad 9{ }^{\prime}$	5.99.7.4.	64,792	78.73!		101
0	$73^{\circ}+44^{\prime}$	$533^{\circ} 388^{\prime}$	$46^{\circ} 30^{\prime}$	27.8.46	10.702	76.199	36	$1 \cdot 66$
0.58	$70^{\circ} 5.4$	$\therefore 1^{\circ}+2^{\prime}$	44° 万1'	55,918	600,612	73.6is?	331	$1 \cdot 724$
0.56	$68^{60} 6^{\prime \prime}$	$49^{\circ} 48^{\prime}$	$13^{\circ} 14^{\prime}$	53.990	98.522	71.119	31	-784
$0 \cdot 5$	$165^{\circ} 222^{\prime}$	$47^{\circ} 54^{\prime}$	$41^{\circ} 37^{\prime}$	52,061	50.10 .43	64, 5179	292	1-8)2
$0 \cdot 5$	(2)	$46^{\circ} 2^{\prime}$	$40^{\circ} 0^{\prime}$	50,133	\%4,342	$6 \mathrm{Cl}, 039$	270	$1 \cdot 023$
0	6i $11^{\circ} 0^{\prime}$	$44^{\circ} 10^{\prime}$	$38^{\circ} 24^{\prime}$	18.20.	52.2:2	63.499	250	- 000
045	$53^{\circ} 30^{\prime}$	$339^{\circ} 333^{\prime}$	$34^{\circ} \quad 27^{\prime}$	13.38.5	+7.026	57,14!	-203	2-222
0.40	$47^{\circ}{ }^{9}$	$33^{3} \quad 0{ }^{\prime}$	$310^{\circ} 31^{\prime}$	38.56\%	11.801	510.79		2:500
$0 \cdot 3$	$10^{\circ}-58^{\prime}$	$330^{\circ} 30^{\prime}$	$26^{\circ} 38^{\prime}$	33,74	31.5076	4,44!	$12:$	-8.57
$0 \cdot 3$	$34^{\circ} 516^{\prime}$	$26^{\circ}{ }^{\circ} 4^{\prime}$	$22^{\circ} 46^{\prime}$	28,923	31.351	38.099	09	3.333
$0 \cdot 25$	$28^{\circ} 58^{\prime}$	$21^{\circ} 40^{\prime}$	$18^{\circ} 56^{\prime}$	2.1.103	21.126	31,749	-043	+.000
$0 \cdot 20$	233°	$17^{\circ} 18^{\prime}$	15°	19,28:2	20,901	25. 1		5000

Abbe's Apertometer.

The apertometcr is an anxiliary piece of apparatus invented by Abbe, for testing the fundamental properties of objectives and determining their numerical and angular apcrtures. This accessory of the microseope involves the same principles as that of Tolles, which the late Mr. J. Mayall and myself brought to the notice of the Royal Microscopical Socicty of London in 1876. Abbc's apertometer (Fig. 39) consists of a flat cylinder of glass, about threc inches in diameter, and half an inch thick, with a large chord cut off', so that the portion left is somewhat more than a scmicircle ; the part where the segment is cut is bevelled from above downwards, to an angle of 45°,

Fig. 39.-Abbe's Apertometer.
and it will be seen that there is a small dise with an aperture in it denoting the centre of the semicircle. To use this instrument the microscope is placed in a vertical position, and the apertometer is placed npon the stage with its circular part to the front and the chord to the back. Diffused light, cither from the sun or lamp, is assumed to be in front and on both sides. Suppose the lens to be measured is a dry one-quarter inch ; then with a one-inch eye-piece having a large field, the centre disc, with its aperture on the apertometcr; is brought into focus. The eyc-piece and the draw-tube are now removed, leaving the focal arrangement undisturbed, and a lens supplied with the apertometer is screwed into the end of the draw-tube. This lens, with the eye-piece in the draw-tube, forms a low-power compound microscope. This is now inserted into the body-tube, and the back lens of the objective whose aperture we
desire to measure is brought into foens. In the image of the back lens will be seen stretched aeross, as it werc, the image of the circular part of the apertometer. It will appear as a bright band, beeause the light whieh enters normally at the surface is refleeted by the bevelled part of the chord in a vertical direetion, so that in reality a fan of $180^{\circ} \mathrm{in}$ air is formed. There are two sliding sercens seen or either side of the figure of the apertometer ; they slide on the vertieal eireular portion of the instrument. The images of these sereens can be seen in the image of the bright bands. These screens should now be moved so that their edges just touch the periphery of the back lens. They aet, as it were, as a diaphragm to eut the fan and reduee it, so that its angle just equals the aperture of the objective and no more.

This angle is now determined by the are of glass between the sereens; thus we get an angle in glass the exaet equivalent of the aperture of the objeetive. As the numerieal apertures of these ares are engraved on the apertometer, they ean be read off by inspeetion. A diffieulty is not infrequently experieneed from the faet that it is not easy to determine the exaet point at whieh the edge of the sereen touehes the periphery of the back lens, or rather the limit of the aperture. Zeiss, to meet this difficulty, made a ehange in the form of the apparatus-furnished a glass dise mounted on a metal plate, with a slot for the purpose of its more aecurate adjustment.*

Stereoscopic Binocular Vision.

Professor Wheatstone's-remarkable diseovery of stereoseopic vision led, at no distant period, to the applieation of the principle to the mieroseope. It may therefore prove of interest to inquire how stereoseopie binoeular vision is brought abont. Indeed, the eurious results obtained in the stereoseope eannot be well understood withont a previous knowledge of the fnndamental optieal prineiples invoired in this eontrivanee, whereby two slightly dissimilar pietures of any objeet become fused into one inage, having the aetnal appearanee of relicf. The invention of the stercoseope by Sir Charles Wheatstonc, F.R.S., 1838 , and improved by Brewster, was characterised by Sir John Herschel as "one of the most curions discoreries, and

[^8]beautiful for its simplicity, in the cutire range of cxperimental optics," led to a more gencral apprcciation of the value of the conjoint use of both eycs in conveying to the mind impressions of the relative form and position of an object, such as the use of cither eye singly does not collvcy with anything like the same precision. When a near object having three dimensions is looked at, a different perspective reprcsentation is scen with each cyc. Ccrtain parts arc seen by the right eye, the left being closed, that are invisible to the left eye, the right bcing closcd, and the rclativc positions of the portions visible to each cye in succession differ. Thesc two visual impressions are simultancously pcreeived by both eyes, and combined in the brain into onc image, producing the cffect of perspective and relief. If truthful right-and-lcft monocular picturcs of an object be so presented to the two eyes that the optic axcs when directed to them shall converge at the same angle as when directed to the object itself, a solid image will be at once perceived. The perception of relief referred to is closely connected with the doubleness of vision which takes place when the images on corresponding portions of the two retina are not similar. But, if in place of looking at the solid object itself we look with the right and left eyes respectivcly at pictures of the object corresponding to thosc which would be formed by it on the retina of the two eycs if it were placed at a modcrate distance in front of them, and these visual pictures brought into coincidence, the same conception of a solid form is gencrated in the mind just as if the object itsclf were there.

Professor Abbc, however, contended that the method by which dissimilar images are formed in the binocular microscope differs matcrially from that of ordinary stercoscopic vision, and that the pictures arc united solcly by the activity of the brain, not by the prisms which ordinarily give rise to scusations of solidity. This can be only partially true, as binocularity in the microscope is duc to difference of projection exhibited by the different parallax displacement of the images, and also to the perception of depth imparted by the instrument.

Wheatstonc was firmly convinced that his stcrcoscopic principle could be applied to the microscope, and he therefore applied first to looss and then to lowell to assist him in its adaptation. But whether cither of thesc opticians made any attempt to give effect to
his wishes and suggestions is not known. In the year 1851 J'rofessor Riddell, of Ameriea, suceeeded in eonstrueting a binocular microscope by employing two rectangular prisms behind the objective. M. Naehet also eonstrueted a binoeular with two body-tubes and a series of prisms. But meither Riddell's nor Naehet's instrument was ever brought into use; they were either too eomplieated or too costly.

It will be understood, however, that the binoeular stereoscope combines two dissimilar pietures, while the binoeular microseope simply enables the observer to look with both eyes at images which are essentially identieal. Stereoseopic vision, to be effeetive, requires that the delineating pencil shall be equally separated, so that one portion of the admitted eone of light is conducted to one eye, and the other portion to the other eye.

Select any object lying in an inelined

Fig. 40.- Portions of Eggs of Cimex. position, and place it in the eentre of the field of view of the mieroseope ; then, with a eard held close to the objeet-glass, stop off alternately the right or left hand portion of the front lens: it will then appear that during each alternate change certain parts of the object will change their relative positions.

To illustrate this, Fig. $40 a, b$ are enlarged drawings of a portion of the egg of the common bed-bug. (Cimex lecticularis), the operculum whieh should eover the opening having been foreed off at the time the young was hatehed. The figures exactly represent the two positions that the inclined orifice will oceupy when the right- and left-land portions of the objectglass are stopped off. This objeet is viewed as all opaque object, and drawn under a two-thirds object-glass of about 28° aperture. If this experiment is repeated, by holding the eard over the eyepieee, and stopping off altemately the right and left half of the ultimate emergent pencil, exaetly the same changes and appearances will be observed in the objeet muder view. The two different images just produced are such as are required for obtaining stereoscopic vision. It is therefore evident that if instead of bringing them eonfusedly together into one eye we ean scparate them so as to bring together a, b into the left and right eye, in the
combined effeet of the two projections we obtain at onee all that is neeessary to enable us to form a correet judgment of the solidity and distanee of the several parts of the objeet.

Nearly all objeetives from the one ineh upwards of any eonsiderable aperture give images of the objeet seen from a different point of view with the two opposite extremes of the margin of the eone of rays; the resulting effeet is that there are a number of dissimilar perspeetives of the objeet blended together at one and the same time on the retina. For this reason, if the object under view possesses bulk, a more aeeurate image will be obtained by redueing the aperture of the objeetive.
"Diagram 3, Fig. 41, represents the method employed by

Fig. 41.
Mr. Wenham for bringing the two eyes suffieiently elose to eaeh other to enable them both to see through the double cye-pieec at the same moment. $\quad a \quad a$ are rays eonverging from the field lens of the eye-piece ; after passing the eye-lens b, if not intereepted, they would eome to a foeus at c; but they are arrested by the inelined surfaees, $d d$, of two solid glass prisms. From the refraetion of the under incident surface of the prisms, the foens of the eye-picee becomes elongated, and falls within the substanec of the glass at e. The rays then diverge, and after being refleeted by the seeond inelined surface f, emerge from the upper side of the prism, when their course is rendered still more divergent, as shown by the figure. The reflecting angle given to the prisms is $47 \frac{1}{2}^{\circ}$, to aceommodate which it is necessary to grind away the contaet edges of the prisms,
as represented, otherwise they prevent the extreme margins of the reflecting surfaees from coming into operation, whiel are seldom made quite perfeet."

Fig. 42 represents a seetional view of Abbe's stereoscopie eye-pieces, whieh eonsist of three prisms of crown glass, a, b and b^{\prime}, plaeed below the field-glass of the two eye-pieees ; the tube c is slipped into the tube or body like an ordinary eye-pieee. The two prisms a and b are united so as to form a thiek plate with parallel sides, inclined to the

Fig. 42. - Professor Abbe's Stereoseopie Eye-pieees.
axis at an angle of 38.5°. The eone of rays from the objectire is thus divided into two parts, one being transmitted and the other reflected; that transmitted passing through a b and forming an image of the object in the axial eye-pieco b. Adjustment for different distances between the eyes is effeeted by the serew plaeed to the right-hand side of the figure, which mores the eye-piece s^{\prime}, together with the prism b^{\prime}, in a parallel direction. The tubes ean also be drawn out, if greater separation is required. The speeial feature of this instrument is that on halving the eone of rays by turning the eaps, an orthoseopie or pseudoscopie effeet is produced.

This donble-eyed pioce arrangemont of Abbe's has not been at all brought into use in this country ; this is partly owing to its original adaptation for use with the shorter Continental body-tube of 160 mm ., and not for our 10 -inch body.

The most perfect method of securing pleasing satisfactory stercoscopic vision of objects is that devised by Mr. Wenham. In his binocular microscope an equal division of the cone of rays, after passing through tho objective is socured and again unitcd in tho eye-pieces, which act as one, so that each eyc is furnished with an appropriatc and simultaneous view of the object. The methods contrived by the earlicr oxperimenters not only materially interfored with the definition of the objective and object, but also required expensive alterations and adaptations of the microscope, and sometimes soparate stands for their employment. Mr. Wonham's invention, on the contrary, offors no such obstacle to its use, and the utility of the microscope as a monocular is in no way impaired either when using the higher powcrs.

The most important improvement, then, effected by Wenham consists in the splitting' np or dividing the pencil of rays procceding from tho objective by the interposition of

Fig. 43. a prism of the form shown in Fig. 43. This is placed in the body or tube of the microscope so as to interrupt only onc-half ($a c$) of the pencil, the other half ($a b$) procecding continuously to the field-glass, eye-pieco, of the principal body. The interrupted half of the pencil on its cntrance into the prism is subjected to vory slight refraction, since its axial ray is perpendicular to the surface it mects. Within, the prism is subjected to two reflections at b and c, which send it forth again obliquely on the line b towards the eye-piece of the sccondary body, to tlic left-hand side of the figure ; and since at its emergence its axial ray is again perpendicular to thic surface of the glass, it suffors $n o$ further refraction on passing out of the prism than on entering. By this arrangement, the image sent to the right cyo is formed by rays which havo passed through the left half of the objective; whilst the inage scnt to tho left oye is formed by rays which have passed
through the right half, and which have been subjective to two

Fig. 44.-Sectional riew of the Wenham Binocular.
reflections within the prism, and passing through two surfaces of
glass. The prism is held by the ends only on the sides of a small brass drawer, so that all the four polished surfaces are accessible, and should slide in so far that its edge may just reaeh the ecntral line of the objective, and be drawn back against a stop, sn as to clear the apertnre of the same.

The binocular, then (Fig. 44), consists of a small prism mounted in a brass box Λ, which slides into an opening immediately above the object-glass, and reflects one-half of the rays which form an image of the object, into an additional tube B, attached at an inclination to the ordinary body c. One laalf of the rays take the usual course with their performance unaltered; and the remainder, though reflected twice, show no loss of light or definition worthy of notice, if the prism be well made.

As the eyes of different persons are not the same distance apart, the first and most important point to observe in using the binocular is that cach cye has a full and clear view of the object. This is easily tried by closing each eye alternatcly without moving the head, when it may be found that some adjustment is necessary by racking: out the draw-tubes D, E, of the bodics by means of the small milled head near the sye-picces ; this will increase the distance of the centres ; and, on the contrary, the tubes, when racked down, will suit those cyes that are ucarer together.

If the prism be drawn back till stopped by the small milled head, the field of view in the inclined body is darkcned, and the rays from the whole aperture of the object-glass pass into the main body as usual, ncither the prism nor the additional body interfering in any way with the use of the instrument as a monocular mieroscope.

The prism can be withdrawn altogether for the purpose of being wiped: this should be done frequently, and very earcfully, on all four surfaces, with a perfectly clean cambric or silk handkerchief or a piece of wash-leather ; but no hard substance must be used. During this process the small piece of blackencd cork fitted between the prism and the thick end of the brass box may be removed; but it must be carefully replaced in the same position, as it serves an important purpose in stopping out extrancous light.

As the binocular mieroseope gives a real and matural appearance to objects, this efficet is considerably increased by employing those
kinds of illumination to which the naked eye is accustomed. The most suitable are all the opaque methods where the light is thrown down upon the surface ; but for those objects that are semi-transparent, as sections of bonc or teeth, diatomacer, living aquatic animalcules, dc., the dark-field illumination by means of the parabolic reflector will give an equally good result.

For perfectly transparent illumination, it is much better to diffuse the light by placing under the object various substances, such as tissuc-paper, ground glass, very thin porcelain, or a film of yellow bees' wax, run between two pieces of thin glass.

To ensure the full advantage and relief to both eyes in prolonged observations with high as well as low powers, and with objectives of large aperture, Mr. Wenham devised a compound prism for use with his binocular microscope, the body tubes of which are also made expressly to suit the prism, as extreme accuracy is necessary to bring them into proper position. The main prism somewhat resembles in form the ordinary Wenham prism. Over the first reflecting surface is placed a second smaller prism, the top plane of which is parallel with the base of the first, so that direct rays pass through without deviation, but at the two inclined surfaces of the prisms (nearly in contact) there is a partial reflection from each, which, combined, give as much light as in the direct tube. The reflected image from these tiwo surfaces is directed up into the inclined tube as usual. A somewhat later improvement is that of Dr. Schroeder, the high power prism, by means of which the whole of the rays emanating from the objective pass through it, and the full aperture of any power is thereby effectively utilised. Furthermore, Messrs. Ross have also constructed a right- and lefthand pair of eye-pieces, which ensure greater perfection of the image. It was, in fact, noticed that the size of the image in the left-hand field glass slightly differed from that of the right when examined by the ordinary Huyghenian eye-pieces. To compensate for this difference, the left-hand eye-piece has been carefully calculated, and its focus is now so accurately adjusted that the position of each eye in observing is brought into one plane of the binocular. The pairs of the several series of eye pieces $A, 13$ and c have also been altered, and the effect is to greatly improve the image and give increased comfort to the observer:

Dr. Carpenter, who warmly espoused the binocular, and constantly employed it in his work, very truly said of it: "The important advantages i find it to possess are in penctrating power, or focal depth, which is in cvery way superior to that of the monocuiar microscope, so that an object whose surface presents considerable inequalities is very much more distinctly scen with the former than with the latter."

This difference may in part bo attributed to the practical modification in the angle of aperture of the objective, produced by the division of the cone of rays transmitted through the two halves, so that the picture or image received through cach half of the objective of 60° is formed by rays diverging at an angle of only about 30°. He confosses, howerer, that this does not satisfactorily explain the fact that the binocular brings to the mind's eyc the solic image of the object, and thus gives to the observer a good idea of its form and which could hardly be obtained by the monocular microscope. Carpenter cites in support of his views the wing of a little-known moth, Zenzera Csculi, which has an undulating surface, whercon the scales are set at various angles instead of having the usual imbricated arrangement, a good object for demonstrating; the general inequality of surface and the obliquity of its scalcs, which are at once seen by the binocular with a completeness not obtained by the monocular instrument.

To one unaccustomed to work with the binocular the views expressed by Dr. Carpenter as to the extreme value of the instrument for ordinary work may appear sounewhat exaggerated, but from my own experience, having long had in constant use a Ross-Zentmayer binocular, furnished with a special prism, constructed for working with a $\frac{1}{8}$ dry objective or a $\frac{7}{10}$ immersion, the perfection of picture obtained was in every case quite equal to that of the monocular microscope. 'The relief to the cyes can hardly be over-estimated; the slight inequality of the pencil rays may be regarded rather as a part of the welcome rest afforded when a prolonged cxamination is made; it certainly appears to me to equalise the slight physiological difference known to exist between the eyes of most people. If one image is seen a little clearer by the stronger eye, the weaker cye assists rather more the stereoscopic effect of the object under observation. The advantage gained by the binocular is perhaps
more appreciated when opaque objects are under examination, as the eggs of inseets, and the tongue of the blow-fly, specimens of mosses, liehens, parasites (vegetable and animal), whose plenes and inequalities of surface require penetration, and which usually demand more time for their observation.

Fig. $4 \stackrel{\rightharpoonup}{\text {. }}$ - Swift-Stephenson's Erecting Binocular.
No variation or change of any kind proposed either in the form of the instrument or the prism has proved of sufticient value or importanee to bring it into use, and therefore Wenham's instrument is searcely likely to be superseded. It must he admitted that the improvement effeeted in the eye-piece form by Mr. Tolles, of Boston, U.S., is an exception to the rule laid down. It consists
in mounting the prisms in a light material, vuleanite, made to fit into the monoenlar mieroseope body, thus taking the place of the ordinary eye-pieee. The image transmitted by the objeetive is brought to a focus on the face of the first equilateral triangular prism by the intervention of an erector-eye-pieco insertod beneath it. The seeond set of prisms have a rack and pinion movement to adjust them to any visual angle. The illumination of both fields in this eye-pieee is nearly equal in brigltness. Mr. Stephenson's ereeting binocular (Fig. 45) has proved to be of some praetieal value. It has the advantage of being of equal use with high and low powers, and with little loss of definition. When used for dissecting purposes it gives an ereet image of the objeet. It is equally nseful as a working mieroseope, for arranging diatoms and botanieal speeimens of every kind. The sub-stage tube will reeeive a diaphragm or illuminating apparatus; the eye-pieees have a sliding adjustment for regulating the widths between eyes.

Fig. 46. - An early form of the Ross-Wenham Binocular ; nose-piece and prism-holder detached.

CHAPTER II.

Simple and Compound Microscope.

Microscopes are known as simple and compound. The simple mieroscope may, for convenience, be divided into two elasses; those used in the hand (hand magnifiers), and those provided with a stand (mounted, as it is termed) for supporting the objeet to be viewed, together with an arljustment for the

Fig. 47.-Visual Angle. magnifying power, and a mirror for reflecting the light through the object.

A simple microscope, mounted, is preferable to a single lens, being usually composed of two or more lenses separated by a small distance on a common axis ; the increase of the size of an objeet being the angle it subtends to the eye of the observer, or the angle formed by the combination drawn from the axis of vision to the extremity of the object, as in Fig. 47. The lines drawn from the eye to A and R form an angle, which, when the distance is small, is nearly twiee as large as the angle from the eye to 0 w , formed by lines drawn at twice the distance. This is called the angle of vision, or the risual angle. Now, the utility of a convex lens interposen between a near object and the eye consists in its redueing the divergence of the rays forming the several pencils issuing from it, so that they enter the ere in a state of moderate divergence, as if they were issuing from an objeet beyond the near point of distinet vision, and a well-defined image is thereby formed upon the retina. In the next Fig. (48), a double-convex lens illustrates the action of the simple microscope, the
small arrow being the object brought under view, and the large arrow the magnified inage. The rays having first passed through the lens are bent into nearly parallel lines, or pencils diverging from some point within the limits of distinet vision. Thus altered, the eye reeeives rays precisely as if they had cmanated directly from a larger arrow placed about ten inehes away from it. The differenee between the real and the imaginary object represents the magnifying power of the lens. The objeet in this case is magnified nearly in the proportion the focal distanee of the lens bears to the distanee of the objeet when viewed by the unassisted eye ; and this is due to

Fig. 48. - Virtual Image formed by Convex Lens.
the objeet being more distinetly viewed so much nearer to the eye than it ntherwise could be without the lens.*

It should be remembered that the shorter the foeus and the nearer the eye the magnifying lens is placed the smaller will be the diameter of the sphere of which it forms a part, and unless its aperture be proportionally redueed, the distinctness of the image will be destroyed by the spherieal and ehromatic aberrations of its high curvature. Nevertheless, it was by the use of lenses so constructed that the older mieroseopists-of whom Leeuwenhoek was the more eminent-were enabled to do so mueh excellent work.

The various kinds of simple poeket lenses for the most part eonsist of a double-eonvex, or a plano-convex, or a combination of both, varying in foeal length from a quarter of an inch to two

[^9]inches. Sometimes they are set in pairs with a hole, a small diaphragm, cut in the piece of horn placed between them. These are extremely uscful for carrying in the waistcoat pocket; to the anatomist and field botanist for examining various objects and preparations.

Perhaps the most important improvement effected in this form of the simple microscope was that ascribed to the celcbrated

Fig. 49.-Wollaston's Doublet.
Dr. Wollaston, who devised a doublet of two plano-convex lenses having their focal lengths, in the proportion of one to three, mounted with their convex side directed towards the cye of the observer; and the lens of shorter focal length next the object. The explanation given of the correction thus effected in Dr. Wollaston's doublet will be best understood on reference to the amexed diagram, $l l^{\prime}$, in Fig. 49, being the object for a segment of the cornea of the eye, and d d l^{\prime} the stop or diaphragm. Now, it will be
seen that each peneil of light proeeeding from $l l^{\prime}$, the objeet, is rendered excentrieal by the limiting aperture or the diaphragm $d d$; eonsequently, they pass through the lenses on opposite sides of their common axis $o p$; thus each beeomes affeeted by opposite crrors, whieh to some extent balanee and eorreet each other. To take the peneil l, for instanee, as it enters the eye at $r b ; r b$ is bent to the right at the first lens, and to the left at the seeond; and as each bending alters the direetion of the blue ray more than the red, and as the blue ray falls nearer the margin of the sceond lens, where the refraction is greater than that nearer the eentre, and compensates to some extent for the greater foeal length of the seeond lens, the blue rays will emerge very nearly parallel, and eolourless to the cye. At the same time, its spherieal aberration has been diminished, sinee the side of the peneil as it proeeeds through one lens passes nearer the axis, and in the other nearer the margin.

This must be taken to apply to peneils farthest from the eentre of the objeet. Central rays, it is obvious, would pass both lenses symmetrieally, the same portions of rays oeeupying nearly the same relative places in both lenses. The blue ray would enter the seeond lens nearer its axis than the red; and being thus less refraeted than the red by the second lens, some amount of compensation would take place, differing in prineiple, and inferior in degree, to that whieh is found in the excentrical peneils. In the intermediate spaces the corrections are still more imperfeet and uneertain; and this explains the eause of aberrations which must of neeessity exist even in the best-made doublet. It is, however, infinitely superior to a single lens, and will transmit a peneil of an angle of from 35° to 50°.

The next step towards improving the simple mieroseope was in relation to the eye-picee, and was effeeted by Holland. It eonsisted in substituting two lenses for the first in the doublet, and plaeing a stop between them and the third. The first bending of the peneils of light being effeeted by two lenses instead of one, produces less spherieal and chromatic aberration, which are more nearly balanced or corrected at the second bending, and in the opposite direction, by the third lens.

Another form of simple lens was devised by Dr. Wollaston, the "Periscopic." 'This eombination eonsists of two hemispherieal lenses
eemented together by their plane faces, with a stop between them to limit the aperture. A similar proposal, made by Sir David Brewster in 1820, is known as the Coddington lens,* shown at Fig. 50 : this has a somewhat larger field, and is equally balanced in all directions, as is made evident, the peneils $a b$ and $b a$ passing through under preeisely the same eireumstances. Its spherieal form has the further advautage of rendering the position in which it is held of comparatively little consequence. It is still used as a hand magnifier, although its definition is eertainly not so good as that of a well-made doublet. It is usually set in a folding case, as represented in the

Fig. 50.-The Coddington Lens.

Fig. $50 a$.
figure, and so contrived as to be admirably adapted for the waistcoatpoeket. It is usually sold with the small holder, Fig. 50a, for holding and seeuring small objects during examination. Browning's Platyscopic Poeket Lens is a useful form of poeket lens for the botanist and mineralogist. Its focus is nearly three times longer than that of the Coddington, and allows of opaque objeets being more casily cxamined ; it has also a magnifying power of 15,20 , and 30 diameters.

* The late Mr. Coddington, of Canbridge, who had a high opinion of the value of this lens, had one of these grooved spheres executed by Mr. Carey. who gave it the mane of the Coddington Lens, supposing that it was invented by the person who emphoyed him, whereas Mr. Coddington never haid claim to it, and the eirenmstance of his having one made was not know until nine years after it was deseribed by Sir 1)avid Brewster in the "Edinhurgh Journal."

One of the best combinations of the hand or pocket form of lens is that known as Steinheil's aplanatic lens (Fig. 51) ; it consists of a bi-convex lens cemented betwen two concavoconvex lenses, giving a relatively long focal distance and a large flat ficld. The higher powers of this lens are much used for dissecting purposes. This handy magnifier appears to have suggested a later combination, the apochromatic of Zeiss. No hand leus can compare with Steinheil's "loups."

When the magnifying powcr of a lens is

Fig. 51. - Steinheil's Aplauatic Lens. considerable, or when its focal length is short, or it is wished to use it with greatcr precision and steadiness, it should be mounted on

Fig. 52.-Simple Microscope.
a short stand with a tubular stem, with rack-work focussing movement and mirror illumination. Fig. 52 represents a simple dissccting microscope, with a glass circular stagc, $4 \frac{1}{2}$ inches in diameter, supported on three legs-a handy and useful form of instramont for many purposes.

The Compound Microscope.

The compound microscope differs from the simple, inasmuch as the image is formed by an object-glass, and further magnified by one or more lenses forming an eyc-glass. For a microseope to be a compound one, its essential qualification is that it should have an object-glass or objective, and an cyc-glass or cye-picce, so called because they are respectively near the object and the eye of the observer when the instrument is in usc. The microscope consists of a tube or body, and a stand, an arrangement for carrying the borly, combined with which is a stage for holding the object, and a mirror for its illumination. To the more modern instrument has been added a substage, to carry a condenser and other accessories.

The body of a microscope, which carries the system of magnifying lenses, must be placed at one particular distance from the object, termed the focus, in order that a clear image may be obtained. For the purpose of focussing two motions are supplicd, the one for coarse auljustment, with lower powers; the other for higher powers, termed the fine adjustment. It is in this wise that the magnifying power of the compound microscope is turned to good account.

There are, however, limits to the use to which lenses can be put with advantage in the dircetion of magnifying the object, just as there are in varying the magnifying power of the eyc-glass. Defects in either, although not first secu, that is, when the image is but moderately enlarged, are brought into prominence by greater amplification. In practice, therefore, it is found to be of advantage to vary the power by employing object-glasses of different values (foci). In whatever way increase of amplification is brought about, two things will always result from the change : the proportion of surface of the object of which an image can be formed must be diminished, and the amount of light spread over the image proportionally lesscned.

In addition to the two lenses mentioned, it was found to be of considerable advantage to introduce a third lens between the objectglass and the image formed by it at eye-picec, the purport of which is to change the course of the rays (bend in the pencil)
so that the image may not be found of too great a dimension for the whole to be brought within the circumfercnce of the cye-glass. This, it will be readily seen, allows more of the object to be viewed at the same time by the field-glass, as the eyc-picce of the microscope is termed.

Fig. 53 represents the body of an ordinary compound microscope with its triplet objectglasses ; 0 is an object, above it is the triple achromatic object-glass, in connection with the eye-piece $e e, f f f^{\prime}$ the plano-convex lenses; e e being the eye-glass, and $f^{\prime} f$ the field-glass, between which, at $b b$, the arrow represents the diaphragm. The course of the light is shown by three rays drawn from the centre, and three from each end of the object o; these rays, if not prevented by the lens $f^{\prime} f$, and the diaphragm $b b$, would form an image at a a but here, as they mcet with the lens $f f f^{\prime}$ in their passage, are converged by it at $b b$, the diaphragm at $b b$ intercepting a portion of peripheral rays, permitting only those to pass that are necessary for the formation of the image, the further magnification of which is, however, here brought about by the cye-glass e e, precisely as if it were that of the original object under examination. It will be apparent, then, that the field-lens $f f$ belongs in principle to the object-glass, or

Fig. 53. objective, taking a share in the image-forming rays, although this is taken to be a part of the eye-piece.

Evolution of the Modern Achromatic Microscope.

The great advances made in the optical arrangements of the modern microscope necessitated important changes and improvements in its several mechanical parts. Indecd, as the apertures of objectives becanc increased, and focal planes became correspondingly shallower, it was absolutely necessary to apply a more sensitive system of focnssing than that for many years past commonly in use.

The leading manufacturers at once grasped the situation, and in a short space of time the older model microscopes were discarded, and replaced by instruments better in workmanship and finish, and in every way more suitable for the student and the promotion of original scientific research.

From an early period English amateurs appear to have bestowed greater attention on the improvement of the microscope than those of any other country. Between 1820 and 1835 Tully, Pritchard, Dollaud, James Smith, Andrew Ross, and Hugh Powell, encouraged by Wollaston, Brewster, Goring, Herschel, and Lister, worked out innumerable eombinations of single and eompound lenses to be cmployed as simple microscopes, explained in a previous ehapter.

The thcories propounded about this time for the improvement of lenses and the various combinations for amateurs were not of lasting value. Nevertheless, they were not wholly made in vain, as during the last twenty ycars they have indireetly borne good fruit, inasmuch as by working in another direction Professor Abbe was led to the diseovery of new and better kinds of glass, by whieh the secondary spectrum has been so nearly eliminated, and the optical parts of the microscope so materially improved. In pursuing this subject I would not have it supposed that Continental opticians were either idle or supine. On the contrary, Oberhäuser, Framhofer, Chevalier Naehet, Hartnaeh, and othcrs took an active part in the work.

The eompound microseope madc for anatomists by the first-named optician about 1825 has not been entirely superseded. He was the first to make a rotating stage, to apply meehanism to focussing, and to introduce the system of direct push or pull of the condenser tube within the sub-stage socket. Nachet made other improvements on the Obcrhäuser microscope by applying under the stage a tailpicee having a dove-tailed groove in which a slide carrying the substage was moved by a stud-pin. More recently the lever movement was superseded by American opticians, who made other changes. Hartnaeh ultimatcly very much improved Oberhänser's model, and this remains with us.

The English modern eompound microscope, together with the achromatic objective, we owe to a mind teeming with scientifie inventions, Joseph Jackson Lister, F.R.S., who in 1826 supplied Mr. Tully, a well-known London optician of that period, with original drawings
for the important improvements in its mechanical details and accossory apparatus which followed so soon afterwards.

Among the many ingenious novelties enumerated in his published papers we find the graduated lengthening of the body-tube of the microscope ; a stage-fitting for clamping and rotating the object; a subsidiary stage ; a dark-wcll, and a large dise to incline and rotate opaque objects; a ground-glass light moderator; a livc-box with bevelled flat-glass plate ; an ercetor-cyc-piece ; an adapter for using Wollaston's camera lucida for microscopical drawing; and, above all, a combination of lenses to act as a condenser under the object (evidently the first approach to the present achromatic sub-stage condenser). The value of the crector-eyo-picec for facilitating dissections under the microscope is not even yet sufficiently appre. ciated. Tully published a descriptive account of Lister's microscope, the first one of which he made, and acknowledged his indebtedness to "Mr. Listcr's ingenuity and skill." Shortly afterwards Lister made known his discovery of the two aplanatic foci in a double achromatic object glass, and gave verbal directions to the three principal makers of microscopes in London, James Smith, Andrew Ross, and Hugh Powell, for the fature construction of the achromatic objective, all of whom werc intent on the improvement of their several models. To the latter the Socicty of Arts awarded, in 1832, a modal for his improved mechanical stagc movements, on the "Turrell system," which Powell first constructed for Edmund Turrell. This stage was made to rotate completely on its optic axis by means of an obliquelyplaced pinion acting on a bovelled rack on the inner face of the stage-ring supporting the mechanism. In 1834 Powcll once more received a Society of Arts medal, "the Iris," for improvements in the application of a new form of finc adjustment.

About the same date (1835) Andrew Ross introduced the socketcarricr of the body-tube of the microscope on a strong stem, with rack bent in the middle, thus affording space for a larger stage He likewise devised the hollow cross-bar, placed at right angles to the rack-stem, whercby he was enabled to use a new system of fine adjustment, consisting of a dclicate screw with large milled head, acting by a point on the long arm of a lever, the short arm of which ends in a fork in contact with a stud placed on cither side of a cylindrical sliding tube forming the nose-piece of the
body-tube, and into which the objective is screwed. A spiral spring presses down the nose-picce, and against this the serew and lever act.

This appears to have been the first really sensitive focussing method applied to the nose-piece ; it was, and probably is, one of the most delieate systems ever applied to the microscope. It has enjoyed a long period of popularity, and I believe it still survives in Powell and Lealand's instruments, which are very generally admitted to be of superior exeellence for all purposes where extreme delicacy of focussing is an essential element.

The rival system of fine adjustment-the short lever and screw applied externally to the body-tube-known as the Lister-Jaekson system, which appears to have been contrived to allow the bodytube to be supported more firmly on the limb or stem, has had its merits ably realised in the microscopes of Smith and Beek and their suecessors, but, execpt as modified by the successors of Andrew Ross (Schreder's form), it is, I believe, admitted that it has been snperseded by other modifications lately introduced into the Ross-Jackson instrument.

The year 1830 was, however, a propitious period in the history of the modern mieroscope, as in January of that year Mr. Lister published his epoch-making paper; "On the Improvement of the Achromatic Microscope." This appeared together with eertain personal practical directions (for no man was ever more anxious to communicate lis knowledge than Mr. Lister) to the before-mentioned opticians, whieh led up to ehanges lasting until 1840 , when, by the efforts of this gentleman and his personal friends, "The Microscopical Society of London "came into existence. Among the more prominent members of the Soeiety was Mr. George Jackson, a name still well known to mieroscopists, and who, jointly with Mr. Lister, gave us the Jackson-Lister form of microscope. This was forthwith aecepted as a perfeet model. Soon after Andrew Russ effected a further change in the instrument, shown in Fig. $5+$ in its complete form as left by this optician. It is here represented is having a bar movement, with a claw foot bolted to two uprights to carry the trimnions with the body and stage. This base, is insulticiently wide and extended to cirry so large an instrument with its centre of gravity so high. The coarse adjustment bar also was rectangular,
and the fine adjustment a lever, with the milled head in the middle of the bar, which involved a certain imount of tremor' ; withal it was an instrument of cxcellent workmanship, and its defects were not regarded as irremediable. Messrs. hoss, however, preferred to

Fig. 54.-An early Ross-Jackson Microscope.
construct an entirely new model designed by Kentmayer, the "Ross-Jackson-Zentmayor," to whieh I shall refer presently. A later model, however, has to some extent taken its place, " the Histological and Bacteriological Microscope," Fig. 55.

My reference to the older form of instrument is chiefly with the view of directing attention to the sensitive focussing system, applied in the first instance to the nose piece ; now placed below the coarse adjustinent. It certainly is a delicate form of fine adjustment.

This model possesses other points of interest well worth preserving, which fully entitle it to oceupy the prominent place given in the list of

Kig. 55. -The Ross Jackson Mistohugical Mieroscope.
the house of Ross. In the Ross Jackson "Histologieal and Baeteriologieal Mieroscope" much attention seerss to have been given to eliminate certain weak points in the earlier Ross-Jackson model-
defects still cxtant in stands of certain English and foreign makers -while retaining the more practical improvements of both constructions. Steadiness is secured by antextension of the tripod or clawfoot and the shorter and more solid uprights that sustain the whole weight of the instrument.

The Ross-Jackson, then, survives, together with the original tripod stand of Hugh Powell's, upon which he expended all the resources

Fig. 56. - Powell and Lealand's Studrants' Microscope, with Amici prism arranged for obligue illumination, the Sub-stage and Comlenser being detached.
of the practical optician, and applied the carly principles involved in the Lister-Jackson instrument, but from different points of view. However, there is hardly a choiec between one and the other in workmanship, both opticians having furnished mieroscopes of a typical class and very high order. The firm of l'owell and Lealand have but one form of stand, from which they have never been tempted to deviate. It is supported on a true tripod base, forming a solid and sulsstantial support to the body, whieh is of such a length as to give as nearly as possible the standard optical interval of

10 inches between the posterior principal focus of the objective and

Fig. 57. - Powell's larger No. 2 Instrument.
the anterior focus of the eye-piece; the variation in the optical tube length does not exceed a quarter of an inch with objectives of
$\frac{1}{2}$ ineh and upwards. The arm on whieh the body is fixed is $5 \frac{3}{4}$ inehes long, which not only gives a clearance of $3 \frac{1}{2}$ inches from the optic axis, but also permits of the introduetion of a long fineadjustment lever.

The eross arm encloses the lever mechanism for the fine adjustment, as originally devised by Andrew Ross. This cross arm is longer than that used by Ross, and carries the body more forward, so as to provide radial space for the eomplete rotation of the stage and the optic axis, and at the same time the lever of the adjustment

Fig. 58. - Powell and Lealanl's Students' Mieroseope arranged for direet illumination. A. Sccondary or Sub-stage racked up to bring the Achromatic Condenser close to the object.
is lengthened, and delieacy of motion secured. The stage retains the mechanical movements invented by E. Turrell, and first applied by Hugh Powell. It also rotates completely by means of an obliquely plaeed pinion aeting on a bevelled rack on the inner face of the stage-ring supporting the meelanism. Finders are engraved on the plates, and the main support of the stage-ring is graduated for angle measuring, a pointer on the ring marking the unit of motion in are.

The sub-stage is earried by rack-work, and has reetangular eentring movements, supporting an inner socket that ean be rotated by raek and pinion, and which earries the several sub-stage
accessories. A fine adjustment, by serew-cone and stud, is applied by means of an extra slicle.

The stage is attached to the sheath of the stem by a speeial arrangement of serews, by which the rotation in the optic axis ean be centred; sliding spring clips and a movable and a removable and adjustable angle-piece to hold the slides are applied on the upper surfaee. The body-tube is pivoted to move laterally on the top of the stem, and an adjustable steel stud beneath serves to stop the movement in the axis. Sueh is Powell's present instrument, and it represents the results of sixty years' steady devotion to seeure perfection, and at the same time embody the best ideas of meehanieal design by Andrew Ross.

A eheaper form of students' mieroscope is furnished by Powell and Lealand, with $\frac{3}{4}$-ineh stage movement, eoarse and fine adjustments to body, plane and eoneave mirrors, revolving diaphragm, two eyepicces, and Lister's dark wells. These makers also adopt a gauge of tubing, the size being sueh that it will take in a binoenlar body, a Huyghenian 2 inch eye-piece having the largest field-glass possible. The tube of the sub-stage is the same size, so as to secure one gange of tubing throughout. This allows of a Kellner or other eye-piece to be used as a condenser.

Ross's Microscopes.

Messis. Ross have more recently introduced several changes and modifieations in the Zentmayer stand, all tending to improve it, so that the Ross-Zentmayer model takes its plaee as a first-elass microseope.

Messrs. Ross have lately mannfatured other forms of mieroseopes ; one espeeially designed for those commeneing the study of bacteriology (Fig. 59). This instrument is one of the steadiest among those lately constructed for high-class work. The cireular foot and short stout pillar support the whole instrument, and a substantial knee-joint sustains the full weight in the upright or inclined positions, while the centre of gravity is by no means disturbed, and absolnte steadiness secmed. The stage is of the horse-shoe form, which affords eouvenient spaee for the fingers to lift the slide up while the oil is placed in contact with the objective. The fine
adjustment is extremely sensitive, working smoothly and dirent ; this is cutirely covered, to prevent injury by dust. The mierometer screw works directly in the centre of its fittings, the milled head being divided to read to $\overline{5} \overline{0} 0$ of an inch. The sub-stage is fitted with a new centring coarse and fine adjustment, so that when using high powers with the Abbe condenscr accurate focus can be secured with the least amount of trouble.

The amount of activity shown during the last few yoars by

Fig. 59.-Ross's "Bacteriological and Histol gical" Mieroscope.
opticians in the manufacture of new forms of mieroscopes renders it somewhat difficult to keep pace with improvements, some of which are novel. A further source of congratulation is that cconomy has all along been studied ; so much so, that the instruments in question are within the reach of persons of moderate means. Messrs. Ross and Co. have taken a new departure in this respect, and their "E'clipse" Microscope is an cntircly new form of stand with a ring foot. This microscope has been prodnced for the especial use of students, and can bo purchased for a moderate sum. It will be seen at a glance
(Fig. 60) how stcady this form of stand must necessarily be, since the contre of gravity is sccured in cvery direetion and inclination. The body-tube carrics cyc-pieecs, numbcred, of the Continental sizc and optical tube-longth (160 mm .), for which the object glasses are adjusted, and a draw-tube cxtending to eight inehcs.

The fine adjustment is independent of set screws, and not subject to derangement. It is extremely sensitive and dircet in action, and

Fig. 60. - Ross's Rigid Pattern
"Eclipse" Microscope. from its construction is equal in perfection of working to the best that can be made. Its fitting, by a new contrivanec, is eomplctely covered at all points, being thus preserved from disturbance or injury by dust.

The Eclipse is furnished with two eye-pieces, $1^{\prime \prime}$ and $\frac{1^{\prime \prime}}{4}$ object glasses of highest exeellence and large angular aperture, both adjusted to a double nose-piece, so that they focus in the same plane; and a swinging mirror and stage iris diaphragm.

In "Wenham's Radial" Microscope the chief aim has been directed towards providing a very considerable range of effcets, both in altitude and azimuth, The lcading principle followed throughout in the construction of this form of stand is that of facilitating the work of the microscopist and of obtaining the maximum range of oblique illumination in all dircetions. This is fairly well attained by causing all the movements of inclination and rotation to radiate from the object as a common eentre. Thus it has becn found possible to combine seven radial motions, so that when the instrument is inclined backwards, as in Fig. 61, or placed in the horizontal, as in Fig. 62 or rotated from in the brass plate, a peneil of light from a fixcd sourec shall always reach the object and pass to the
objective. The stage is made to rotate completely, and its rectangular motions are effected by milled heads acting entirely within the circumforence. The sub-stage is monnted on the Zentmayer system, with two centring serews, by means of whieh the optic axis is seeured. It is also provided with reetangular and rotating: motions. The coarse adjustnient is that of the Ross-Jackson form -a spiral pinion and diagonal rackwork, while the fine is on an entirely new prineiple designed by Dr. H. Schroder:

The "Ross-Zentmayer Microscope" is a thoroughly substantial and practical instrument, combining elegance of appearance with strength and firmmess.

It is a true tripod model, eon-

Fig. 61.-Ross's Wenham Radinl Dicroscope. sisting of a triangular base with two pillars rising from a erosspiece, whieh earries the trunnions. The slow movement is obtained by a second slide elose behind the first; but to avoid the friction of rubbing surfaces, hardened stecl rollers are inserted between them, whieh give a frictionless fine motion, amenable to the slightest touch of the milled-head screw situated conveniently at the back of the limb, through which a steel lever passes which actnates the slow motion

Fig. 62.-The Ross-Wraham Radin\} Microseope. slide. The body of the instrument is therefore not tonehed during the fine focussing, so that all lateral movement is avoided. The mechanical stage rotates axially, and the onter edge of the lower plate is divided into degrees, in order to register the angles ; a simple mode of adjustment is provided for setting the centre of rotation exactly
coincident with the focal point of the objective. As the plates of the stage have no serew or rackwork between them (these are placed

Fig. 63.-'The Improved Ros-Zentmayer Model.
externally), they are brought close together, thus affording the advantage of a thiu substantial stage, and ensuring rigidity where
most reqnired ; phosphor-bronze being used in its construction. The stage is attached to the limb by a eonieal stcm, with a serew and clamp nut at the baek, so that it can be easily removed for the substitution of a simple plate or other stage; by turning the stem in the soeket the stage may be tilted sidcways at any angle required. A feature in the Ross-Zentmayer stand is the swinging sub-stage and bar earrying the mirror, having its axis of rotation situated from an axial point in the plane of the object, which consequently receives the light withont requiring alteration of foeus in any position of the bar; by this means faeilities are afforded for the resolution of objeets requiring oblique light and for the development of their strueture. Rays are thus obtained from any angle and indieated by the graduated cirele round the top of the swing-bar, and many troublesome and expensive pieces of sub-stage apparatus dispensed with. The value of this arrangement was long ago recognised in Grubb's "Seetor Stand," the movement of whieh was obtained in a far less efficient manner:

The base or foot of the Ross-Zentmayer instrument is made in one pieee. Prefcrence must be given to the double pillar support, as this is firmer, and allows the sub-stage to swing free while the mieroseope is in a vertieal position, as in working with fluid preparations. The sub-stage is provided with screws for eentring, and, when determined, seeured by a clamping screw.

The sub-stage, with its apparatus in plaee, ean be instantly removed, by being drawn ont sideways, so as to use the mirror alone, whieh is a great convenicnce.

The mochanieal movements of this instrument are perfect, and well adapted to their purpose.

Mcssrs. Ross have other typical forms of mieroseopes. Their "New Industrial" Nicroscope, for the use of furmers, hortieulturists, textilc and other trades, for the cxamination of produce and raw materials, is a surprisingly cheap onc, and deserving of commendation. The great utility of mieroscopical research to purposes of advanced agriculture is fully recognised, and a less eostly instrument than that usually supplicd for more complex investigations was mueh needed. It is provided with a broad square stage for the purpose of receiving a glass dish to contain liquids or manifold objects, and which may be moved on the stage to bring the various

Fig. 64.-lions's " New hudustrial" Microscope.
particles under observation. A fitting beneath the stage carries a plate with diaphragm apertures for modifying the light, and as seeds, textile fibres, and other opaque objects form a large portion of those to be examined, this sub-stage plate has a space between the perforations which, when brought into position, provides a dark ground by preventing the passage of light from underneath. A condensing lens is, however, provided for the better lighting of opaque objects. Here we have a microscope which combines efficiency with stability, while its very simplification allows of a really good and effective instrument for the small sum of $£ 33 \mathrm{~s}$.

Messrs. Beck's Microscopes.

Messis. Beck have adopted what may be termed a rival system of fine adjustment in their modern microscopes. The short lever and screw applied externally to the body tube is peculiar, I may say, to the Ross-Jackson system, and was originally devised to allow of the body tube being supported somewhat more firmly on the limb. This change had its merits fully realised in the early microscopes of Smith and Beck. To their successors, R. \& J. Beck, the microscope owes much, and very many important improvements, while all their instruments and accessorics are excellent cxamples of good workmanship and finish. In their Pathological Microscope we have a movement originally found in Tolles' microscopes: a vertical dise, by which the centre can be raised or depressed to correspond with the thickness of the slide. The stage can also be brought into an inverted position by raek and pinion. Their fine adjustment has been greatly improved, as we shall presently sec, whereby it has becu made more sensitive and delicate of adjustment. The general construction of their microscopes as a rule possess the following: advantages: the stands are strong, firm, and yet not too light or too heavy, the instruments camot alter from the position in which they are placed, as, unfortmatcly, will occasionally happen when joints work loose; in every position the heavier part of the stand maintains the coutre of gravity.

Beck's Pathological Microscope (Fig. 65) is at nearly perfeet instrument, furnished with a firm triangular foot, which ensures great steadiness in any position. It has a well adapted joint for placing the instrument at any angle of inclination ; coarso adjustment by
spiral rack and pinion ; fine adjustment by delicate lever and micrometer serew motion ; raek and pinion foenssing and serew eentring sub-stage, made to earry all eondensers and other sub-stage apparatus; meehanieal stage with horizontal and vertical traversing motions. The stage is attached to the instrument by two screws

Fig. 65.-Beck's Pathological Microseope, with sinare and removable stage.
and can therefore be removed at pleasure, leaving a large square flat glass stage for the culture-plate. It is likewise provided with finder divisions, and as it always fits on to the same place, any particular portion of the objeet ean be recorded and found at any moment. The triple nose-piece is a convenient addition, and a very acceptable one to the student while diligently engaged in histological rescarch.

Fig. 66. - Beck's Large "Contincntal Model "Microscope.

Beck's Large "Continental Morlel" Microscope is of superior finish. It is provided with a substantial horse-shoe foot, which gives support to the strong, well-balanced body, jointed for giving the microscope any angle of inclination. The body is provided with a draw-tube which can be racked down to the Continental measurcment. It has a spiral rack and pinion coarse adjustment, and

Fig. 67. - Beck's "New Fine Adjustment." a fine adjustment of the most perfect workmanship, which will be described in detail presently. It has a largc scuare stage with vulcanite top plate to receive culture preparations. The sub-stage is of the most approved form for centring, and carrics an achromatic or Abbe condenser, iris diaphragm, \&c. The double mirror can be swung out of place for direct illumination and micro-photography. Altogether, this instrument is in every way fitted for critical or class-room work.

To return to the fine adjustment of this, as of other forms of Messrs. Beck's microscopes, the applied mechanism of which is believed to be one of the most sensitive and delicate character yet contrived. It is constructed as shown in the accompanying figure. The body of the instrument is supported upon the barrel D D; this barrel is accurately and smoothly fitted to the triangular core E E. At the top of barrcl D D is screwed the $\operatorname{cap} G$, to whieh is attached the rod C; this rod passes through the centre of the core $E \mathrm{E}$ and comects with the lever arm Λ at B. The action of the spring J, which is wrapped spirally around the rod C , raises the body of the microscope amblholds the lever arm Λ tightly against the screw arm J?. The slightest motion, therefore, of the screw F is communieated through the lever A and the rod C ' to the body of the microscope.

The great delieacy of this arrangement will be appreciated when it is noticed that the distance from I H is donble the distance of I B, therefore any motion at B is only half that at H. This adjustment is one of the most delicate made for use with high powers.
lin the construction of Beek's Binoeular National Mieroseope, the

Fig. 68. - Beck's National Binocular Microscope.
body is held in a sliding fitting in the limb, and is moved up or down by means of a rack and pinion motion. This eonstitutes the coarse focussing adjustment. The fine adjustment is effected by the milled head, which acts upon the body by means of a lever inside the limb. The upper circular surface of the stage is midde of glass, and carries the objeet holder, which is provided with a ledge and spring to hold the objeet by means of the pressure of an ivory-tipped
serew, so that it can be moved about readily and smoothly. The pressure of the serew is adjusted by the milled head, which permits of more or less pressure being made upon the edge of the object.

When the stage is required for other purposes the objeet holder

Fig. 69.-Meek's Star Microseope.
ean be unserewed and removed. Beneath the stage there is a cylindrieal fitting for the reeeption of a diaphragm, a polariser, or other apparatus. The mirror, besides swinging in a rotatory semieirele, is made to stide up or down the stem. The microseope is supported by a firm pillar on a tripod base, and the body ean be inclined at any angle convenient for working. A sub-stage ean be
added at any time for the reception of an achromatic condenser fitted with concentric screws-a necessity for more delicate microscopical researeh work.

Beck's Star. Microscope is in every sense a students' or class-room instrument. It is firm and well made, with joint for inelination, large square stage, sliding coarse adjustment and fine adjustment by micrometer screw, draw-tube, iris diaphragm, double mirror on swinging crank arm, A or B eyc-picec, a one-inch and quarter-inch objective, the magnifying power of which ranges from 38.5 to 183 .

Fig. 70.-Beck's Binocular Dissecting Microscope.
An carly binocular mieroscope for dissecting purposes was devised by the late Mr. R. Beck. (Fig. 70.) This took the form of a simple instrument built up on a square mahogany base A raised abourt four inches upon four brass supports $13 B$, having a large circular stage plate made to revolve on a sceond plate, on which the object is placed and brought under the eyc for dissection. On the left hand side is a milled head rack and pinion K , which acts upon a horizontal bar I for focussing the magnifying lens. Another bar, R, carries the prism P and a pair of eyc-picces arranged on the principle of M. Nachet's binocular microscope. Mr. Beck preferred to adopt Wenham's method of arranging these prisms ; that is, by allowing half the cone of rays to proceed to one eye without interruption,
while the other half is intercepted by the prisins and tramsmitted to the other eye. Beneath the stage is the ordinary mirror L. The eondensing lens M. is supported on a separate brass holder let into one of the supports of the stand. In praetice, however, this arrangement was found ineonvenient, and the microscope has therefore not been brought into general use.

Messrs. Watson's Microscopes.

Among London opticians, the various mieroseopes manufactured by Messrs. Watson, of Holborn, are of high finish and good workmanship. Those specially designed for the use of students possess merits of their own in their mechanical construction, and also embody a provision, as indeed do all their instruments, whether for students or more pretentions work, whereby wear and tear in their frictional parts can be compensated for by the user himself. This is effected in a simple but efticient mamer. The fittings are sprung, and screws set just outside the dove-tails. The very slightest turn of the screws eompresses the dove-tails, and a very large amount of wear can in this way be prevented.

I am glad to notice that Messrs. Watson have adopted eertain standard sizes recommended some time ago by the Royal Microseopical Society for the diameters of eye-pieces. It would be a great advantage if the same standard became generally recognised and brought into use, sinee it is a matter of much importanee to mieroseopists.

W'atson's Edinburgh Students' Microscope (Fig. 71) is a thoroughly effieient one for all practical purposes, great care having been bestowed upon its smallest details, and it is not difficult to perceive the reason of its popularity among students. The tripod form of foot ensures great steadiness and firmmess ; the body earries the smaller 0.92 cyepiece, and with draw-tube closed is of the Continental length. The draw-tube is graduated to millimetres, and when fully extended the body meastures 10 inches. The stage is provided with mechanical and rotary movements; the eompound sub-stage with centring serews, raek and pinjon to foeus, and a means of lifting the eondenser out of the optical axis when not required for use. Notwithstanding, none of the movements are at all eramped ; a clear distance is main-
tained beneath the stage, affording plenty of room for manipulating the mirror. Both coarse and fine adjustments work with smoothness,

Fig. 71. - Watson's Edinburgh Students' Microscope.
the latter being on Watson's latest improved prineiple-one revolution of the milled head moves the bedy $\frac{1}{300}$ of an inch. The stage is of extra large size, to allow of the use of large culture-plates. No Continental stand of higher price compares with the Edinburgh
microscope. Its height when placed in the vertical position is $11 \frac{1}{2}$ inches.

The varions sizes of oculars adopted by opticians and at present in vogue cause considerable confusion. A standard size is specially needed for students' and small microscopes. The standard long used by Continental manufacturers is 0.92 of an inch. The adoption of this size would place the cye-piece in the same position as that of the universal screw for the objective, formulated by the Royal Microscopical Socicty many years ago. The desirability of using standard sizes has been fully recognised by Messis. Watson and

Fig. 72. -Snb-stage of Edinburgh Stndents' Microscope. 'This view of under. side of stage of students' instrument shows the mirror set at an angle for oblique illumination, and sub-stage turned aside.
they are now adapted to most of their microscopes. The English diameter, 1.35 of an inch, known as the "Ross" size, is retained in all their microscopes of large size.

Watson's Mechanical Draw-tube.

An important feature in connection with the body-tube of Watson's Edinburgh Students' Microscope (as, indeed, in all their fully furnished instruments) is that they are provided with two dralw-tubes ; one moved by rack-work, the other sliding inside the body-tube. The advantage is, that the body can be made very short or extremely long, while sufficient latitude can be given to objectives
corrected for cither Continental or English tube-lengths, and to adjusting the same for thickness of cover-glass by variation of tube length.

Fig. 73. -Watson's Mechanical Draw-tube (full-size).
Should the eover-glass be thicker than that for which the objeetive is corrected, a shorter tube-length is necessary ; if thinner, the body must be lengthened. This is effected by means of the raekwork
draw-tube. The length of the body when closed is 142 millimetres ($5 \frac{5}{8}$ inches), and when the two draw-tubes are extended, 305 millimetres (12 inches), being, therefore, shorter than the Continental and longer than the Bnglish tube lengths. Both draw-tubes are

Fig. 74. - Watson's Histological Microscope. Stand "A."-Height, when phaced vertically and tube pushed home, $9 \frac{1}{2}$ inches.
divided into millimetres, and on the rackwork draw-tube a double seale is engraved, reading continuously from the sliding draw-tube when fully drawn out, or giving the body length when the raekwork draw-tube alone is in use. The utility of this meehanieal drawtube is that it permits of quiek manipulation with perfect results.

The inside top of the draw-tulse is smaller than the remainder, the former making a fitting for the eye-piece about 1 inch long, permitting of the tube being blackened inside up to this fitting, thus minimising reflection. The end of the draw-tube has the universal serew for using the apertometer, de.

Watson's Histoloyical Microscope (Fig. 74) is a somewhat eheaper form of instrumeni, designed for the student; although of plainer construction it is quite as well made as the costlier model. It is provided with spiral rack and pinion eoarse adjustment, and with this motion the greatest smoothness is preserved. There is no

Fig. 75. -Watson's Scmi-Mcchanical Stage.
baeklash, the teeth of the pinion never leaving the rack; so effective is it that a high power can be perfectly foeussed by its means. It is also furnished with their universal pattern of fine adjustment. This can be had for £3 $3 s$.

Messis. Watson have among other aceessories of value introduced in conneetion with their several mieroscopes a semi-meehanical stage, whereby they are enabled to reduce the cost of manufacture. Fig. 75 is an outline sketch of the same.

This stage is of the horse-shoe shape, with ent-out contre, eonstructed of $\frac{1}{4}$-ineh brass plate, and measures over all $5 \frac{1}{4}$ inches wide by 4 inches deep. Fitting on the edges of the main stage is a frame which is actuated vertically by means of a double raek and pinion from beneath, giving $\frac{3}{4}$-ineh of movement, having controlling heads
on either side of the stage ; on the edges of this mechanical frame a sliding bar is fitted, consequently movement may be imparted either by rackwork or by hand. The mechanical movement, however is in one direction only; but as the bar carries the object, the worker can easily move the object out horizontally with the finger. The advantage of this stage is that the whole surface is perfectly flush, and the pinion heads are below its level, so that culture plates or continuous sections may be conveniently examined.

Another addition of considerable value is the centring underfitting for students' microscopes.

This fitting places in the hands of student workers a means of accurately centring the sub-stage condenser, at a low cost. It

Fig. 76. - New Centring Underfitting for Microseope. consists of the usual underfitting tube, having a flange at the top which is fitted in a box between two plates. The centring is effected by meaus of two screws, which press the flange against a spring, as in the ordinary sub-stage centring movement. The fitting can be adapted to any form of Messis. Watson's and most other makers of students' microscopes.
Watson's Bacteriological Improved Van Heurck's Microscope (F'ig. 77) is in every way a superior instrument, and it at once conveys a favourable impression to the practical worker. When set up for use its many convenient points-its excellence of workmanship and the precision of its movements-seem to imply its special adaptation for the bacteriological laboratory and for other high-class work where absolute reliance has to be placed in the results obtained. Every detail of the instrument is carried out in the best possible mamer. The coarse adjustment is effected by means of a diagonal rack and spiral pinion, which ensures the smoothest possiblo motion ; while the fine, the most important movement in the instrument, is made with an extra long lever, a specialty of Messrs. Watson's, and which imparts an extremely slow action : this is now one of the most delicate and reliable forms of fine adjustment. By its means the entire body is raised or lowered by means of a milled head fixed to
a screw having a hardened steel point acting on a lever against a point attached to the body slide, in a dove-tailed fitting about $2 \frac{1}{2}$

Fig. 77. -Watson's Improved "Van Heurek Bacteriological" Microscope.
inches long. Owing to the position of the controlling milled head on the limb, it can be worked with either hand. Another feature of importance is that, in using the fine adjustment the distance
between the eye-pieee and objeetive remains unaltered. All the frietional parts of the mieroseope have spring slots to the dove-tailed fittings, in whieh eompensating serews are fitted. 'These are some few of the more important points, to which mueh thought and attention hare been given. The body permits also of the use of objectives of any other optician, sinee its total length when the draw tubes are elosed up is only 143 mm . ; when extended, a total length of 320 mm . is available. By this means an ample margin is left for the correction for eover-glass thiekness, whether the objeetive used be intended for the 160 mm . or 250 mm . tube length. The height of the mieroseope when placed in the vertieal position is $13 \frac{1}{8}$ inehes.

The Stage.-A somewhat new design has been used in building this up so as to reduee vibration to a minimum. The braeket earrying the stage, instead of being serewed on to the front of the limb, as is usually done, is made in a solid easting, taking the sub-stage beneath, and passing into the joint at the top of the foot. The joint bolt goes through the whole (limb and stage braeket), rendering the limb stage and sub-stage as firm as if it were one pieee; a point of eonsiderablè importanee.

The mirrors, whieh are plain and eoneave, are mounted on a swing arm, so that they may be turned aside when direet illumination of the objeet is required. On the right hand side also there is a steel elamping bar for fixing the mieroseope at any angle of inclination. The tripod foot, whieh has superseded most other forms, is adopted. At the points of eontaet with the table the feet are provided with eork pads, whieh give inereased firmness and prevent vibration to some extent.

The sub-stage is provided with a fine adjustment of similar design to that employed for the foeussing of the objeetive. It has beeome needful to embody such a refinement, in order that sub-stage eondensers of large aperture, such as are in constant use for eritical high-power work, may be adjusted with the same facility and precision as the oljective-they, in faet, require it if the best work is to be got out of them. No pains hare been spared by Messrs. Watson to render it absolutely perfect.

Watson's Portable Microscope.-This instrument is similar in general detail to the Histologieal Mieroseope, but the foot, mirror
stem, fe., are made to fold up in cxccedingly compact form, and when set up for use the stand is perfcetly rigid. Portable microscopes are, as a rule, but makeshifts. This, however, is a thoroughly sound, practical instrument and capable of bost work with the

Fig. 78. - Watson's Portable Microscope. Height of instrument when placed vertically and racked down is $9 \frac{3}{8}$ inches.
highest power objectives, having good adjustments and universal size fittings throughout, so that the objectives and apparatus made for the larger instruments can be employed with it.

Watson's Petrological Microscope (Fig. 79) is a modification of their Edinburgh Students' pattern, and designed specially for petrological and mineralogical work.

A polariseope having prisms of large size is supplied with it, the analyser being fitted in the body, and the polariser in the understage fitting. The latter has a divided circle and a spring eatch at

Fig. 79.-Students' Petrological Microscope.
every quarter cirele. By removing the polariser and withdrawing the analyser, for which provision is made, the mieroseope can be used for purposes of ordinary research. A Klein's quartz plate is fitted beneath the analyser, also in the body of the mieroseope.

The stage, which has a glass surface, rotates concentrically, and has a divided circumforontial edge reading by the verniers. The eyc-picce has cross webs to the diaphragm, and when it is desired, an analyser, having a divided circle fitted with a ealc-spar plate, can be used above the cye-piece, and condensor lonses attached to the

Fig. 80. -Swift's Histological and Physiological Microscole.
polariser for stercoscopic purposes. All the fittings have the miversal thread, and are interchangeable.

Messrs. Swift's Microscopes.

Messrs. S'wift's Microscones have a well-established reputation for quality aud good workmanship, and therefore can in no way suffer by comparison when placed beside those of other opticians. Onc of the characteristics of Messrs. Swift's mieroscopes-and this runs through
the whole series-is that they are all made to a standurd gauge, so that the several parts of the instruments, as well as their accessories, are interchangeable; the cheaper forms, with those of the first quality and finish. Should the student, then, start with a No. 1 model, he can at any time build it up, as it were, with the aecessories designed for a No. 3 or 4 , that is, for an instrument of double the price he started with. The optical centre is preserved throughout the whole series of mieroscopes.

The tripod foot has, it appears, taken the place of some of their

Fig. A.

Fig. B.

Fig. 81. -Swinging Leg Attachment of Swift \& Son's Fonr-Legged Microscope Stand.
other forms of instruments, while their four-legged triporl, if it can be so designated, is a novelty of quite an unusual character.

The swing leg is attached to the framework of the tripod by the serew (Fig. A), which is provided with a powerful steel spiral spring, compressed between two steel collets when the serew is driven home, as shown in Fig. B.

The expansion of this spring will obriously take up and compensate automatically any wear and tear that is likely to occur between the bearing surfaces, and it is therefore impossible for the fitting to get loose.

Switt's Four-leyged Microscope (Fig. 80) is one possessing great stability in whaterer position it nay be placed: the body being
supported on a horse-shoe platform, from which its four legs spring, the two front legs being fixed, while the hind legs are pivoted to the platform. This arrangement of piroting the hind legs enables the mieroscope to adapt itself to any meven surface, thus keeping it always in a steady position, while it also reduces the danger of being upset by any lateral movement of an aceidental nature. The feet are studded with eorks, an additional aid to steadiness and fixity for mierophotograplyy. The length of the body from the oeular to the nosepiece is $6 \frac{1}{2}$ inehes, and ean be extended to 9 or 10 inches by means

Fig. 82.-Swift's Spiral Rack and Pinion Coarse Aljustment.
of the draw-tube, which has a millimetre graduation. The stage, which is of horse-shoe shape, is provided with spring elips, to whieh a movable mechanical stage ean at any time be attaehed. The sub-stage partakes of two forms, one being an ordinary fitting, taking an ordinary eondenser ; the other, the regular rack and pinion aehromatie eondenser with contring adjustments. It has a diagonal raek and pinion coarse adjustment, the fine adjustment being made by micrometer screw of the finest character.

Fig. 82 is intended to illustrate the advantage of the spiral rack and pinion which Messrs. Swift fit to their mieroseopes, in plaee
of the ordinary conventional horizontal rack and pinion movement. The advantage will at once be secn, since thore is more gearing contact between rack and pinion, thus ensuring durability and reducing loss of time or back lash to a minimum, with less wear and tcar. The leaves of the pinion also roll into the tecth of the rack by degrecs, ensuring a very much smoother action, which, if properly made and fitted, prevents the gearing of the two being felt by the hand whilst focussing.

Fig. 83 is a supplementary draw-tube with rack and pinion movement, which can be adapted to any of

Fig. 83.-Graduated Supplementary Draw-Tube. Swift's microscopes in place of the ordinary draw-tube, the sizc of the thread being of the same diameter, so as to render all draw-tubes, as well as other parts of these instruments, interchangcable. The drawtubc being divided into millimetres can be extended from 160 to 250 millimetres. One advantage of this arrangement is that the correct adjustment of any objective with each cyc-piece is easily found and recorded for future observations with the same combination.

Mcssis. Swift's Three-legged Tripod Microscope (Fig. 86). In most respocts the description already given of the four-lcgged instrument is applicable to this stand. Although of an apparently different form, it can be built up, as already explained, into one of a higher class. It is suitable in every way for histological investigations. The horse-shoc platform in this, as in the preceding stand, is cxtremely scrviceable, as it allows the pillar of the instrument to rest firmly upon it, thus rendering the stand very rigid.

Swift's Bacteriological Microscope (Fig. 84), designed by 1'rofessor Wright, of the Army Medical School, Netley, a sufficient warranty of its excellency and perfect adaptation for bacteriological high-class work. One of the advantages comected with this microscope is the facility with which it can be adapted for either high or low power
investigation, without the necessity of adding or detaching any part. The objectives, arranged on a triple nose-picec, are approximately in foens when revolved into position for immediate use, thms effecting a saving of time in changing the objective. Moreover, the nose-piece earrying the objectives is of new construction, and fitted in such a way that the entry of dust is rendered mpossible.

Fig. 84. -Swift's Amy Bacteriological Microscope.

Fig. 85.
Under-Stage of same.

The Abbe condenser, fitted with an inis diaphragm, is mounted on an eccentric arm, so that it can readily be thrown out of the axis of the microscope when not required, without having to re-arrange the focus when again brought into position. The condenser must be turned aside when plate cultivations and preparations of unstained bacteria are being looked over for sclection of colonies for monnting, in which case thl arm carrying a quidrant with three apertures is brought into position in place of the condenser, the apertures being
severally centred by a spring eatch and used with oblique light. This arrangement, shown in Fig. 85, is seen from the nuder surface of the stage. The stage is suffieiently large, so that when Petrie plates are being examined at the extreme edges there is little fear of their overbalaneing.

The fine adjnstment is the Swift's Patent Campbell Differential Serew, which offers great facilities for delieate foeussing with the

Fig. 86.-Swift's Histological Students' 1 icroseone.
highest power objectives. The stand is of the most substantial and rigid form, and thus ensures the microseope from vibration.

The under-stage of microscope (Fig. 85) is seen to be of the most approved form.

Suift's Advanced S'tudents' Microscope. - In this microscope (Fig. 87) we have a superior instrument for the use of the advaneed student, which may be described as of high mechanical excellenee, well suited for every requirement. of work. The stand is the
well-known tripod form of their Challenger Microscope, and admits

Fig. 87.-Swift's Advanced Students' Microscope.
of the instrument being placed at any angle of inclination; the
body is short enough to work with objectives of Continental makers, and is provided with a draw-tube, to elongate it to the standard of 10 inches, with a diameter of $1 \frac{3}{16}$ inch to take the same eye-picces as the larger stands. The coarse adjustment is by spiral rack and pinion ; the fine, by a carefully made differential screw motion for delieate focussing. The stage is of the horse-shoe pattern, to which a meehanical stage can at any time be adapted, as well as an rchromatic condenser to the sub-stage seen beneath. Here the student will find the foundation for a superior instrument.

Messrs. Baker's Microscopes.

Of Messrs. Baker's larger stands, the Improved "Nelson Model," No. 2 (Fig. 88) stand is selected in preference to their more elaborate No. 1, and their simpler form, No. 3, as a highelass instrument, and one well suited for fine critical work; the former being somewhat better, only from having extra adjustments ; the latter possessing no superior advantage orer the "Adranced Students'" Microseope. This mieroscope is mounted on a solid tripod foot, which insures stability, whether placed in a vertical, horizontal, or inclined position ; the front toes are slotted, so that they may be clamped to the base plate of a photo-micrographic apparatus, first introduced for photo-mierographic work, and will also be found convenient in ordinary work; as the fine adjustment milled head is placed at the bottom of the pillar, instead of at the top, the more usual place. For photo-micrographic work the advantage is that the strain of the pulley in such apparatus actuates the fine adjustment, and is less liable to cause ribration of the instrument. The advantage when the instrument is used for ordinary work lies in the fact that the weight of the hand is rested on the top of the tripod, thus admitting of steadier movement of the milled head. The fine adjustment is obtained by a "Campbell" differential screw, each revolution of which is equal to $\frac{1}{200} \mathrm{~m} . \mathrm{m}$. The draw-tubes being gradnated in m.m., allow of either short or long tube objectives being used, closing up to $150 \mathrm{~m} . \mathrm{m}$. and extending to $280 \mathrm{~m} . \mathrm{m}$., the rack and pinion adjustment to the lower tube affording a ready means of correction for cover-glass ṭhicknesses. The eye-piece gauge, as will be seen from its dimensions,
is of large size, being the same as that adopted by Zeiss for his long tube compensating oculars ; smallcr cyc-picces can, however, be adapted at any time.

The mechanical rotating stage is divided on brass to $\frac{1}{100}$ inch,

Fig. 88. - Baker's Tmproved "Nelson Model" Microscope. Dimensions. Height when in vertical position and bouly racked clown, 11" : Height of stage, $4 \frac{11}{8}$; Height of optic axis when in horizontal position, $8 \frac{1}{2}{ }^{\prime \prime}$; Spread of triporl foot, $8 \times 8 \frac{1^{\prime \prime}}{}{ }^{\prime}$; Diameter of mirrors, $2 \frac{3^{\prime \prime}}{8}$; Internal diameter ol derw-tube, $1 \frac{3^{\prime \prime}}{18}{ }^{\prime \prime}$.
with clamping bars and stop, by which a specimen can always be brought back to a certain position for registration. The sub-stage has rack-work focussing adjustment, and centring screws; a finc adjustment is added, if desired. On the whole, the instrument is
suitable for special critieal work, and is equally well suited for photo-mierography.

Fig 89.-Baker's Advanced Students' Microscope. Dimensions. - Height when in vertical position and body racked down, $111^{\prime \prime \prime} ;$ Height of stage, 4 4月 *; Width of stage, $4^{\prime \prime}$; Height of optic axis when in horizontal position, $6 \frac{1^{\prime \prime}}{}$; Spread of

Explanatory lettering of instrument: A, Huyghenian eye-piece ; B, draw-tube graduated in millimetres ; C, nuse-piece ; D, coarse adjustment ; F, fine atjustment with millimetre screw; F, horse-shoc sliding stage, graduated with sliding bar in vertical and horizontal directions for use as finder; G, sub-stage rack and pinion serew; II and I, centring screws to sub-stage ; J, carrier for condenser ; K , mirror with movable arm supported on solid tripod foot.

The points of differenee between this stand and the No. 1 model are that in the latter the fine adjustment earries the body only, and not the raek adjustment; the limb carrying both the body and
the sub-stage is in one picee, giving, if possible, still greater rigidity; the rotation of the mechanieal stage, which is divided on silver, is complete, and can be actuated by hand or rack work; it has a clamping serew and fine adjustment to sub-stage.

Baker's Aclvonced Students' Microscope (Fig. 89) may be deseribed as a typical instrument, equally suitable for histological work and that of the advanced student. The intention of the maker in simplifying the adjustments and redueing the instrument in size, was to furnish a well-finished portable instrument at a moderate

Fig. 90. - The Mayall Removable Mechanical Stage.
eost. This object has not been attained by supplying adjustments of second-rate quality, but by reducing their number to a minimum.

The tripod foot of the "Nelson Modcl" is replaced by a claw foot, which is in effect a tripod, as it rests on three points; it has not the same wide spread, but this, far from being a disadvantage, renders the instrument more portable. It has rack and pinion coarse and Campbell differential serew fine adjustments, draw-tube graduated in m.m., extending to $180 \mathrm{~m} . \mathrm{m}$., eye-piece gatuge the same as the Continental size, large square open stage to afford the greater frecdom of manipulation ; sliding bar with graduations on bar and stage, which suffice for registering any given ficld under
a low power ; holes are also drilled in the stage ready to receive an attachable mechanical stage shonld it be thought advisable to add one at a later date. The sub-stage is of the universal size with rack-work focussing, adjustment, and centring screws.

Messrs. Baker have recently introduced a similar instrument with

Fig 91.-Baker's Model Histologieal Mieroseope. Dimensions.-Height when in vertical position and body racked down, $10 \frac{1^{\prime \prime}}{}$; Height of stage, $4^{\prime \prime}$; Width of stage, $3 \frac{1^{\prime \prime}}{}{ }^{\prime \prime}$; Height of optic axis when in horizontal position, $5 \frac{1}{t}$ "; Spread of

swing-out sub-stage and adjustments for compensating for wear and tear of rack. The stage is also somewhat larger from back to front.

These stands are very suitable for bacteriological rescarch, and for amateurs wishing to obtain a stand which will carry all the apparatus they are likely to need, without going to the expense of the larger models, no better instrument could be desired.

Their "Removable Mechanical Stage" (Fig. 90) is a modification of the pattern designed by the late Mr. J. Mayall. The reetical
movement is by rack and pinion, giving a range of $1 \frac{1}{8}$ inch. The horizontal motion of $1 \frac{1}{2}$ inch is accomplished by means of a quickacting serew. The object is pressed tightly to the stage of the microscope by means of three points, and the whole of the mechanical part is firmly clamped by two thumb screws which can be readily removed. The stage is made to carry slides of any size less than $1 \frac{3}{4}$ inch wide.

Baker's Mistological Microscope (Fig. 91) is of a different type to the preceding, and is intended to represent one of medium power, affording magnification of about $\times 400$ as a maximum. It is

Fig. 92.-Rousselet's Tank Nicroscope.
supplicd with a diaphragm beneath the stage, without other illuminating apparatus than that of the mirror. But if the adjustments of such a stand are good, there is no reason why some form of sub-stage condenser should not be added, to make the instrument somewhat more serviceable. There is, however, a rather too limited space beneath the stage of an instrument of this kind to admit of a sub-stage condenser, consequently it camot be said to be suitable for critical work. For all ordinary students' work this microscope is certainly available.

The stand of the Model Histological Microscope has the same form of foot as the more advanced student's stand. It is somewhat lighter, and more portable, a matter of consideration in a student's
mieroscope, which often has to be carried to and from a class-room. It is provided with rack and pinion coarse adjustment, and a Campbell differential screw fine adjustment, draw-tube, and diaphragm ; the diaphragm carrier being of the universal size, so that it ean be replaced by an Abbe condenser at any time. With the additions suggested, this instrument can be made equal to those of a higher standard.

Rousselet's Tank Microscope (Fig. 92), for rapidly looking over pond water and weeds, consists of a jointed arm moving parallel to the side of the tank to carry an aplanatic lens; the arm is focussed by means of rack and pinion fixed to the upright of a mahogany stand, upon which the tank can be placed, or it can be clamped directly to the tank by means of a screw. This handy form of pond microscope is made by Messrs. Baker.

Pillischer's Microscopes.

Mr. Pillischer (New Bond Street) is favourably known for the excelleney of his instruments. He has lately brought out several microscopes of an improved form. His larger model, the "New International," consists of a solid, well-built, firm tripod stand of the Ross-Jackson pattern, which appears to be quite in the ascendant among London opticians ; rack and pinion coarse adjustment, and a superior micrometer fine adjustment; sub-stage with centring screws and rack and pinion focussing adjustment ; a new form of sliding pin-hole diaphragm and iris diaphragm; B and C cye-pieces ; $\frac{5}{8}$ and $\frac{1}{7}$ objectives; Abbe condenser, N.A. $1 \cdot 20$; in every respect a perfect model, neatly packed in a mahogany case, for a very moderate sum. Mr. Pillischer's No. 2 (Fig. 93) "International " Microscope, being the Army pattern as well as the student's, is well adapted for elinical work. A firm tripod stand supports two dark bronze uprights, with rack and pinion coarse adjustment, e, and fine adjustment, d, the stage, i, is wide and suitable for clinical work, and large onough for dissecting upon. The whole instrument is well made; the coarse adjustment is so grood that the onecighth inch can be focussed with ease, and without using the fine adjustment.

For a few shillings extra, a mechanical stage can be added,
consisting of levers, having an action similar to the movements of a parallel ruler, which is so easy of adjustment that it ean be worked

Fig. 93.-Pillischer's "International" Microscope.
under the eighth-inch objective with the hands-an advantage in a clinical mieroseope.

The following reference letters serve to explain the general
construction of the microseope (Fig. 93):-a, the eye-piece ; b, the draw-tube ; c, the sliding-tube; d, micrometer or fine adjustment; $e e$, the coarse adjustment ; g, the mirror arm and mirror ; h, sub-stage carrying Abbe eondenser ; i, the stage with spring-clips ; j, objectives screwed into place and double nose-piece.

The "Kosmos" is Pillischer's cheaper model. The stand of this somewhat novel and original microscope is framed entirely of brass and gun-metal. The fine adjustment is very sensitive and perfectly steady, admitting of the highest immersion objectives being used. The optical parts are construeted upon prineiples consistent with the latest improvements. It has a claw-foot stand with a semi-eircular arm, which earries the body, with sliding-tube coarse adjustment, and micrometer screw fine adjustment, with a large square stage diaphragm and mirror: The instrument is neatly paeked in a mahogany box, together with the A or B eye-piece, 1 -inch and $\frac{1}{5}$-inch objectives of good defining and penetrating power, magnifying from 30 to 380 diameters, in mahogany cabinet, for the moderate sum of $£ 5$.

Pillischer's Binocular Microscope (Fig. 94) is eonstructed on a plan somewhat intermediate between that of Beck's and Ross's well-known patterns, and in point of finish is equal to any student's microscope in use. The semi-circular form given to the arm carrying the body inereases the strength and solidity of the instrument, although it is doubtful whether it adds to its steadiness when placed in the horizontal position. The straight body rests for a great part of its length upon a parallel bar of solid brass ploughed into which is a groove for the reception of the rack attached to the body, the groove being of such a form that the rack is held firmly while the pinion glides smoothly through it. A steady, uniform motion is thus obtained, which almost renders the fine adjustment unnecessary. The binocular bodies are inelined at a smaller angle to one another than in most instruments; nevertheless, the range of motion given to the eye-pieces by the rack and pinion enables those whose eyes are widely separated to use the instrument with comfort. The prism is so well set that it illuminates both fields with equal intensity. The stage is provided with rectangular traversing morements to the extent of an inch and a quarter in oach direction. The milled heads which effeet these
are placed on the same axis, instead of side by side, one of themthe vertical one-being repeated on the left of the stage, so that the movements may be commmicated either by the right hand alone

Fig. 94.--Pillischer's Binocular Microscope.
or by both hands acting in concert. The stage-plate has the ordinary vertical and rotatory motions, but to a much greater extent than usual ; and the platform which carries the object is provided with a spring clip to secure the object when the stage is placed in the M.
vertical position. A new form of sub-stage with centring screws is made to carry the Abbe achromatic condenser, diaphragm, polarising and other apparatus.

Continental Microscopes.

Continental Microscopes.-The better known among continental opticians are Zeiss, Leitz, Seibert, Reichert and Hartnack. All seem to have vied with each other in the attainment of perfection in the manufacture of the most useful forms of microscopes. The late Carl Zeiss did more for the modern microscope than either of the opticians referred to above. I therefore take a medium typical model of his from a long series of highly-finished instruments for my illustration. Zeiss's successors have of late endeavoured to perfect the mechanical details of their instruments in three or four directions, i.e., fundamental features of the stand, stage arrangements, means of focussing, and illumination.

The Stand.-The general form of the stand still partakes too much of the original sameness of type introduced by Oberhäuser: and modified and improved by Hartnack; the "Babuchin" stand being still in farour with some few makers. The greater firmmess and steadiness of Zeiss's stand (Fig. 95) is secured by the horse-shoe form of foot, which, for the most part, is massive and well adapted to carry the stont uprights, which support a well-balanced, substantial body-tube and a graduated draw-tube, circular stage with a vulcanite disc, 4 inches in diameter; a sub-stage with centring arrangement for Abbe's illuminating apparatus, and iris diaphragm and other diaphragms for use when the condenser is thrown aside. The mirror is full-sized, plane and concave. The coarse adjustment is regulated by a rack and pinion movement so perfect that objectives of medium power can be focussed by it alone. The fine adjustment is made by micrometer screw, the force exercised by which is transferred to the movable body by a single contact between two hardened steel surfaces. This ensures extremely delicate and uniform motion of the body which carries the tube.

The divisions in the milled head of the screw furnish a means for the registration of the vertical movements of the tube. In the latest stands, each division comesponds to an elevation or depression
of the tube in the direction of the optie axis of 0.01 mm . By this means measurements of thieknesses may be made with a considerable degree of aceurney, the upper and lower surfaces of the object being suceessively foeussed, and the amount read off on the milled-head, by the fixed index. In doing this, eare must be taken to make both adjustments by a rotation of the serew in the same

Fig. 95.-Zeiss's Medium Stand Microscope.
direction. The thickness of an object in air is then equal to the differenee between the two readings. By this means the thiekness of any other substance may be measured-that, for instanee, of the eover-glass of the objeet.

The medium tube-length of the mieroseope is 160 mm . from the attachment of the objective to the eye-picee end. The draw-tube admits of the length being inereased or diminished, and this may be read off by means of the millimetre scale engraved
on the tube. My deseription of this model also applies to the higher class microscopes, which will be found in every way well

Fig. 96.-E. Leitz's Medium-sized Microscope. finished and adapted to ljiological and seicntific rescarch.
E. Leitz's of Wetzlar Micro-scopes.-This optician publishes a scries of twelve high-class forms of instruments. By preferenec, the horse-shoe form of stand (Fig, 96) is adopted in the whole of this maker's models, the body being supported on a hinge joint and clamped over, and fitted with a circular revolving centred mechanical stage, attached to the ordinary stage by means of a set pin, which fixes the stage in position. By removing the screw, the stage can be detached; in this way, the stage serves for searching over large surfaces and registering the results.

The coarse adjustment is made by rack and pinion, and the fine adjustment by micrometer screw, the head of which is provided with a scalc reading $\frac{1}{100} \mathrm{~min}$. The draw-tube is also cut and ruled

Fig. 97.-Leitz's Dissecting Microscope.
to millimetre scale. The sub-stage has rack and pinion morement, and is arranged for the Abbe condenser and iris diaphragm. This
is attached to the upper stage by means of a set pin, which fixes and retains it in position after perfect centring. By removing the pin, the sub-stage can be either detached or swung aside by pressing a button. In short, this microscope is in all respects well furnished and fitted with the requisite complex mechanism necessitated by modern high-class technicological work.

Leitz's students' microscope, with sliding body, micrometer screw finc adjustment, concave mirror, two cye-picces and two objectives, $\frac{3}{4}$ inch and $\frac{1}{8}$ inch, in mahogany casc, costs $£ 310$ s. Leitz's dissecting microscope, with a heavy foot and rests, is fitted with two aplanatic lenscs, magnifying $\times 10, \times 20$ diametcrs.

Reichert and Seibert adherc to the same model as that of Zeiss, and therefore require only a brief notice. Their microscopes are characterised by substantial workmanship, suitable construction, and cxact centring. The coarse adjustment is obtained in the usual way by rack and pinion, the fine by micrometer screws, which work easily, and are protected against wear and tcar by having their working surfaces hardened. The stands of the better class instruments have micrometer screws graduated, and draw-tubes cut to millimetre scale. Their mechanical stages and sub-stages and accessories are in every way wcll finished ; stage forceps, tests, and an assortment of cover glasses and slides bcing added. Their first-class microscopes are sent out in mahogany boxes.

On going through the continental makcrs' catalognes, it will be noticed that their well-equipped microscopes are rather more costly than that of their English confreres. It is mudcrstood Messrs. Baker and Watson are the constituted agents for these opticians.

Nachet's Microscope, a new form of which was first seen at the Antwerp Exhibition 1892, is very solidly built, and has all the qualities necessary for histological work. The stage rotates about. the optic axis, and carries a movable slide holdcr. The coarse adjustment is by rack and pinion movement, the finc by the new system of micrometer screw (described in the journal of the Royal Microscopical Society of 1886), with divided head indicating the $\frac{1}{400}$ part of a mm . The plane and convex mirror is monnted on a jointed arm. The draw-tube is divided into millimetres. The illuminating system, consisting of a widc-angled Abbc condenser
(N.A. $1 \cdot 40$) with iris diaphragm, is raised or lowered by rack and pinion screws. The iris diaphragm, being mounted on a wheel, is worked by a tangent screw, which by a very slight movement eauses the aperture of the diaphragm to pass from the centre to the periphery of the eondenser. Altogether the arrangement of the sub-stage is novel, and the instrument is extremely woll arranged and adapted to modern requirements.

Nachet and Hartnack, of Paris, hold an almost equal rank as makers of first-class microscopes, and in point of execllence of workmanship fairly rival those of our English makers.

Fig. 98. - Nachet's Class Demonstrating Mieroscope.
There are rery many other London and Continental makers of microscopes besides those especially mentioned, who have wellsustained reputations as opticians, and who, from want of space, I have been obliged to pass over. Messrs. Newton's Students' Microscope must be mentioned with respect. It is a good and usefnl instrmment, has a firm stand with a reversible (rotatory) body movement, which seems to ensure steadiness when brought into the horizontal position for miero-photographic purposes. There are other opticians whose microscopes have stood the test of timeMessrs. Collins, Crouch, irc. It may, however; be taken as a well-established fact that those opticians known to manufacture the more highly-finished models also produee the more serviceable forms of stndents' elass-room, and other microscopes.

Tho Bactoriological Microscope.

The microseope required for bacteriological studies should be perfeet in all its parts. With regard to the choice of an instrument, it is very much a matter of price, since the most perfect is usually the most costly; I slaall therefore proceed to give a typical example of the instrument in use in a bacteriological laboratory. The microscope should possess the following qualifications, all of which are absolutely necessary for the study of such minute objects as bacteria and other micro-organisms.
"The typical bacteriological microscope should be well equipped with objectives of sufficiently high magnifying power, and with a special form of illuminating apparatus; while the mechanical arrangements for focussing should act with the greatest smoothness and precision ; the stage, also, should be wide enough to admit of the examination of plate cultivations."

We will consider these several points and recommendations seriatim, commencing with the stand.

Messrs. Watson © Sous' Van Heurck model stand so well answers the several conditions laid down by an expericnced teacher of bacteriology, that I have no hesitation in presenting it to my readers as a typical instrument, one in every way worthy of the high praise it has already received from those who have worked with it, and whose judgment may be relied upon in every way. The microscope is fully clescribed among Messrs. Watson's instruments, page 108.

The Stand.-A good firm stand is undoubtedly of the first importance for all high-class work. The steadiness of the instrument and its entire froedom from vibration dopends largely upon the form of the stand. I am glad to find Dr. Crookshank in accord with me as to the Ross-Jackson model, one which, in my opinion, has not heen eutirely superseded by models of a more recent date. Indeed, the latest improvement effeeted in the Ross-Jackson form, in which attention has been given to the spreading-out of the feet, has converted it into as solid and firm a stand as Powoll's ; it is ecpually free from vibration when placed in the horizontal position.

There are, however, four different forms of stands- the tripod; the plate with double columus ; the single column ending in a plate or a bent elaw ; and the horse-shoe. The tripod stand, with cork feet,
is by far the steadiest form of model. The single upright pillar support should unquestionably be condemned, as it admits of considerablo vibration, and is most ineonvenient for laboratory work. The heary horse-shoe form is compact and firm, and the weight of it ean hardly be considered an objection.

The Tubular Body is from cight to ten inches in length, to whieh is added a draw-tube with an cugraved millimetre seale. By extending the draw-tube greater magnifieation is obtained, but since this is at the cost of definition it should hardly ever be employed in the examination of bacteria. A Triple Nose-picce is doubtless a eonvenience, saving time which is otherwise spent in replacing objectives of different magnifying powers; there is also less risk of injuring them. Focus should be obtained by means of a rack and pinion coarse adjustment, together with the most approved kind of fine adjustment. The sliding tube eannot be reeommended, as the motion may be stiff, encouraging the use of foree, which in turn may result in the objective being brought violently into contact with the speeimen, thus doing injury to the lens or damage to the preparation ; or it may get too loose and readily slip out of focus.

The Stage should be flat and rigid, either rectangular or circular, so long as it is sufticiently large to aceommodate plate enltivation. A removable mechanical stage is of great advantage for working with high powers, as a motile bactcrium can be constantly kept in view, while one hand is cngaged in working the fine adjustment ; it may also be employed as a finder, if eugraved with a longitudinal and vertieal scalc, and provided with a stop. The mechanical stage must be removable, so that the stage proper may be free from any attachments when required for the examination of eultures.

Diaphragms.-The plan of using a scries of separate dises of different sizes should be avoided, as they are easily lost, and baeteriologieal investigations may have to be made under eonditions in which it is diffieult to replace them. A better plan is a revolring plate with apertures of different sizes, but the most convenient form is the iris diaphraym.

The Sub-stage Condenser is as neeessary in biological work as in the objcetive-in faet, the condenser and the objeetive should be eonsidered as forming one piece of optical apparatus ; the microseope must be regarded as ineomplete without it.

It is by the sub-stage conclenser that the rays of light are concentrated at one point, or on one particular bacterium ; for the best definition it is essential that there should be mechanical arrangements for accurately centring and focussing the condenser. All this will be explained and enlarged upon under "Practical Optics."

In the historical review presented to my readers on the evolution of the modern microscope, I have for the most part relied upon my long and close association, extending over a period of upwards of half a century, with microscopy. I need hardly say I could have very much extended my remarks with pleasure and profit had space permitted, and thereby much increased the number of names of manufacturers, who have well-cstablished reputations for the quality of their work, and whose instruments, more or less complete in design, realise the wants of students and of that large class of present-day workers engaged in microscopical pursuits to whom economy of outlay is almost a first consideration. No valid reason, howercr, can be assigned for splitting up, as some writers do, the several forms of microscopes into some six different classes, which implies inferiority in mechanical details or finish, whereas the difference wholly consists in luxurious appliances to save time, and in accessories for special work or original research. Bcfore bringing these remarks to a close, it is my wish to direct the student's attention to one or two points of importance in connection with the use of the instrument, viz.: variations in body-lengths of microscopes, especially bctween those of English and of Continental manufacture. The optical-standard measurement adopted in this country for the body-tube-length is 10 inches; and for its mechanical, $8 \frac{3}{4}$ inches. That of Continental opticians is, optical-tube-length 7.08 inches, or 180 mm . ; the mechanical, $6 \cdot 3$ inches $=$ to 168 mm .

Professor Abbe constructed an apochromatic immersion objective especially for the English optical tube-length of 10.6 inches ($=$ to $270 \mathrm{~m} . \mathrm{m}$.), and mechanical tube-leng'th somewhat less in measurement. This may be taken to mean a slight increase in the standard valuc of the tube, and therefore the addition of the rack-and-pinion to the draw-tube, now generally madc a part of the microscope, is certainly of some practical value. This difference, however, when working with the Finglish body-tube of 10 inches, may be discarded; it is, in fact, only where the shorter Continental body is in use, that so
small a difference of tube-length exereises a disturbing effeet over adjustment. Moreover, an object placed on the stage of the shorter body mieroseope will not be seen with the sume distinetness by the draughtsman should he wish to make use of the camera lucida.

The optical tube-length of the body is measured from the back lens of the objective to the front lens or prineipal focus of the eyepiece; the mechanical tube-length from the end of nose-piece of objective to the top lens of the eye-piece.

The Hartnach Students' Model Microscope.

CHAPTER III.

Applied Optics:-Eye-pieces; Achromatic Objectives; Condensers.

IT is almost umnecessary to say that the eye-piece forms a most important part of applied optics in the microscope. It is an optical combination designed to bring the pencil of rays from the objective to assist in the formation of a real or virtual image before it arrives at the eyc of the observer. Greater attention has been given of late jcars to the improvement of the eye-piece, since flatncss of field much depends upon it. Opticians have therefore sought to make it both achromatic and compensatory.

There are several forms of cye-pieces in use, some of which partake of a special character, and these will receive attention in their proper places. It is, however, customary among English opticians to denote the valuc of their scveral eye-pieces by Roman capitals, A, B, C, D, and E. Continental opticians, on the other hand, have a prcference for numerals, 1, 2, 3, 4, 5 and 6, or more, and by which they are recognised.

The eyc-piece in more gencral use is that known as the Huyghenian (Fig. 99) ; this came into usc upwards of two conturies ago. It was constructcd by Christian Huyghens, a Dutch philosopher and emincut inan of science, sceretary to William III.

It was made for the cye-picce of a telescope he constructed with his own hands, and it has been in constant use as the eye-piece of the microscope for nearly two centuries. It consists of two planoconvex lenses, with their plane surfaces turned towards the eyc, and divided at a distance equal to half the sum of their focal lengthsin other words, at half the sum of the focal length of the cyc-glass and of the distance from the ficld-glass at which an image from the object glass would be formed, a stop, or diaphragm, being placed between the two lenses for the reason about to be explained.

Huyghens hinself appears to have been quite maware of the value of an oyo-pioce so eleverly eonstrueted.

It was rescrved for Boscovieh to point out that, by this important arrangement, he had eorreeted a portion of the chromatie aberration incidental to the earlicr form of eye-pieces. Let Fig. 100 represent the Huyghenian eye-picee of a microseope, $f f$ being the field-glass, and $e e$ the eyc-glass, and $l m n$ the two extreme rays of each of the thrce peneils emanating from the centre and ends of the object, of whieh, but for the ficld-glass, a scries of eoloured images would be formed from $r r$ to $b b$; those near $r r$ being

Fig. 99.-Huyghenian Eye-picee A, the dotted lines show position of lenses. red, those near $b b$ blue, and the intermediate ones green, yellow, and so on, eorrcsponding with the eolours of the prismatie spectrum.

The effeet described, that of projecting the blue image beyond the rca, over-eorreeting the object-glass as to eolour, is purposely produced; it is also seen that the images $b b$ and $r r$ are eurved in the wrong direction to be seen distinetly by the convex eye-lens; this then is a further defect of the eompound mieroseope made up of two lenses. But the field-glass, at the same time that it bends the rays and converges them to foci at $b^{\prime} b^{\prime}$ and $r^{\prime} r^{\prime}$, also roverscs the eurvature of the images as here shown, giving them the form best adapted for distinct vision by the eye-glass e e. The ficldglass has at the same time brought the blue and red images eloser together, so that they producc an almost eolourless image to the eye. The chromatie aberration of lenses has been clearly cxplained in a previous ehaptcr. But lct it be supposed that the objeet-glass had not bcen over-corrceted, that it had been pcrfectly aehromatie; the rays would then have appeared eoloured as soon as they had passed the field-glass; the blue rays of the central pencil, for example, would eonvarge at $b^{\prime \prime}$, and the red rays at $r^{\prime \prime}$, which is jnst the reverse of what is required of the cyc-lens; for as its blue foeus is also shorter than its red, it would require that the blue image should be at $r^{\prime \prime}$, and the red at $b^{\prime \prime}$. This effect is due to over-eorrection of the object-glass, whieh removes the blue foci $b b$ as mueh beyond
the red foci $r r$ as the sum of the distances between the red and the blue foci of the field-lens and eye-lens; so that the separation $b r$ is exactly taken up in passing through those two lenses, and the several colonrs coincide, so far as focal distance is conecrned, as the rays pass the eye-lens. So that while they coincide as to distance, they differ in

Fig. 100.-Hnyghenian Eye-piece.
another respect-the blue image is rendered smaller than the red by the greater refractive power of the field-glass upon the former. In tracing the pencil l, for instance, it will be noticed that, after passing the field-glass, two sets of lines are drawn, one whole and one dotted, the former representing the red, and the latter the blue rays. This accidental effect in the Huyghenian eye-piece was pointed out by Boscovich. The separation into colours of the field-glass is like the over-correction of the object-glass-and opens the way to its
eomplete correction. If the differently-coloured rays were kept together till they reaehed the eye-glass, they would still be coloured, and present eoloured images to the eye. The separating effeeted by the field-glass causes the blue rays to fall so mueh nearer the eentre of the eye-glass, where, owing to its spherical figure, the refraetive power is less than at the margin, so that spherical error of the eye-lens may be said to eonstitute a nearly equal balance to the chromatie dispersion of the field-lens, and the blue and red rays l^{\prime} and $l^{\prime \prime}$ emerge nearly parallel, presenting a fairly good definition of a single point to the eye. The same may be said of the intermediate colours of the other pencils. The eye-glass thus construeted not only brings together the images $b^{\prime} b^{\prime}, r^{\prime} r^{\prime}$, but it likewise las the most important effeet of rendering them flatter, and assisting in the correction of ehromatie and spherical aberration.

Fig. 101.—Ramsden's Eye-piece.
The later form of the Huyghenian eye-pieee is that of the late Sir George Airy, the field-glass of whieh is a meniseus with the eonvex side turned towards the objective, and the eye-lens a crossed eonvex with its flatter side towards the eye. Another negative eye-picee is that known as the Kellner, or orthoscopie eye-pieee. It consists of a bi-convex field-glass and an aehromatic donblet eye-lens. This magnifies ten times, but it in no way eompares with the Huyghenian in value. Neither does it afford the same flatness of field.

The Ramsden, or positive eye-pieee, is chiefly employed as a mierometer eye-piece for the measurement of the values of magnified images. The eonstruetion of this eye-piece is shown in Fig. 101, a divided scale being cut on a strip of glass in $\frac{1}{100}$ ths of an inch, every fifth of which is cut longer than the rest to facilitate the reading of the markinge, and at the same time that of the image of the object, both being distinctly seen together, as in the accompanying reduced micro-photograph of blood corpuscles, Fig. 102.

The value of such measurements in reference to the real object, when onee obtained; is constant for the same objective. It bocomes apparent, then, that the value of the divisions seen in the cye-piece mierometer must be found with all the objectives used, and carefully tabulated.

It was Mr. Listcr who first proposed to place on the stage of the mieroseope a divided scale of a cortain value. Viewing the seale as a microseopic object, he observed how many of the divisions on the scale attached to the eye-picce eorrcsponded with one or morc of a magnified image. If, for instance, ten of those in the eye-piece correspond with one of those in the image, and if the divisions are known to be equal, then the image is ten times larger than the object, and the dimensions of the object ten times less than that indieated by the micrometer. If the divisions on the micrometer and on the magnificd scale are not equal, it beeomes a mere rule-of-three sum ; but in general this trouble is taken by the maker of the instrument, who furnishes a table showing

Fig. 102.-Bluod Corpuscles and Micrometer, magnified 1.3500 . the value of each division of the micrometcr for every object-glass witll whieh it will be employed.

Mr. Jackson's simple and cheap mierometcr is represcnted in Fig. 103. It consists of a slip of glass placed in the focus of the cye-glass, with the divisions sufficiently fine to have the value of the ten-thousandth part of an inch with the quarter-inch object-glass, and the twenty-thousandth with the eighth ; at the same time the half, or even the quarter of a division may be estimated, thus affording: the means of attaining considerable accuraey, and may be used to superscde the more complicated and expensive serew-micrometer, being handier to usc, and not liable to derangement in incxperienced hands.

The positive eye-picce affords the best view of the micrometer, the nogative of the objeet. The former is quite free from distortion, cven to the cdges of the ficld; but the object is slightly coloured.

The latter is free from colour, and is slightly distorted at the edges. In the centre of the field, however, to the extent of half its diameter, there is no perceptible distortion, and the cleamess of the definition gives a precision to the measurement which is very satisfactory.

Short bold lines are ruled on a piece of glass, a, Fig. 103, to facilitate eounting, the fifth is drawn longer, and the tenth still longer, as in the eommon rule. Very fine levigated plumbago is rubbed into the lines to render them visible; they are then covered with a pieee of thin glass, cemented by Canada balsam, to prevent the plumbago from being wiped out. The slip of glass thus prepared is seeured in a thin brass frame, so that it

Fig. 103.-.Jackson's Eye-pieec Micrometer. may slide freely into its place.

Slips are cut in the negative eye-piece on each side, so that the brass frame may be pressed aeross the field in the focus of the eye-glass, as at m; the eell of which should have a longer serew than usual, to admit of adjustment for different eyes. The brass frame is retained in its plaee by a spring within the tube of the eye-pieee ; and in using it the object is brought to the centre of the field by the stage movements; the eoincidenee between one side of it and one of the long lines is made with great accuracy by means of the small screw acting upon the slip of glass. The divisions are then read off as easily as the inches and tenths on a eommon rule. The operation, indeed, is nothing more than the laying of a rule aeross the body to be measured; and it matiers not whether the objeet be transparent or opaque, mounted or ummounted, if its edges ean be distinetly seen, its diameter can be taken.

Previously, however, to using the mierometer, the ralue of its divisions should be aseertained with each object-glass; the method of doing this is as follows:-

Paree a slip of ruled glass on the stage; and having tumed the
eye-piece so that the lines on the two glasses are parallel, read off the number of divisions in the eyo-picee which cover one on the stage. Repeat this proeess with different portions of the stage-mierometer, and if there be a differenee, take the mean. Suppose the hundredth of an inch on the stage requires eighteen divisions in the eye-piece to cover it; it is plain that an inch would require eighteen hundred, and an objcet which oecupied nine of these divisions would measure the two-hundredth of an ineh. Take the instance supposed, and lot the mieroseope be furnished with a draw-tube, marked on the side with inches and tenths. By drawing this out a short distance, the image of the stage mierometer will be expanded until one division is eorered by twenty in the eye-pieec. These will then have the value of two-thousandths of an inch, and the object whieh before measured nine will then measure ten; which, divided by 2,000, gives the decimal fraetion 005.

Enter in a table the length to which the tube is drawn out, and the number of divisions on the eye-piece mierometer equivalent to an inch on the stage ; and any measurements afterwards taken with the same mierometer and object-glass may, by a short proeess of mental arithmetic, be reduced to the decimal parts of an inch, if not actually observed in them.

In ascertaining the value of the micrometer with a deep objective, if the hundredth of an ineh on the stage oceupies too much of the field, then the two-hundredth or five-hundredth should be used and the number of the divisions eorresponding to that quantity be multiplied by two hundred or five hundred, as the case may be.

The micrometer should not be fitted into too deep an eye-piece, as it is essential to preserve good definition. A middle-power Kellner or Huyghenian is frequently employed ; at all events, use the eye-pieee of lower power rather than impair the image.

The eyc-lens above the micrometer should not be of shorter foeus than three quarters of an inch, even with high-power objectives.

The Ramsden Eye-piece.-The cobweb micrometer is the most effieient pieee of apparatus yet brought into use for measuring the magnified image. It is made by stretching aeross the ficld of the eyc-piece two extremely fine parallel wires or eobwebs, one or both of which can be separated by the aetion of a mierometer serew, the trap head of which is divided into a hundred or more equal parts, whieh
successively pass by an index as the milled head is turned, shown in Fig. 104. A portion of the field of view is cut off at right angles to the filaments by a seale formed of a thin plate of brass having notches at its edges, the distances between which eorrespond to the threads of the screw, every fifth noteh (as in the previous case) being made deeper than the rest, to make the work of enumeration easier. The number of entire divisions on the scale shows then how many complete turns of the serew have been made in the separation of the wires, while the number of index points on the milled head shows the value to the fraction of a turn, that may have been made in addition. A serew with one hundred threads to the

Micrometer scale to drop into Eye-piece.

Fig. 104.-Ramsden Screw Micrometer Eye-piece.
inch is that usually employed; this gives to each division in the scale in the eye-piece the value of $\frac{1}{100}$ th of an ineh. The edge of the milled head is also divided into the same number of parts.

In Watson's Ramsden screw micrometer, Fig. 10t, the mierometer scale (seen detached) is ruled on a circular pieee of glass, and this, by unscrewing the top, is dropped into its plaee, and one of the wires, both being fixed, is set a little to the side of the field, the teeth of the screw being cut to $\frac{1}{100}$ ths, and the drum giving the fraetional space between the teeth to $\frac{1}{100}$ ths, so that the $\frac{1}{10000}$ th of an incl can be read off. This micrometer eye-pieee is eonstructed entirely of aluminium, a decided advantage, being so much lighter than brass to liandle.

In the screw micrometer of other makers, other modifieations are found. An iris diaphragm being placed below the web to suit
the power of the eyc-picce employed, a guiding line at right angles to the web is sometimes added. Care should be taken to see that when the movable web coincides exactly with the fixed web, the indicator on the graduated head stands at zero.

The Compensuting Eye-piece.-The very important improvements effected in the construction of the objective naturally led up to an equally useful change for the better in the eyc-piece.

All objectives of wide aperture, from the curvature of their hemispherical front lenscs, show a ccrtain amount of colour defect in the extra-axial portion of the field, even if perfectly achromatic in the centre. Whether an image be dircetly projected by the objective, or whether it be examined with an aplanatic eye-picce, colour fringes may be detected, possibly in an increasing degree towards the periphery. This residual chromatic abcrration has at length been very nearly climinated by the aid of the componsating eye-piece.

The construction of compensating eye-pieces is somewhat remarkable, since they have an equivalent error in an opposite directionthat is, the image formed by the red rays is greater than that corresponding to the blue rays; consequently, cye-pieces so constructed serve to compensate for the uncqual magnification produced by different coloured rays, and images appear frce from colour up to the margin of the field.

Zeiss's compensating eye-pieces are so arranged that the lower focal points of each series lie in the same plane when inserted in the body-tube of the microscope ; no alteration of focus is therefore required on changing onc eyc-picce for another. This of itself is not only an advantage but also a saving of time, while the clistance between the upper focal point of the objective and the lower one of the eye-piece, which is the determining element of magnification, remains constant.

The ordinary working cye-pieces. Huyghonian and others, commencing with a magnification of four diametcrs, are so constructed that they can be conveniently used, as we are accustomed to use them in England, with high powers, Zeiss's Nos. 12 and 18 compensating eyc-pieces being adapted for use with his lower power apoclromatic lenses of 16 and 8 mm . The numbering of the cye-pieces is carried out on the plan originally proposed by Professor Abbe-that is, the
number denotes how many times an eye-pieee, when employed with a given tube-length, inereases the initial magnifying power of the objective, and at the same time furnishes figures for their rational enumeration. It is on this basis that the German compensating

Ocular No. 2.

Fig. 105.-A sectional view of Zeiss's Compensating series of Eyepieces, $\frac{1}{2}$ the full size.
A.-Plane of the upper edge of the tube.
B.-Lower foeal plane of eye-pieces, with their lenses in situ.
eye-picees have been arranged in series, and in agreement with their magnifying power and distinctive numberings of $2,4,6,8,12,18$. Of these several cye-picces, 12 is found to be the most useful. The magnifieation obtained by eombining a compensating eye-picee with any apochromatie objective is found by multiplying its number by the initial magnifieation of the objective, as given in the following proof :-An objective of 3.0 mm . focus, for example, gives in itself a
magnification of $83 \cdot 3$ (calculated, for the conventional distance of vision, 250 mm .) ; eye-pieee 12 therefore gives with this objective a magnification of $12 \times 83 \cdot 3=1000$ diameters. The classification, however, of these eye-pieees, as furnished by Abbe, is dependent upon increase in the total magnifying power of the mieroscope obtained by means of the eye-pieee as compared with that given by the objective alone. The numbering, then, denotes how many times an eye-piece increases the magnifying power of the objective when used with a given body-tube; the proper measure of the eye-pieee magnifieation ; and, at the same time, the figures for rational enumeration.

Compensating eye-pieces have been introdueed for the eorrection of eertain errors in high-power objeetives-those made with hemispherieal fronts. All such lenses, whether apochromatic or not,

Fig. 106.-B and C Achromatic Eye-picces.
are greatly improved by the eompensating eye-piece, but the dry objective and the lower powers are certainly deteriorated. The lower power compensating eye-pieces are Huyghenian, the higher are eombinations, with no field-lens, and therefore in working aet as a single or positive eye-piece. This is of importance to those who work with low powers-the older forms of objeetives.

Messis. Watson and Swift bave adopted a new formula for their series of achromatic eye-picces, whereby their magnifieation and flatness of field are improved. These also bear a constant ratio to the initial power of their objectives.

The eompensating eye-pieces of these makers are constructed on the same prineiple as those of Zeiss's for the correction of errors of eolour in the marginal portion of the field, and consequently are in every Way as effective as those of Continental manufacture. Figs. 106, 107,
and 108 show in dotted outline the form and position of the several lenses combined in these eye-picces.

Projection E'ye-pieces are chiefly used in micro-photography, and for sereen demonstrations. The cap of this eye-piece is provided with i spiral adjustment for focussing, the diaphragm being placed in front of the eye-lens, an essential arrangement for obtaining an aceurate focus. The ring seen below the cap, Fig. 108, is graduated so that the rotation for distance of sereen may be carefully recorded.

Sehmidt's goniometer positive eye-picce, for measuring the angles of crystals, is so arranged as to be easily rotated within a large and

Fig. 107.-The Compensating Eye-pieee.

Fig. 10S.-Projection Eye-piece.
accurately graduated circle. In the focus of the eye-piece a single cobweb is drawn across, and to the upper part is attached a reruier. The crystals being placed in the field of the microscope, care being taken that they lie perfectly flat, the vernier is brought to zero, and then the whole apparatus turned until the line is parallel with one face of the crystal; the frame-work bearing the cobweh, with the vernier, is now rotated mentil the cobweb becomes parallel with the next face of the crystal, and the number of degrees which it has traversed may then be accurately read off.

Goniometer.- If a higher degree of precision is required, then, the double-refacting goniometer invented by the late Dr. Leeson must be substituted. With this goniometer (Fig. 109) the angles of crystals, whether mieroscopic or otherwise, can be measured. It
has removed the enrlier difficulties incident to similar instruments formerly in use. Among other advantages, it is capable of measuring opaque and even imperfect crystals, beside microscopic crystals and those in the interior of other transparent media. It is equally applicable to the largest crystals, and will measure angles without remoring the crystal from a specimen, provided only the whole is placed on a suitable adjusting stage. The value of the goniometer depends on the application of a doubly refracting prism, either of Iceland spar or of quartz, cut of such a thickness as will partially separate the two images of the angle it is proposed to measure.

Dr. Leeson strongly insisted on the importance of the microscope in the examination of the planes of crystals subjected to measurement, as obliquity in many cases arises from not only conchoidal fractures, but also from imperfect laminæ clevating one portion of a plane, and yet allowing a very tolerable reflection when measured by the double refracting goniometer.

Microscopes for crystallo-

Fig. 109.-Leeson's Goniometer. graphic and petrological research are now specially constructed for measuring the angles of erystals.

Erector eye-pieces and erecting prisms are employed for the purpose of causing the image presented to the eye to correspond with that of the object. They are also helpful in making minute dissections of structure; the loss of light, however, by sending it through two additional surfaces is a drawback, and impairs the sharpness of the image. Nachet designed an cxtremely ingenious arrangement whereby the inverted image became erect; he adapted a simple rectangular prism to the eyc-piece. The obliquity which a prism gives to the visual rays when the microscope is used in the erect position, as for dissecting, is an advantage, as it brings the image to the eye at an angle very nearly corresponding to that of the inclined position in which the mieroscope is ordinarily used.

The Achromatic Objective.

Fig. 110.-Pan-aplanatic Achromatic Objectives.
The Achromatic Objective, of all the optical and mechanical adjuncts to the microscope, is in every way the most necessary, as well as the most important. The idcal of perfection aimed at by the optician is a combination of lenses that shall produce a perfect image - that is, one absolutely perfect in definition and almost free from colour. The method resortcd to for the climination of spherical and chromatic aberration in the lens has been fully explained in a former chapter. It will now be my endearour to show the progressive stages of achromatism and evolution of the microscope throughout the present ecntury.

It is almost as difficult to assign the date of the carliest application of achromatism to the microscope as to that of the inception and many modifications of the instrument in past ages ; indeed, the question of priority in every step taken in its improvement has been the subject of controversy.

Among the earlier workers in the first decade of this century will be found the name of Bernardo Marzoni, who was curator of the Physical Laboratory of the Lyceum of Brescia. He, an amateur optician, it has come to light, in 1808 constructed an achromatic objective, and exhibited it at Milan in 1811, when he obtained the award of a silver medal for its merits, under the anthority of the "Institute Reale delli Scienzo." Through the good offices of the late Mr. John Mayall one of Marzoni's objectives, which had been carefully preserved, was presented to the Royal Microseopical

Soeiety of London in 1890.* This objective is a eemented combination, with the plane side of the flint-lens presented to the object. This was an improvement of a praetical kind, and of which Chevalier subsequently availed himself. In 1823 Selligue, a French optician, is eredited with having first suggested the plan of eombining two, three, or four plano-convex achromatic doublets of similar foci, one above the other, to increase the power and the aperture of the microseope. Fresnel, who reported upon this invention, preferred on the whole Adam's arrangement, because it gave a larger field. Selligue subsequently improved his objeetive by placing a small diaphragm between the mirror and the object.

In this country, Tully was induced by Dr. Goring to work at the aehromatic objective, and his first efforts were attended with a success quite equal to that of Chevalier's. Lister on examining these lenses said :-_" The French optician knows nothing of the value of aperture, but he has shown us that fine performance is not confined to triple objectives." Amici, the amateur optieian of Modena, visited this country in 1827 and brought his achromatie mieroseope and objectives, whieh were seen to give increase of aperture by combining doublets with triplets. The most lasting improvement in the aehromatie objective was that of Joseph Jaekson Lister, F.R.S., the father of Lord Lister, and one of the founders of the Royal Mieroseopieal Society of London.

Lister's discoveries at this period (1829) in the history of the optics of the microseope were of greater importance than they have been represented to be. That he was an enthusiast is manifest, for, being unable to find an optician to earry out his formula for grinding lenses, he at onee set to work to grind his own, and in a short time was able to make a lens which was said to be the best of the day.

Lister, in a paper contributed to the proceedings of the Royal Society the same year, pointed out how the aberrations of one doublet could be neutralised by a seeond. He further demonstrated that the flint lens should be a plano-concave joined by a permanent eement to the eonvex crown-glass. The first condition, he states, "obviates the risk of error in centring the two curves, and the second diminishes by one half the loss of light from refleetion, which is very great at the numerous surfaces of every combination."

[^10]These two eonditions then-that the flint lens shall be plano-concave, and that it shall be joined by some cement (Canada balsam) to the eonvex-may be taken as the basis for the microscopic objective, provided they can be reconciled with the correction of spherical and ehromatic abcrration of a large pencil.

Andrew Ross was not slow to perceive the value of Lister's suggestions and in 1831 he had constructed an object-glass on the lines laid down by Lister, Fig. 112; a a' representing the anterior pair, m the middlc, and p the posterior, the three sets combined forming the achromatic objeetive, eonsisting of three pairs of lenses, a double-convex erown-glass, and a plano-concave of flint.

Fig. 111.-Lister"s doubleconvex crown and planoconcave flint cemented combination.

Fig. 112.-Andrew Ross's $\frac{1}{4}$-inch Objective.

Lister proposed other eombinations, and himself made an object-glass consisting of a moniscus pair with a triple middle, and a baek plano-eonvex doublet. This had a working distance of $\cdot 11$ and proved to be so great a sueeess that other opticians-Hugh Powell, 1834 ; James Smith, 1839 -made objectivos after the same formula.

The publication of Lister's data proved of value in another direction : it stimulated opticians to apply themselves to the further improvement of the achromatic objective. Andrew loss was one of the more carnest workers in giving effect to Lister's principles and a short time afterwards found that a triple combination, with the lenses separated by short intervals, gave better results. In the accompanying diagram the changes made in the combination of the objective from 1831, and extending orer a period of about twenty yoars from this date, are shown.

Eaeh objeetive, from the $\frac{1}{2}$-ineh to the $\frac{1}{12}$ inch, is seen to be built up of at least six or cight different fronts, the back eombinations

Fig. 113.-Combinations of Early Dry Objectives.
A, Donble-convex lens; B, Plano-concave; C, Bi-convex and plano-concave united ; shown in their varions combinations, as at D, form the $3-\mathrm{in}$, $2-\mathrm{in}$. oi $1 \frac{1}{2}-\mathrm{in}$. ; at $E, 1-\mathrm{in}$, and $\frac{2}{3}-\mathrm{in}$. ; and at F, the $\frac{1}{2}-\mathrm{in}$., $\frac{4}{10}-\mathrm{in}$., $\frac{1}{4}-\mathrm{in}$. and $\frac{1}{25}-\mathrm{in}$. objectives.
Combination D was for many years known as the Norfolk Objective.
being a triplet formed of two double-convex lenses of crown glass with an intermediary double concave lens of flint-glass.

No sooner had Ross eonstrueted $\frac{1}{4}$-ineh achromatic objeetives on Lister's formula than he diseovered an crror whieh had hitherto eseaped attontion, viz., that the thinnest cover-glass of an object produeed a considcrable amount of refraetive disturbance. A marked difference was observed in the image when vicwed with or without a cover-glass. This difficulty was first mot by the addition of a draw-tube to the microseope body. But as this also impaired the image, Listcr overcame the difficulty by mounting the front lens

Fig. 114.-Listcr's Correction Collar, (ill section). of the objective in a separate tube made to fit over a second tube carrying the two pairs of lenses. This arrangement led up to his invou-
tion of the screw-collar adjustment, the mechanism for applying which is shown in Fig. 114. The anterior lens a at the end of the tube is enclosed in a brass-piece b containing the combination ; the tube ℓ, holding the lens noarcst the object, is then made to move up or down the cylinder l, thus varying the distance, according to the thickncss of the glass covering the object, by turning the screw ring c, thus causing the one tube to slide over the other, and clamping then together when properly adjusted. An aperture is made in the tube a, within which is seen a mark engraved on the cylinder, on the cdge of which are two marks, a longer and a shortcr, cngraved upon the tubc. When the mark on the cylinder coincides with the longer mark on the tube, the adjustment is

Fig. 115.-The Continental Serew-collar Adjustment. made for an uncovered object; and when the coincidence is with the shorter mark, the proper distance is obtaincd to balance the abcrrations produced by a corcr-glass the hundredth of an inch thick; such glass covers arc now supplied. The adjustment should be tested experimentally by moving the milled cdgc which separates or closes the combinations, and at the same time using the fine adjusting screw of the microscope. The difficulty associated with the cover-glass of old has, by the introduction of the homogeneous immersion system, been very nearly eliminated. There still remains, however, a disturbing amonnt of residual colour abcrration in the achromatic dry objective, and for the correction of which Zciss proposed mounting the sevcral lenses on a method somewhat different to that so long in use in this country. Fig. 115 shows an objective in which the screw-collar ring $b b$ is made to adjust the exact distance between the two back lenses placed at $a a$. The value of the screw-collar is not questioned. It is difficult to obtain at all times cover-glasses of a perfectly uniform thickncss; they will vary, and thercfore perfect definition must be obtaincd, as heretoforc, by adjnsting for each separate preparation while the object is under examination.

As early as 1842 the cxcellence of Andrew Ross's achromatic objoctives were acknowledged, and his formula for their construction

Wias generally followed. No donbt many of these early oljjeetives of his manufacture are still regarded as treasures. I possess a $\frac{1}{2}$ inch and a $\frac{1}{4}$-inch, which I believe to be comparable with any achromatie objeetives of the same apertures of the present day. These I have always found most serviceable for histologieal work.

In 1850 Mr. Wenham produced an achromatie objective of eonsiderable aehromatie value. This consisted of a single hemispherieal front eombination, shown in the aecompanying enlarged diagram, Fig. 116. Wenham's formula seems to have been generally adopted by Continental opticians, who sold these lenses at a reduction of priee. In Paris, Prazmowski and Hartnaek-I have had one of Hartnaek's earliest immersions in use for many years-brought this form of objeetive to greater perfeetion, and in 1867 Powell and Lealand adopted the single front eombination system in their early water-immersion objeetive, whereby the foeal distance was said to be "practically a constant quantity, while reduetion of aperture by making the front lens thimer ensures a much greater working distance without affeeting: the aberrations, since the first refraetion takes plaee at the posterior or curved surfaee of the front lens, the removal of any portion of thiekness at the anterior or plane surfaee simply euts off zones of peripheral rays without altering the

Fig. 116.-A Single Front Combination formulated by Wenham for Messrs. Ross (eularged). distanee-any space being filled by the homogeneons immersion fluid, or by an extra thiekness of eover-glass." **

Great improvements were brought about by R. B. Tolles, of Boston, 1874, in the objective, as well as in the optieal and meehanical parts of the mieroseope, most of whieh, however, must be aseribed to the eritieisms and suggestions of amateur workers skilled in the exhibition of test-objeets-the late Dr. Woodward of Washington, for example, whose series of photographs of the more diffieult frustules of diatoms have rarely been surpassed. Sueh results were due to improvements made in the optieal part of the microseope at his suggestion. He eame to the eonelusion, arrived at about the same time by mathematieal seientists, that inerease of * "Jommal of the Royal Microscopical Society, 1880," P. 1050.
power in the microscope was only possible in two directions, the qualitative and the quantitative.

It was now that microscopists turned to the late Professor Abloc for assistance in perfecting the objective in the dioptric direction. This, he pointed out, must be looked for in further improvements in the art of glass-making.

A series of experiments ultimately brought to light a miucral substance, Fluorite, which, when combined in the proper proportion, one part to two of German crown and flint glass, was fomed to have the qualities looked for, and to possess differcnt relations of a dispersive and refractive power. From Professor Abbe's researches, begun in 1876 , we have had the apcrture of the objective greatly enlarged, and the homogencous system brought into general use.

Previous to this date the best made objective merely approximatcd to colour correction. Undoubtedly the chief object to be obtained was the removal or diminution of the sccondary colour abcrration. This, together with other residual errors Abbe pointed out in 1880, led to the improvement of the optical quality of the glass used in the manufacture of all optical instruments, the chief difficulties being surmounted in the Jena glass factory, whereby a complete revolution was cffected in the microscopic objective. The apochromatic glasses of Zeiss, Powell, Beck, Ross, Watson, Swift, and other makers, in which the secondary spectrum has bcen totally eliminated, or only a negligible tertiary spectrum remains-that is to say, the objcctives of these makers-arc now corrected for threc spectrum rays, and not two, as in the older objectives; and only those who look forward for making further discoveries in the intimate structure of bacilli or for resolving the finest diatom markings can be said to fully appreciate the importance and valuc of the investigations of the late Professor Abbe, and which have, so to spcak, entircly changed old cmpirical views as to the valuc of high aperture, and demonstrated that high amplification, unless associated by proportionally high aperturc, necessarily produces untrue images of minute structures. It was he also who introduced a practically perfect system of estimating apertures, known as the "numerical aperture notation," by which not only can an accurate comparison be made of the relative apertures of any scries of objectives, whether dry.or immersion, but
their resolving power under the varions conditions of the kind of light employed. 'Their penetrating power and thcir illuminating power can now be cstimated with mathematical exactncss.

The practical advantages, then, secured by the adoption of the homogeneous system were, on the whole, greater than any beforc made or believed to be possible, and when taken into account in connection with the improvement of the eyc-picec (also due to Abbe), almost perfcct achromatism and homogeneity between ohjective, object, and eye-piecc is secured, together with a sharp definition of the image over the whole visual field. These, with an increase of working distance between the object and the objective, and other important results, have been placed within the reach of the microscopist by men of science, and the outcome is the general adoption of the homogencous

Fig. 117.-Diagram of an Apochromatic Combination. system, termed by Carl Zeiss, a fellow-workcr with Abbc, the *apochromatic system of constructing objcctives.

Relative Merits of the English and German Objectives.

As to the relative merits of German-made objcctives, no superiority can be claimed for them over those made by English opticians.

The Continental form of the $\frac{1}{12}$-inch oil-immersion objective, shown in Fig. 118, on the scale of 6 to 1 , consists of four systems of lenses, namely, the front, a decp hemisphcrical crown lens of high refractive index ; the sccond front of the system, an achromatic lens of such a form that it gathers the light from the hemispherical front; the middle lens, a single meniscus; and the back an achromatised lens, the sccond front of the back being connected in such a way as to compensate for the spherical and chromatic abcrrations of the front lens.

The first homogeneous immersion objective which came under my obscrvation was manufactured in the well-known Jena workshop of Carl Zeiss, Decenber, 1877. This had a very considerable increase of numerical aperture, upwards of 50 per cent.; a clear gain, as an oil

[^11]angle of even 110° proved to be of greater value than an angle of 180° in air, while the resolving power of the objective was increased in like proportion. There does not at present appear to be a bar to the construction of objectives of yet higher power, with increase of aperture. The available course open in this direction is the further discovery of another vitreous material and a suitable immersion fluid with an index of 1.8 or 1.9 , and glass with a corresponding index, so as to eusure homogeneity of the combination. Zciss asserts that in the more difficult departments of microscopical research the apochromatic lenses will supplant the older objectives,

Fig. 118. -The Continental $\frac{1}{12}$-in. Oil-immersion Combination (enlargerl diagram). yet there are many problems in microscopy awaiting solution which do not demand the highest attainable degree of perfection in the objective, and in the majority of cases the older achromatic objective is all that is necdful, provided it is good of its kind. The achromatic objectives and eyepicces of the older type have still an advantage, as, owing to their simpler construction, really good lenses of the class required can be purchased at considerably lower prices than the objectives of the new series. These, from being more complicated in construction, involve a greater amount of skilled manual labour.

The German glasses of to-day afford satisfactory evidence both of skill and workmanship displayed in their production. Their cost is greater, then, for the reason given, as will be seen on reference to Continental catalogues. The dry series of objectives cost somewhat less, a $\frac{1}{2}$-inch (numerical aperture, 0.30) can be had for $£ 110$ s, and a $\frac{1}{6}$-inch (numcrical aperture 0.65) for £2. On the other hand, the apochromatic series rapidly increase in price as the numerical aperture approaches the limit of numerieal aperture $0 \cdot 40$. The best of Zeiss's series are the 12 mm . ($\frac{1}{2}$-inch) and the 3 mm . ($\frac{1}{8}$-inch), numerical aperture $1 \cdot 4$, both of which possess the optical capacity assigned to them. These objectives are undoubtedly the finest to be met with in the workshop of any optician. Achromatic
objcetives of Continental manufaeture have been as mueh improved as those of English make by the introduction of the newer varieties of glass, as already explained, while a new nomenclature has sprung up in consequence. We now have semi-ipoehromatic and paraehromatie. The German opticians have followed Zeiss's lead, since almost the same series of objectives are given in the catalogues of Leitz, Reiehert, and Seibert, while the quality of both dry and immersion objeetives is found to be muelı the same. The low priee of Reiehert's immersion objectives should be noted, as their performanee is quite perfect. A $\frac{1}{12}$-inch (numerieal aperture $1 \cdot 30$) of Leitz's, with whieh I have worked at bacteria, has given me mueh satisfaetion; supplied by Watson and Baker at $£ 5$. A $\frac{1}{12}$-inch dry objective by the same maker (numerieal aperture 0.87) eosts $£ 3$, and a water immersion $\frac{1}{12}$-inch (numerieal aperture $1 \cdot 10$) $£ 35 s$. Leitz reminds me that it requires a good lens of from six to seven hundred magnifying power for the examination of baeteria. For this reason he has construeted a new form of lens, a $\frac{1}{10}$-inch oil-immersion of 2.5 mm . focus, for the purpose of adding to the resourees of bacteriology. This lens necessarily has a lower magnifieation than his former $\frac{1}{12}$-inch oil-lens, but as it is less costly to manufacture it is sold at a smaller priee. The before-mentioned $\frac{1}{12}$-ineh, with a No. 3 eompensating eyepiece, gives a magnification of over seven hundred or eight hundred diameters. To secure the best results in using the higher powers of Leitz's, from No. 5 upwards, a eover-glass of 0.17 mm . in thiekness should be used, and eare taken to make the length of the drawtube equal to 170 mm . This length of tube should be adhered to in the use of this optieian's oil-immersion lenses. If the mieroseope be provided with a nose-pieee, the draw-tube should be drawn out to 160 mm .; in its absenee it should be set at 170 mm ., a deviation of 10 mm . or more from the eorrect tube-length deteriorates from the value of Leitz's oil-immersion objectives as of other opticians. It is suggested that the German apoehromatie combination of three cemented lenses is that adopted by Steinheil long before, in the eonstruetion of his well-known hand-magnifier (see page 77, Fig. 51). Zeiss's 3 mm . objeetive has a triple front, balaneed by two triple backs-in all nine lenses-a somewhat amplificd diagram of which is represented in Fig. 118. The formula for this combination wạs furnished by Tolles, of Boston, Ameriea, and it at once seeured increase
of aperture (the valuc of this optician's many contributions to microscopy has since his death been generally acknowledged). The metrical equivalent focus assigned by Keiss to his series of dry achromatic objectives is given in somewhat ambiguous terms, which tend to confuse rather than classify them; for instance, two lenses of the same aperture- 24 mm . and 16 mm . -corresponding to the English 1-inch and $\frac{2}{3}$-inch, cach have assigned to them an aperture of 0.30 ; a 12 mm . and 8 mm ., corresponding to the English $\frac{1}{2}$-inch and $\frac{1}{3}$-inch, have an aperture of 0.65 ; while a $6 \mathrm{~mm} .=\frac{1}{4}$-inch, and a $4 \mathrm{~mm} .=\frac{1}{4}$-inch and $\frac{1}{6}$-inch, have each an aperture of 0.95 .

Nachet exhibited at the Antwerp Exhibition a finc $\frac{1}{10}$ inch oilimmorsion, which was highly praised by the jurors.

It is necessary, to make the fact perfectly clear, that dry and immersion lenses having the same angular aperture have also a similar defining power. The pencil of rays, however, differs in intensity and density as the rays emerging from the cover-glass of the object into air are very considerably deflected, and the cone suffers a corresponding loss of brightness. On this important point, then, I belicve it will prove of value to interpolate a clear and full exposition of the change brought about by the cover-glass.

It is not difficult, then, to perceive the importance of Amici's discovery as to the value of a drop of water inserted between the object and the objective, and it now scems somewhat surprising it should have been so long neglected by opticians, since it is at onec seen to diminish the reflection which takes place in the incidence of oblique light. The film of water not only gives increased aperture, but also greater cleamness and sharpness to the image. The film, then, as already shown, collects the straying away of peripheral rays of light, and sends them on to the eye-picce, and greatly assists in rendering the image more perfect, and materially aids in the removal of residuary secondary aberrations; while with air, or dry objectives, a certain amount of aberration takes place, sufficient to affect the pencils on their passage from the radiant to the medium of the front lens, adding in considerable ratio to the total spherical aberration with the objectire, which, in the case of wide angles, increases disproportionately from the axis outwards. This ean only be corrected by a rough method of balancing; that is, by introducing an excess of opposite aberration in the posterior lens. An uncorrected residumm, rapidly increasing
with larger apertures, is then left, and this appears in the image amplified by the total power of the objective, so that with a nonhomogencous medium there is a maximum angular aperture which cannot be surpassed without mndergoing a perceptible loss of definition, provided working distance is required. If we abolish the anterior aberration for all colours, by an immersion fluid which is equal to eover-glass in refractive and dispersive power, the difficulty is at once overeome. If, for instance, we have an objective of $140^{\circ} \mathrm{in}$ glass $(=1.25$ N.A. $)$ and water as the immersion fluid, the aberration in front would affect a pencil of 140°. Substituting a homogencous medium, the same pencil, contraeted to the equivalent angle in that medium of 112°, will be admitted to the front lens without any

Fig. 119.

Fig. 119a.
aberration, and may be made to emerge from the eurved surface also withont any disturbing aberration, but contracted to an angle varying from 70° to 90°. The first considerable spherical aberration of the pencil then oceurs at the anterior surface of the seconel lens, where the maximum obliquity of the rays is already considerably diminished.

Figs. 119 and $119 a$ will doubtless make this clearer. If the objective of 140° works with water (Fig. 119), there would be a cone of rays extending up to 70° on both sides of the axis, arul this large cone would be submitted to spherical abervation at the firont surface a. But with homogencous immersion (Fig. 119a) the whole cone of 112° is admitted to the front lens without any aborration, there being no refraction at the plane surface ; and as the spherical surface of the front lens is without notable spherical aberration, the incident pencil is brought from the focus \mathbf{r} to the conjugate focus \mathbf{F}^{\prime},
and contracted to an angle of divergence of $70^{\circ}-90^{\circ}$ without having undergone any spherical aberration at all.

The problens of correcting a very wide-angled objective has thus been reduced by the homogeneous oil-immersion system, both in theory and practice.*

Abbe's Test-plate.

Abbe designed the test-plate (Fig. 120) for testing the spherical and chromatic aberrations of objeetives, and estimatiug the thiekness of cover-glasses corresponding to the most perfect correction: six glasses, haring the exact thickness marked on each, 0.09 to 0.34 mm ., cemented in succession on a slip, their lower surface silvered and engraved with parallel lines, the contours of which form the test.

Fig. 120.-Abbe's Test-plate for estimating thickness of glass-corers.
These being coarsely ruled are easily resolved by the lowest powers; yet, from the extreme thinness of the silver, they form also a delicate test for objectives of the lighest power and widest aperture. The test-plate in its original size is seen in Fig. 120, with one of the cireles enlarged.

To examine an objective of large aperture, the dises must be focussed in suceession, observing in each ease the quality of the image in the centre of the field, and the variation produced by using, alternately, central and very oblique illumination.

When the objeetive is perfectly corrected for spherical aberration, the outlines of the lines in the eentre of the field will be perfectly sharp by oblique illumination, and without any nebulous doubling or indistinetness of the edges. If, after exactly adjusting the

* Prof. Abbe "On Stephenson's System of Homogencous Immersion for M icroscope Objectives," "Jommal of the Royal Microseopical Society," II. (1879), p. 256, and on "The Lssence of Homogencous Immersion," Ibid., I. (1881), p. 131.
objective for oblique light, central illumination is used, no alteration of tho focus should be nocessary to show tho outhines with equal sharpness.

If an objoctivo fulfils these conditions with any onc of the discs, it is froe from spherieal aberration when used with cover-glasses of that thickness. On the other hand, if every dise shows nebulons doubling, or an indistinet appearance of the edges of the line with oblique illumination, or, if the objective requires a diffcrent focal adjustment to get equal sharpness with central as with oblique light, the spherical correction of the objective is more or less imperfeet.

Nebulous doubling with oblique illumination indicates overcorreetion of the marginal zone; indistinctness of the edges without

Fig. 121.-Zeiss's Cover-glass Gauge.
marked nebulosity indieates under-eorreetion of the zone; an alteration of the focus for oblique and central illumination points to an absence of concurrent action of the separate zones, which may be due to cither an average under or over correction, or to irregularity in the convergence of the rays.

COVER-GTASS GAUGE.

Zeiss has gone a step further to lay the microscopist's ghost of the cover-glass. He invented a measurer (Fig. 121) whereby the precise determination of thickness of glass-covers can be obtained. This measurement is effected by a clip projeeting from a circular box ; the reading is given by an indieator moving over a divided eirele on the lid of the box. The divisions seen cut round the eircumference show $\frac{1}{100}$ ths of a millimeter. This ingenious gange measures upwards of 5 mm .

This necessary and important digression has led me away from the consideration of the achromatic objoctive, and to which I shall now return.

English Immersion and Dry Objectives.

The homogeneous immersion system met with its earliest as well as its staunchest advocates among English opticians. Among its more energetic supporters were Messrs. Powell and Lealand, who were the first to construct a $\frac{1}{8}$-inch immersion objective on a formula of their own, and which was found to resolve test-objects not before capable of resolution by their dry objectives. This

Fig. 122. - Powell and Lealand's $\frac{1}{1-2} \mathrm{in}$. Dilimmersion Objective, drawn on a scale of 6-1. encouraged them to make a $\frac{1}{16}$-inch, acquired by Dr. Woodward for the Army Medical Department, Washington, and subsequently a $\frac{1}{25}$-inch; neither of which surpassed their $\frac{1}{8}$-inch in aperture, and a new formula was tried in the construction of their first oilimmersion objective. This had a duplex front, and two double backs; but even this did not quite accomplish what was expected of it, and another change was subsequently made ; the anterior front combination became greater than a hemisphere-a balloon-lens. This at once gave an increase of aperture to a $\frac{1}{12}$ inch objective of 1.43 numerical aperture. After some few more trials a more important change of the formula took place. The front lens was made of flint-glass, and the combination took the form represented in diagram (Fig. 122). This, on an enlarged scale, represents Powell's $\frac{1}{12}$-inch numerical aperture 1.50 . It is a homogeneous apochromatic immersion of high quality and very flat field. It will be noticed that in this combination the four curves of the lenses are very deep compared with those of other opticians.

Messr's. Ross have made many important improrements and changes in the construction of their several series of achromatic objectives; the calculations and formulæ for which were made exclusively for them by Dr. Schroeder. The list is too long to quote, but most of these lenses are of a high-class character, and work with admirable
precision. Among the best of their objectives, I can commend a 1 -inch of 30° and two oil-immersions, a $\frac{1}{8}$-inch of $1 \cdot 20$ and a $\frac{1}{12}$ inch of $1 \cdot 25$ numerical apertire, each of which bear the lighest oculars equally well ; a good test, as I have always maintained, of excellence. Their $\frac{1}{10}$ inch has a somewhat larger aperture, and therefore shows a fine image of the podura scale. The finish of Ross's several scrics of objectives fully maintains the high character and reputation of this old-established firm of opticians.

Messrs. R. and J. Beck have bestowed great attention upon the improvement of their dry-objective series, much in demand for histological work, especially among the students of city hospitals, who usually commence their pathological work with the cheaper forms of objectives. In that case an incl objective of about 25° air angle, a $\frac{1}{2}$-inch of not less than 40°, and a $\frac{1}{4}$ inch or $\frac{1}{5}$-inch magnifying from 50 to 250 diameters, is quite sufficient for most of their work. For bacteriological rescarch, Mcssrs. Beck supply a $\frac{1}{6}$-inch immorsion taken from a series, having a ligh apcrture and a better finish at a moderate price. Their $\frac{1}{10}$-inch immersion has in my hands proved a serviceable power for bactcriological research ; it requires a good

Fig. 123. $-\frac{1}{6}-\mathrm{in}$. Enylish Combination, largely used, sub-stage illuminating achromatic condenser to obtain the best results.

Messis. Watson and Sons have much enhanced their reputation by the marked improvement lately brought about in the manufacture of their whole series of objectives. This probably is chiefly due to the introduction of the Jena glass into their manufacture, and which has enabled them to give increase of aperture to one series in particular, that of the para-chromatic, all of which in consequence are of very high quality. It is difficult to particularise their several objectives, the whole having special features in proportion to their magnifying powers, while much care seems to have been bestowed on them for the elimination of residual colour. A $\frac{1}{8}$-inch with correction collar is comprised of a single decp and rather thick front lens, plano-concavc flint, and double convex-crown for the middle and triple combination for the back, the latter consisting of two crown
lenses cemented to a dense flint (Fig. 124) drawn to scale of 5-1, with lined portions intended to represent the flint, and white the crown glass lenses of the combination. The initial magnification of this oljective is 83 diameters, and the numerical aperture 94 . 'This superior objective can be had for the

Fig. 124. - Wratson's $\frac{2}{8}-\mathrm{in}$. Ibjective Para-chromatic Combination, soale 5-1. small sum of £2. Another remarkably uscful and cheap objective, their 1 -inch numerical aperture 0.21 , consists of two achromatic systems forming the front and back with the separation between them of about half an inch, and may also be ospecially recommended for students' work.

In the accompanying diagram the lenses are drawn on too large a scale, and therefore the distance between the two combinations should be much greater.

Among the more uscful of Watson's series, the 1 -inch, the $\frac{1}{2}$-inch, and the $\frac{1}{6}$ inch, together with the $\frac{1}{8}$-inch dry-objective, and a $\frac{1}{9}$ inch, will be found the most serviceable.

Messis. Bakier have their own serios of objectives, most of which are so vory nearly allied to those of tho continontal opticians ; and what has been said of Zeiss's and Leitz's objectives may be taken to apply also to Baker's, who have an established reputation for their histological series, all of which are woll suited for students' and class-room work.

Messis. Suift and Son have a new

Fig. 125. - Watson's 1-in. Achromatic Combination. series of objectives, semi-apochromatic and pan-aplanatic, most of which are excellent in quality and show increased flatness of field together with that of achromatism ; the index of refraction in each series having been correctly determined together with exact radial focal distance, thus affording more arailable aperture. I may select for special commendation their $\frac{1}{1}$-inch $£ 55$ s. homogencous immersion objective, which is in every way suitable for bacteriological work;
its definition is very good, as is seeu in a miero-photograph of podura scale, given further on. Their dry $\frac{1}{6}$ inch em be had for £1 $16 s$. a marvel of cheapness. Of their gencral series the most uscful for histologieal work are the $\frac{1}{2}$-inch, the $\frac{7}{3}$-inch at $£ 112 s$, and their $\frac{1}{5}$-inch of numerical aperture 0.87 at $£ 3$.

Mr. Pillischer, of Bond Stroet, has manufactured many excellent objectives. A fine homogeneous oil-immersion $\frac{1}{12}$-inch numerical aperture 1.25 is worthy of special notice ; it will be found suitable for bacteriological work; it has fine definition with a considerable amount of penetration.

A more intelligent idea of the magnifying power of the objective combined with the cye-piece will be gained by consulting the table given below ; precision in this respeet has long beon a desideratum with microscopists.

Magnifying Powers of Eye-Pieces and Objectives.

A TYPICAL AND INITIAL SELECTION OF POWERS OF EYE-PIECES CALCULATED FOR THE 10-INCH TUBE-LENGTH.

Huygherian Eye-pieces.

Name	A	B	C	$1)$	E	F	
of Maker. 0	or No. 1	2	3	4	5	6	
Baker	6	8	12	15	-	-	Diameters.
Beek, R. \& J.	4	8	15	20	25	not made.	,
Leitz . . . 5	6	7	8	10	12	,	:
Powell \& Lealand	1	$7 \cdot 5$	10	20	40	-,	,
Reichert	$2 \cdot 5$	$3 \cdot 5$	4	5	6.5	,	,, *
Ross	3	S	12 $\frac{1}{2}$	20	25	40	t
Swift \& Son	6	9	12	15	18	21	
Watson \& Sons	4	6	8	10	12	15	
Zeiss	3	4	5.5	7	9	not made.	',

* Reichert, in his catalogne, does not elearly indieate what the initial powers of his eje-picees are.
\dagger Messrs. Ross have two scries of eye-pieces, both Huyghenian. One series is for use with the English 10-ineh tulu-body, and is distinguished by Roman letters, and the other by numerals, and made as is usual on the Continent, and for use with the shorter tube-body $6 \frac{1}{2}$-ineh. The initial powers given in the table are for the 10 -ineh tube, and for the shorter must be read as follows:-

$$
\left.\begin{array}{rrrr|}
1 & 2 & 3 & 4 \\
4 & 6 & 8 & 12
\end{array}\right\} \text { with } 6 \frac{1}{2} \text {-inel tube. }
$$

MAGNIFYING POWERS OF EYE-PIECES AND OBJECTIVES-con.

Compensating Eye-pieces for use with Apocimomatic Objectives.
Zeiss . . . $\quad 2 \quad 4 \quad 4 \quad 8 \quad 12 \quad 18 \quad 27 \quad$ Diametcrs.

This may be taken as a typical set, further treated of among Eye-pieces.
Inithal Powers of Objectives calculated for the 10-incil Tube-hengtif.
This is ascertained by dividing the distance of distinct vision 10 inches by the focus of the objective, thus-

```
Focus-inches...4 3
Initial magnify-
    ing power...2:5
```

A reference to the above table will at onee show that the nomenelature of objectives expresses at once the initial magnifying powers, but as makers have great difficulty in so calcnlating their formulæ so as to obtain the exact power, these figures must be taken as approximate. Thns a $\frac{1}{4}$-ineh, whieh should magnify 40 diameters if true to its description, might actually magnify a little more or less.

The magnifying powers of Zeiss's and other apochromatic objectives can be aseertained by dividing the foeal length of the objeetive in millimeters into 250 mm . (the distance of distinct vision), thus

Focus millimetres ...	24	16	12	4	3	2	$1 \cdot 5$
Initial magnifying power\ldots	$\ldots 0 \cdot 5$	$15 \cdot 5$	21	63	83	125	167 diamcters.

The total magnification, when any eye-piece is working in conjunction with an objective, is ascertained by multiplying the initial power of the objective by that of the eye-piece.

The above ealculations are all for a 10 -inch tube-length. Should, however, a shorter or longer length of body be employed, the magnification can at onee be ascertained by a proportion sum. If the magnification be 180 with 10 -inch tube-length, what would it be with a 6 -inch body-10:6::180 $=108$ diameters.

Abbe designed three different forms of eye-pieces: 1 , the searcher eye-piece; 2, the working eye-piece; and 3, the projecting eye-pieee. The Searcher is a negative form of low power. The working is both negative and positive, the positive form of which is constructed on a newer principle; while the projection is ehiefly intended for microphotography, its field being small and its definition superlatively sharp. These are severally explained among eye-pieces.

High-Power Objectives.

Points of Importance for securing the lest results with High-power Oljectives.-Always give to the body-tube of the microscope the length for which the objective is corrected, 0.160 mm . for the short contincntal tube, and 0.250 mm . for the English tube (10 -inch). Employ both dry and immersion objectives momited for correction, commencing with a numerical aperture of 0.75 (that is about 100° in air). If the graduation is not given in thickness of cover-glass apply to the maker to correct this omission.

With the homogencous oil-immersion objective it is highly necessary to utilise all marginal pencils of light, to optically unite the upper lens of the condenser with the preparation as well as the front lens of the objective by means of a liquid having the same index of refraction or at least equal to that of the immersion. Cedar Oil has been gencrally adopted for the purpose montioned, the better way of using which is as follows: place a drop on the centre of the front objective, or on the top of the cover-glass, and then lower the objective by means of the coarse adjustment until it comes in contact with the oil, and carefully bring into focus by the fine adjustment. If the slide is held betweon the finger and thumb of one hand and moved from side to side, while the other hand is working the finc adjustment, there can be no danger of injuring either the objective or the specimen. Before putting the microscope away, take a fine camel-hair brush dipped in ether, alcohol, or methylated spirit, and carefully remove the oil from the objective and the glass cover of the object; a soft chamois leathcr or cambric pocket handkerchicf will dry it off, or a picce of fine white blotting paper answers equally well. Should the lens come accidentally into contact with the Canada balsann, it must be very carcfully removed cither by cther or alcohol. The former is by far the safest, as alcohol, if not very carcfully used, quickly dissolves ont the balsam and loosens the cover-glass of the object.

Achromatic Condensers.

The Achromatic Condenser ean no longer we classed among the accessories of the microscope, since it is an absolutely indispensable part of its optical arrangements. Its value, then, cannot be overrated, and the corrections of the lenses which enter into the construction of the condenser should be made as perfect as they can be made-in fact, as nearly approaehing that of the objective as it is possible to make them. It may therefore be of interest to know something of the rise and progress of the achromatie condenser. In my first chapter I have notieed the earlier attempts made by Dr. Wollaston, whose experiments led him to fit to the underside of the stage of his microscope a short tube, in which a plano-convex lens of about three-quarters of an inch foeal length was made to slide up and down (afterwards moved up and down by two knols) ; to improve definition he plaecd a stop between the mirror and the lens. The stop was found to act better when placed between the lens and the object. From this insprovement Dr. Wollaston enunciated that "the intensity of illumination will depend upon the diameter of the illuminating lens and the proportion of the image to the perforation, and may be regulated according to the wish of the observer." Dujardin in France and Tully in England were at work in the same dircetion. The former a year or two later on contrived an instrument, which he termed an eclairage, to remedy the defects of Wollaston's, and for illuminating objects with achromatie light. This was submitted for approval to Sir David Brewster, who, when the use of the aehromatic condenser was first broached, used these cneouraging words:-"I have no hesitation in saying that the apparatus for illumination requires to be as perfect as the apparatus for vision, and on this account I would recommend that the illuminating lens should be perfectly free from chromatic and spherieal aborration, and that the greatest care be taken to exelude all extrancous light both from the objeet and eye of the observer." This fan-sccing observer in optical seience has borne good fruit, and the outcome of his views is seen in the great development and improvement of the achronatio eondenser. ln 1839 Andrew Ross made his first useful form of condenser, and gave
rules for the illumination of objects in an article written for the "Penny Cyclopredia." These, epitomised, read as follows: 1. That the illuminating cone should equal the aperture of the objective, and no morc. 2. With daylight, a white cloud being in focus, the object has to be placed nearly at the apox of the cone. The olject is seen better sometimes above and sometimes below the apex of the cone. 3. With lamplight a bull's-eye lens is to be used, to parallelise the rays, so that they n ay be similar to those coming from the white cloud. It has been scen that Mr. Lister foreshadowed the sub-stage condenser.

The early form of Ross's condenser consists of two small brass tubes made to slide one in the other. To the outer one is attached a flat brass plate which slides underncath the stage of the microscope, and by means of a screw the adjustment of the axis of the illuminator is effected. The upper portion of the apparatus carries the achromatic

Fig. 126. -Original form of Gillett's Achromatic Condenser. combination, which by a rack and pinion movement is brought nearer to, or removed further from the object on the stage. The several parts of the illuminator unserew, so that the lenses may be used either combined for high powers, or spparated for low powers.

Messis. Smith \& Beek greatly improved upon Ross's condenser by adding another achromatic lens to the sombination, three being employed when used with high-power objectives and two or even one with the lower, the adjustment and focussing being made by rack and pinion arrangement beneath the stage. Some further changes for the better were made in the condenser by Powell, and in 1850 an amatcur microscopist, Mr. Gillett, fully grasping the valuc of controlling the conc of rays passing into the microscope, devised a new form of coudenser, in comection with which a
revolving series of diaphragms of different values were made to pass between the achromatic lenses and the source of light.

Andrew Ross constructed the first condenser on Gillett's principle, and this proved to be one of the most sneccessful pieces of apparatus contrived. Gillett's Condenser consists of an achromatic lens c, about equal to an object-glass of one quarter of an inch focal length, with an aperture of 80°. This lens is screwed into the top of a brass tube, and intersecting which, at an angle of about 25°, is a circular rotating brass plate a b, provided with a conical diaphragm, having a scrics of circular apertures of different sizes $h g$, each of which in succession, as the diaphragm is rotated, proportionally limits the light transmitted through the illuminating lons. The circular plate in which the conical diaphragm is fixed is provided with a spring and catch e f, the latter indicating when an aperture is central with the illuminating lens, also the number of the aperture as marked on the graduated circular plate. Three of these apertures have central dises for circularly oblique illumination, allowing only the passage of a hollow cone of light to illuminate the object. The illuminator above described is placed in the secondary stage $i i$, which is situated below the general stage of the microscope, and consists of a cylindrical tube having a rotatory motion, also a rectangular adjustment, which is effected by means of two screws $l m$, one in front, and the other on the left side of its frame. This tube receives and supports all the various illuminating and polarising apparatus, and other anxiliaries.

Directions for using Gillett's Condenser:- ln the adjustment of the compound body of the microscope for using with Gillett's illuminator, one or two important points should be obscrred-first, centricity ; and secondly, the fittest compensation of the light to be employed. With regard to the first, place the illuminator in the cylindrical tube, and press upwards the sliding bar k in its place, until checked by the stop; move the microscope body cither vertically or inclined for convenient use ; and, with the rack and pinion which regulates the sliding bar, bring the illuminating lens to a level with the upper surface of the object-stage ; then move the arm which holds the microscope body to the right, until it meets the stop, whereby its central position is attained ; adjust the reflecting mirror so as to throw light up the ilhmmator, and plate npon the mirror a pliece of clem white paper to obtain a uniform dise of
light. Then put on the low cye-picee, and a low power (the halfinch), as more convenient for the mere adjustment of the instrument; place a transparent object on the stage, adjust the microscope-tube, until vision is obtained of the object; then remove the object, and take off the cap of the eye-piece, and in its place fix on the eye-glass called the "eentring eye-glass,"* which will be found greatly to facilitate the adjustment now under eonsideration, namely, the centring of the eompound body of the microseope with the illuminating apparatus of whatever deseription. The centring-glass, being thus affixed to the top of the eye-pieee, is adjusted by its sliding-tube (without disturbing the microscope-tube) until the images of the diaphragms in the objeetglass and centring lens are distinctly seen. The illuminator should now be moved by meaus of the lefthand screw on the secondary stage while looking through the mieroseope, to enable the observer to reeognize the diaphragm belonging to the illuminator, and by means of the two adjusting screws to place this diaphragm central with the others: thus the first eondition, that of eentricity, will be aceomplished. Remove the white paper from the mirror, and also the centring-glass, and replace the cap

Fig. 127.-The Ross Improved Achromatic Condenser, with diaphragm stops. on the eyc-piece, also the object on the stage, of which distinct vision should then be obtained by the rack and pinion, or fine serew adjustment, should it have become deranged.

The re-publieation of the original directions is given with the view of showing what a clear conception Gillett had of the value of his invention. The carcful dircetions given for eentring must be regarded with interest, although nearly superseded by the eentring screw arrangement in commeetion with the sub-stage. The best

[^12]results, he goes on to say, will be secured by nsing the plain mirror and focussing the window-bar on the object, while a white-clond illuminator will afford as much light as may be required. It is a mistake to suppose that direct light is more critical than indirect. As a rule, the student is given to over-illuminate the object. These questions will, however, be disenssed further on.

Very many modifications of Gillett's condenser have, since 1850 , become known to mieroscopists. Ross's present improved form (Fig. 127) is made to drop into the sub-stage of the microscope, and when adjusted, is an extremely efficient instrument. The optical part is similar to a $\frac{4}{10}$-inch objective. It has two sets of revolving diaphragms, with apertures and stops for showing surface markings in a perfect mamner:

Abbe's Condenser.

The essential feature of this condenser is its short foens, which collects the light reflected by the mirror, so as to form a cone of rays of very large aperture,

Fig. 128.-The Iris Diaphragm, and carrier for Stops. having its fooms in the plane of the object.

The full aperture of the illuminating cone should only be used when finely gramular and deeply stained particles (protoplasm, bacteria, de.) are being examined with objectives of large aperture. In all eases the cone must be suitably reduced, cither by an iris, or other form of diaphragm (central illumination). By placing the diaphrigm excentrically, by means of rack-work attached to the carrier, the central rays are excluded and a certain extra-axial portion of the illuminating pencil falls upon the object (oblique illumination). When the diaphagm is thas excentrically placed, this oblique pencil can be directed from all sides by rotating the carrice round the optic axis. The central stop diaphragm shuts off all the axial and tramsmits
only the marginal rays, thus producing dark-ground illumination. The iris diaphragm (Fig. 128) is so shaped that the edge of its smallest opening closely approximates the object-slide on the stage.

The Abbe condenser is the most popular form in use, for all purposes. Owing to the large aperture of the cone of light which it projects, it can be employed with the highest powers; by removing the top lens it can also be used with low powers. Dark ground illumination may be obtained with it up to a $\frac{1}{4}$-inch objective.

The condenser is made in two forms of $1 \cdot 2$ and $1 \cdot 4$ numerieal aperture by Messrs. Watson. The lenses are mounted in aluminium. Fig. 130 is in more general use, but by workers with high powers Fig. 131 is preferred, as it ensures the most oblique illumination with objectives of largest aperture. It is preferred for photo-micrographic purposes.

W'atson's Achromutic Condenser (Fig. 132), $1 \cdot 0$ numerical aperture,

Fig. 129.-The Abbe Condenser, detached from the Sub-stage of the Microscope.

Fig. 130.-Optical Arrangement of Abbe Illuminator, $1{ }^{2} \mathrm{~N}$. A .

Fig. 131. -Optical Arrangement of Abbe Illuminator, $1 \cdot 4 \mathrm{~N} . \mathrm{A}$.
shown in scetion, although ariginally designed for use with the micro-spectroscope, is equally efficiont for ordinary purposes. This condenser transmits a larger aplanatic cone of light tham Sbue's. It may therefore be employed with higher power objectives, and by M.
removing the top lens it is just as useful a condenser for lower powers. Being constructed with lenses of an unusually large size, it is well adapted for use with the

Fig. 132. -The Optical Arrangement of Watson's Achromatic Condenser: micro-spectroscope. It is certainly one of the best all-round condensers in use. The new Schott glass enters into the construction of the lenses, and these are mounted in aluminium.

Many microseopists consider on the whole that Powell's sub-stage apochromatic condenser with collar correction (Fig. 133) surpasses that of Abbc. The mechanical arrangement of Powell's is very simple : the correction collar is

Fig. 133. - Powell's Achromatic Comdenser.
similar to that of an ordinary objective, it has a steeper spiral shot and only half a revolution of movement; a long are is fixed to the collar so that it may conveniently be reached by the finger. It is so construeted as to turn easily and smoothly at the slightest touch. The collar moves only the back lens of the combination, learing the mome rigid. The diaphragms are regulated by A and \mathbf{B}.

The object of the eorreetional movenient is to increase the maximum aplanatic aperture of the condenser by separating the lenses. If the back of a wide-angled objective be examined when an object is illuminated by the full aperture of the condenser, the edge of the flame being in foens, it will be notieed that the illuminated portion of the back lens will be oval and pointed instead of eireular. Also that when the eondenser is racked up, although the external

Fig. 134.

Fig. 134%.

Fig. 134h.-Puwell's Apochromatic Oil Immersion Condenser, N.A. $1 \cdot 40$.
shape of the illuminated portion becomes more eireular, two dark patches will appear on either side of the centre, showing the operation of the spherieal aborration of the condenser. If under these cireumstances the lenses are separated by means of the collar adjustment, the black spots will be closed up, and a circular and evenlyillmminated dise of illumination of a larger size will result. The wheel of diaphragms, or a serios of graduated diaphragm dises to drop into a holder, is intended for eritieal work; the diaphragm ean always be recorded, and the identieal illuminating cone reproduced.

Hence we have a simple method of graduating apertures between any two contiguous diapluragms; if, for example, we place the lever to the left, so that the lens may be separated as far as possible, and use a No. 6 diaphagm, and if, on examining the object, it is thought that the illuminating cone is not large enough, and if when No. 7 is turned on it is found too much, we can go back to No. 6 , and by turning the lever 60° towards the right, closing the lenses and increasing the power a little, we shall obtain an aperture somewhere between Nos. 6 and 7 diaphragm. Thus we can by means of the correction collar graduate the aperture with the facility as with an iris, and we can record any particular aperture with a degree of accuracy foreign to the iris. It must be admitted, however, that the cone of light transmitted by the con-

Fig. 135.-Beek's newer form of Aehromatic Condenser. denser is a very small one.

Powell also supplies an apochromatic oilimmersion eondenser, numerical aperture $1 \cdot 40$, but without collar eorrection ; Fig. 134 shows the sliding tube lowered by arm A and eell B withdrawn for changing stops, whieh can be done without altering the focus of the eondenser. Fig. $134 a$ shows the eell B elosed and raised by arm A close to the baek lens of optical combination. In Fig. 1346 six of the principal stops are shown. Powell's dry apoehromatic condenser, of nearly 0.9 aplanatic cone, is also very good ; but the high price of all is a bar to their more gencral use. The speciality of these is the conversion of axis light into condensed oblique incident light by the refraction of the condenser.

Messrs. R. \& J. Beck have various forms of achromatic condensers, some of whielı partake of a somewhat elaborate arrangement; others are simple and inexpensive, to suit the students' microscope ; as when the light of the coneave mirror proves insufficient for any object requiring intense transmitted light, an achromatie condenser must be adapted to even the students' form of mieroscope. The latest form of condenser (Fig, 135) is fitted with revolving stops and iris diaphragm, and other appliances for obtaining satisfaetory results.

Beck's Compound Illuminating Apparatus (Fig. 136).—It is useful in working with the microscope to be enabled to rapidly ehange
the illumination, and for this reason this compound form of condenser laas been construeted. It consists of an upper portion A, a wide-angle condenser, the aperture of which can be redueed at will by an iris diaphagm, moved by the lever B. This ean be used for

Fig. 136. - Beck's Compound Condenser.
all other purposes. Below this diaphragm is a plate C , which can be swung back out of position at will, as shown in outlinc. Into a cell in this plate the stops D can be dropped, and the condenser can be used for dark field illumination, or for high powers as an oblique illuminator. A large-size polarising prism E, fastens to the plate C, and can be removed when not required. In this way any of the various modes of illumination may be separately or conjointly obtained.

Their condenser (Fig. 137) has a large aperture, and facilities for rotating the series of diaphragms. It is available for either dry or immersion objectives up to 1.3 numerical aperture on chatoms, and

Fig. 137.-Beck's Spherical Achromatic Condenser. wet or dry histological objects. The spherical form of the front is worked by a milled head that rotates a series of lenses and diaphragms. It also avoids the inconvenience of having the connecting fluid drawn away by capillary attraction, as would be the case if momuted on a flat surface. It is also less in the way of the sub-stange movenents.

The Parachromatic Condenser of Messis. Watson (Fig. 1.38) was made to meet a demand for a condenser giving a large solid cone of illumination free from colour. The optical part of this condenser consists of a full hemispherical front lens, and the middle and back combinations of such forms as to produce the necessary corrections. The Jena phosphate crown and silicate flints are used in its manufacture, and to these are due its special qualities. The total aperture of the condenser is $1 \cdot 0$, and it yields an aplanatic aperture of 90 mumerical aperture. The magnifying power is $\frac{2}{7}$ the of an inch. From this it will be seen that it is especially suitahle for use with high-power objectives.

It can also be employed without the front lens, when the magnifying power is $\frac{4}{10}$ ths of an inch, and the numerical aperture 35 . It

Fig. 138. - W'atsou's Parachromatic Condeuser.
is mounted in an exceedingly convenient manner, the iris diaphragm being fitted in such a way as to be absolutely central with the optical system.

The are through which the handle controlling the iris tratels is divided, and indicates the aperture at which the condenser may be working at any time. An important feature in this condenser is that it is almost wholly free from colour. As a rule condensers of the same form are found difficult to work with, because of the small diameter of the field or back lens. This difficulty has been sucecssfully overcome by increasing the size of this lens, and the whole of which is fully utilised.

Most London opticians have their own especial form of achromatic condenser, designed for and fitted to their several stands and objectives, varying from a small price to the more expensively-fitted aceessorics.

Messis. Swift's illuminating apparatus (Fig. 139) is conveniently supplied with numerous useful appliances. The optical combination A is eomputed to be used as an effective spot lens from a 3 -inch objective

Fig. 139.-Swift's Illnminating Polarising Apparatus.
up to a sixth. C C are two small milled heads by means of which the optical combination A is centred to the axis of the objeetive.

Fig. 139u.-Swift's Jiaphragms and Central Stops.
The revolving diaphragin E has four apertures for the purpose of recciving entral stops, oblique light dises, and selenite films. D is a frame carrying two revolving cells, into one of which a mica film is placed, which ean be revolved with ease over cither of the sclenites
below, whereby changes of colour ean be obtained in experimenting with polarised light. The darts and P A's indicate the position of the positive axis of the miea and selenite films, and by this means results ean be recorded, ete. Either of the revolving cells can be thrown into the centre of the condenser, and there stopped by means of a spring eatch; when so arranged the mica film, de., may be revolved in its place by turning the cell D , as both eells are geared together with fine racked tecth. F is a polarising prism mounted on an cecentric arm, rendered eentral when in use, or thrown out, as seen, when out of use. G is the rack dove-tail slide for indicating and focussing the condenser on the object. The advantages associated with this eondenser consist in having the polarising prism, selenite films, dark-ground, and oblique light

Fig. 140.-Baker's Nelson Aehromatic Condenser. stops, so that they may be brought elose under the optieal combination.

Baker's Nelson Condenser, shown in Fig. 140, is intended for use with their medium instruments. It has, however, many picees of apparatus essential to those of a higher elass. It is applicable, indeed, to all instruments having sufticient depth beneath the stage to receive it. It comprises an achromatic combination of 90° aperture, available with all powers up to $\frac{1}{8}$-inch tinted glass for neutralising the yellow rays of artificial light, focussing adjustment, dark-ground illuminator, large diaphragm with rotating tube to earry oblique light stops, small wheel of apertures, polarising prism with two selenite films, clear aperture, and oblique light-shutter for low powers.

Baker's Students' Condenser (Fig. 141) is designed to take the place of Abbe's, and costs much less. It transmits a larger aplanatic cone of light, and ean be used either with high or low powers by removing the front lens. It is equally useful for photo-micrographie work.

Mr. J. Mayall's semi-eylinder or prism for oblique illumination (Fig. 142) is a convenient form, as it permits of the semi-cylinder being tilted and placed excentrically; in this mamer, without immersion contact, and by suitable adjustment, a dry object can be
viewed with any colour of monochromatic light. If placed in immersion contact with the slide, the utmost obliquity of incident light can be obtained. Objects in fluid may be placed on the planesurface of the semi-cylinder, and illumimated by ordinary transmitted

Fig. 141.-Optical Arrangement of Baker's Abbe Condenser.
light, or rendered "self-hmminous" in a dark field, as with the hemispherical illuminator or Wenham's immersion paraboloid. A coneave mirror witl a double arm is quite sufficient to direct the

Fig. 142.-Mayall's Semi-Cylinder Illuminator and Spiral Diaphragms.
illuminating pencil. This semi-cylinder was originally made by Tolles, of Boston, for measuring apertures, but, at Mr. Mayall's suggestion, Messrs. Ross mounted it as an illuminator.

The spiral slot should be fixed close beneath the larger lens of the condenser, and when properly arranged will be found a convenient mode of obtaining ollique light.

The Webster-Collins Universal Condenser (Iig. 143) is so well known that it scarcely calls for any lengthy description. It is an inexpensive form of condenser, designed in the first instance for use

Lris Dirnhragm removed

Fig. 143. -The Webster-Collins Universal Condenser.
with the students' microseope. It is fitted into the sulb-stage ; has an iris diaphragm as well as a series of revolving diaphragms moved by a milled head screw arrangement.

Oblique Illumination.

Wenham's Parabolic Condenser.-Mr. Wenham's many useful additions to the mieroscope and its accessories demand especial notice. When mention is made of the rarious immersion condensers (illuminators, as he preferred to call them), his original right-angled prism, his truneated hemispherical lens, his immersion paraboloid, and his reflex illuminator, in which my's beyond the angle of total reflexion are utilised by reflex action from eover-glass on to the surface of the object, every one of these well-devised inventions will always be spoken of in terms of praise. All in their tirn conferred a great service upon the microseope, and enabled the student to clear up difficulties that stood in the way of dereloping structure when achromatic lenses and dry-objectives were considered perfect. The snperior illnmination of the object was wholly due to, and effected by, reflected rilys from the object to the aperture of the objective, and obrionsly, reflex action could only take place with dry-oljeetives. This reflex aetion must be regarded as Mr. Wenham's speeial discovery. It must be observed, however, that it is not the same as the more modern achromatic appliances used for throwing direct rays upon the object, and which
proved the existence of apertures capable of direct transmission up to 27° measured in the body of the front lens.

The most practical of Mr. Wenham's inventions is probably the hemispherical lens, since adopted by Messis. Ross in comection with their excellent Zentmeyer stand, and which has proved eminently serviceable. But the fact is that devices of the kind for obtaining direct oblique light require a thin stage, and therefore most of those who possess the carlier-made microscope stand would doulbtless hail the appearance of any appliance which will convert axial light into oblique light; as by so doing the possessors of such instruments, in which the stage is generally of considerable thiekness, would enjoy the pleasure of seeing the best resolution it is possible to get with their dry-objectives.*

Wenham's Parabolic Reflector:-This will be better understood by reference to Fig. 145, which represents it in section A B C, and shows that the rays of light $r r^{\prime} r^{\prime \prime}$, entering perpendieularly at its surface C , and then reflected by its parabolic surface A B to a focus at F , ean form no part of the largest peneil of light admitted by the object-glass and represented by G F H ; but an object placed at F will interrupt the rays and be strongly illuminated. A stop at S prevents any light from passing

Fig. 144.-Wenham's Parabolic Reflector: through direct from the mirror.

In the microscope the parabolic reflector fits into the eylindrical fitting under the stage, and the adjustment of its foens upon the objeet is made by giving it a spiral motion when fitted in-that is, carefully pushing it up or down at the same time that it is turned round by the milled edge 313 . It must then be foeussed by the raek and pinion motion. As the rays of light must be parallel when they enter it, a flat mirror, which in this case should be added to the instrument, is generally used ; daylight will then require only direct reflection, but the rays from an artificial source will have to be made parallel by placing a side condenser between the light and the mirror, about

[^13]$1 \frac{3}{4}$ inel from the former and $4 \frac{1}{2}$ inehes from the latter. Nearly the whole surfaee of the mirror should be equally illmninated ; this may be tested by temporarily placing upon it a card or piece of white paper. Parallel rays ean also be obtained from the eoneave mirror, if the light is plaeed about $2 \frac{1}{2}$ inches from it. Dark-gromed illumination is not suitable for very transparent objects-that is, muless there is a eonsiderable differenee in their index of refraction, or they are pervaded by air-eells.

One very remarkable example of this may be seen in the tracheal

Fig. 145,--Parabolic Reflector.
system of inseets. If any of the transparent larver of the varions kinds of guat be mounted in gelatine and glyeerine jelly, slightly warmed but not enough to kill the inseet outright, about the third day the fluids cireulating in the body will be absorbed and replaeed by air. Illuminated by the parabolie eondenser, and viewed with a binocular mieroseope, and a low power, the ghat-larra beeomes a superb object. The body of the insect is but faintly visible, and in its place is displayed a marvellous tracheal skelcton, with the tubes standing out in perspeetive, shining brilliantly, like in structure of burnished silver. Unfortunately, such objects are not permanent,
for when the whole of the water drics up, the tracheal tubes either collapse or become refilled with fluid.

As to the blackness of field, and luminosity of the object, this depends upon excess of light from the paraboloid•received beyond the angle of aperture of the object-glass. It is found in practice that more and more of the inncr anmulus of rays from the paraboloid has to be stopped off, until at last, with high-angled objectives, it is scarcely possible to obtain a black field.

The light, on the whole, most suitable for this method of illumination is lamp, the rays of which should in all cases be rendered more parallel by means of a large plano-convex lens, or condenser.

Wenham's Immersion Condenser:-Mr. Wenham, in the year 1856, described various forms of oblique ilhminators, one of which was an immersion ; a simple right-angled prism, comected by a fluid medium of oil of cloves. This, however, was abandoned for a nearly hemispherical lens connected with the slide, and although an improvement, did not touch the point of excellence Mr. Wenlam was looking for. Ultimately he adopted a semi-circular dise of glass of the exact form and size represented in the drawing, Fig. 146, having a quartcr-inch radius, with a well-polished rounded edge, the sides being grasped by a simple kind of open clip attached to the sub-stage, the fluid medium used for connceting the upper surface with the slide being cither water, glycerine, or oil ; an increase of oblique illumination being obtained by swinging the ordinary mirror sideways. By means of an illuminator of the kind difficult objects mounted in balsam are resolved. This simple picce of glass collects and concentrates light in a marvellous manner, and is by no means a bad substitute for some of the more costly forms of achromatic condenscr. It can be used either in fluid contact with the slide, or dry, as an ordinary condenser.

Mr. Wenham subsequcutly contrived a small truncated glass paraboloid, for use in fluid contact with the slide; water, glycerine, oil, or other substance being cmployed as a contaet medium. The rays of light in this illmminator, being internally reflected from a convex surface of glass, impinge obliquely on the under surface of
the slide, and wre trimsmitted loy the fluid uniting mediun, and internally reflected from the uper surface of the cover-glass to the objective. T'o use the reflex illuminator efficiently it must be racked up to a level with the stage. 'The centre of rotation is then set true by a dot on the fitting, seen with a low power, a drop of water is then placed on the top, and upon this the slide is laid. Minute objects on the slicle must be found cither by the aid of a low power, by their greater brilliancy, or by

Fig. 147.-The Amici Prism. rotating the illuminator; the effect on the podura scale is superb, the whole scale appearing dotted with bright. blue spots in a zig-zag direction. Objects for this illuminator should be especially selected and mounted.

The Amici Prism, originally designed for oblique illnmination, consists of a flattened triangular glass prism, the two narrower sides of which are slightly convex, while the third or broadest side forms the reflecting surface. When properly used, it is capable of transmitting a very oblique pencil of light. The prism is cither mounted, as in Fig. 147, for slipping into the fittiug of the sub-stage, or on an independent stand, as arranged for Powell's microscope, page 85, Fig. 56.

Method of Employing the Achromatic Condenser to the Greatest Advantage.

Its Illumination.-Good daylight is the best for general work. The mieroscope should be placed near a window with a northern aspect. Direct sunlight should never be utilised ; the best light is that reflected from in white clond. A good paraftin limp is the most serviceable artificial souree of light, and it is quite muder control. As an ilhminant more often brought into requisition in the smoky atmosphere of towns, the paratfin lamp is on the whole the handiest and the most useful. If gits-light can be brought into use as suggested for micro-photography, with the incandescent mantle, it will be found to be the purost and best form of artificial illumination
for the mieroscope. Among paraffin lamps those construeted by Baker and swift are all that can be desired.*

As the chimneys of these lamps are made of metal, and blackened,

Fig. 148. - Biker's Microscope Lamp.
no reflected light disturbs the eye. Care must be taken to have the wiek evenly trimmed; the metal chimney has a glazed front, giving exit to the rays of light, the flat of the flame being used with low

* Messrs. Baker and Swift have constructed lamps with remoral ind fixed achromatic bull's-cye lenses in gymbal, and changeable tinted glass screcns. Either of these will add to the usefulness of the lamp in baeteriological reseate work. Baker's is constructed on the Herschel doublet formula, and should therefore be free from aberration. It is momed on a heavy brass tripod foot, has vertical and horizontal movements by rack and pinion, brass reservoir, with serew opening for filling, metal chimney to take $3 \times 1 \frac{1}{2}$-inch glass slip, removable frame for carrying tinted glass sereens, \&c.
powers, and the image of the flame being reflected by a plane mirror to give equal ilhmination of the whole field. In working with high powers, the lamp is turned with the flame edge-wise, and at the same time the mirror must be dispensed with. By working, as it is termed, directly on the edge of the flame, the illumination is greatly inereased, and a band of light ean be eoneentrated on any part of the preparation it is desired to make a careful study of.

To obtain the best results, time and care must be given to the illumination of the objeet. The lamp and microseope having been plaeed in position, a low power is first used and the smallest diaphragm. On looking through the mieroscope it will probably be observed that the image of the diaphragm is not in the centre of the field; by moving the centring screw of the condenser this may be adjusted. The low power is then replaced by a high power, the largest diaphragm used, and the bacteria or diatom brought into foeus. The diaphragm must now be replaced by one of medium size, and by racking the condenser up and down, a point will be arrived at when the image of the edge of the flame appears as an intensely bright band of light. If this is not exactly in the eentre of the field the centring screw of the condenser must again be adjusted. With regard to the use of diaphragms, various sizes should be tried while foeussing with the fine adjustment, at the same time using the correction eolour; in this way we obtain the sharpest possible image. When the condenser has been aecurately centred, it will still be neeessary to focus it for each individual specimen, so as to correct for difference in the thickness of slides and the layers of mounting medium. Correction for different thiekness of eover-glasses must be made by the aid of the collar adjustment in the following way: a high-power eye-piece is substituted for the ordinary eye-piece, and the faults in the image will thereby be intensified. By moving the collar completely round, first in one direction and then in the other, while earefully observing the effeet of the image, it will be seen to beeome obviously worse whichever way the eollar is turned. The collar must then be turned through gradually diminishing distances until an intermediate point is reached at which the best image results with the high-power eye-piece, and on replaeing this by the low-power eye-piece the sharpest possible image will be obtained.

Effect of the Sub-stage Condenser.-The sub-stage condenser gives the most powerful illumination when it has been racked up until it almost touches the specimen. It produces at cone of rays of very short focus, and the apex of the eone should eorrespond with the particular bacterium or group of bacterias under observation. The effect of the condenser without a diaphragm is to obliterate what Koch has termed is structure picture. If the component parts of a tissue section were colourless and of the same refractive power as the medium in which the section is mounted, nothing would be risible under the mieroscope. As, however, the cells and their nuclei and the tissues do not differ in this respect, the rays which pass through them are diffraeted, and an image of lines and shadows is developed. If in such a tissue there were minute coloured objects, and if it were possible to mount the tissue in a medium of exactly the same refractive power, the tissue being then invisible, the detection of the coloured objects would be mucl facilitated. This is exaetly what is required in dealing with bacteria which has been stained with aniline dyes, and the desired result ean be obtained by the use of the sul-stage condenser.

If we use the full aperture of the condenser the greatly converged rays play on the eomponent parts of the tissue, light enters from all sides, the shadows disappear, and the strueture pieture is lost. If now a diaphragm is inserted, so that we are practically only dealing: with parallel rays, the strueture picture reappears. As the diaphragm is gradually inereased in size the structure pieture gradually becomes less and less distinet, while the colour pieture, the image of the stained bacteria, becomes more and more intense. When, therefore, bacteria in the living condition and unstained tissues are exannined, a diaphragm must be used, and when the attention is to be coneentrated upon the stained bacteria in a scetion or in a coverglass preparation the diaphragm must be removed and the field flooded with light-(Crookshank).

The wide-angle condenser, it will be understood, consists of a combination of lenses, which concentrate all the light entering them to a small point, and the condenser must be so accurately focussed that this brilliant cone of light, when it energes from the upper lens of the condenser, falls upon the objeet from all directions, forming a wide-angle cone of light, at the apex of which the object M.
must be placed (see Fig. 149). That is to say, the object is ilhminated by a cone of rays passing through it in all directions.

There are, howerer, objects which require a fully illuminated field, when the lamp should be turned ronnd and the Herschel lens condenser (shown in section, lig. l48) shoukd he used to collect the light and throw it upon the mirror. For moderate powers, as a fonr-tenth or one-fifth, the con-

Fig. 149, - Front Lens of Contenser. denser shonld be nsed a little below the focus to give an even illumination over the whole field. Moreover, as to the use of the condenser for defining general objects, it must be borne in mind that to show different kinds of structure different apertures in the iris diaphragm are neeessary, and that whercas some objects show their structure better with a large angle of light eut down in intensity by the use of blue glass, others show better with a small pencil of direct rays. For the resolution of diatoms it is often necessary to use oblique light only, and for this purpose diaphragms with eentral patehes are used, the iris diaphragm being opened to its full extent. An amular ring of oblique light emerges from the condenser upon the object, and it is in this mamer also that dark-ground illumination is obtained with moderate and low powers.

The Diaphragm.

Fig. 150.-The Diaphragm.
The early form of diaphragm in use was that shown in Fig. 150.
It consists simply of a circular brass plate with a series of eircular openings of different sizes, arranged to revolve upon another plate by a central pin or axis, the last being also provided with an opening as large as the largest in the diaphragm-plate, and corresponding in
situation to the axis of the microseope body. The holes in the diaphragm-plate are centred and retained in place ly a bent spring in the second plate, which rubs agminst the edge of the diaphragmplate and catches in a notch. The blank space shuts off the light from the mirror when condensed light is about to be used. It is usually made to fit in under the stage of the microscope. This has been almost superseded by the iris diaphragm, originally designed by Walcs, of America. It was made by this optician for his working students' microseope. An carly form of the iris diaphragm is scen in Fig. 151.

Fig. 151. - Shutter Diaphragm. By pressing upon the lever handle at the side the aperture gradually closes up, and without for a moment losing sight of the object under examination.

The Mirror.

The mode in which an object is illuminated is, in the words of the late Andrew Ross, "sceond only in importance to the excellence of the glass through which it is seen." To ensure good illumination the mirror should be in direct co-ordination with the objective and eye-piece ; it must be regarded as a part of the same system, and tending by a combined series of acts to a perfect result. Illnmination of the object is recognised as of three kinds or qualities-reflected, transmitted, and refraeted light. For the illumination of transparent objects, tramsmitted light is brought into use ; for opaque oljects, reflected light is needed.

The mirror should be about $2 \frac{1}{2}$ or 3 inches in diameter, and it must not be fixed, but made to slide up and down the stem under the stage, so that the rays of light cmanating from it may be brought to a focus. The utility of the mirror is so obvious that it is occasionally passed over in silence by writers. To myself it appears to be an important accessory of the mieroscope, and I shall therefore proceed to combine theory with practice in what I have to say with regard to the mirror.

The microscope mirror should be the segment of a true sphere, and its centre that of a true curvature. If the mirror has a true circular bomdary, the central point on line A (Fig. 152) of the reflecting surface, is the pole of the same. The line A C is known as its principal axis, and any other straight line throngh C , which meets the mirror, is its secondary axis. When the incident axis is perfectly parallel to the principal axis, the reflected rays converge to a point F, its principal focus. So much for the theory of the mirror. Now we come to its practical use.

Simple as the mirror of the microscope may appear to be, if the curve of the surface is not perfect, it will yield a secondary reflection or double pencil of rays. The plane mirror will occasionally be found to emit more than one reflection of the lamp-flame; this we

Fig. 152. - Principal Focus of Mirror
find may be corrected by rotating the mirror in its cell. Many years ago 1 proposed to meet a difficulty of the kind by arranging a rectangular prism on a separate stand, shown in ligg. 153, consisting of a prism $\perp \mathrm{B}$, mounted in gimbal C, D, and E , secured to a brass tube $\left(\frac{1}{x}\right.$, fitted to the stem, and thins made to take the place of the mirror.

The direct method of employing the mirror, that more generally resorted to, is by reflecting rays from the concave surface; the plane surface is preferred when the condenser is used. Whicherer is employed, it should not be forgotten that the optic axis must be preserved throughout, and so brought to the ecntre of the open tube of the mieroscope. Another method is to interpose a bull's-eye lens, and in this way supply the mirror with a beam of parallel rays of light. The plane side of the bull's-eye lens should be turned towards the lamp, so that limp, bullis-eye, sub-stage condenser, and ohjective,
are brought into an exact line, the bull's-cyc being set at right-angles to the line. A piece of thin white paper held across the bottom of the sub-stage will serve to show whether the rays of light are fairly parallel. The next care is to focus the object on the stage, and then

Fig. 153.-Rectangular Prism.
the sub-stage condenser on the slide; further correction should be made by means of the centring screws of the sub-stage, or by moving the bull's-eye lens or lamp slightly, thus perfecting the arrangements for working with parallel rays of light.

Accessories of the Microscope.

The accessorics and applianees of the microseope have become so very mumerous, that any attempt to deseribe them and explain the uses to which they are put would demand more space than I find myself in a position to bestow upon them. I must therefore confine my remarks to those aceessories in more general use.

Having described the method of employing transmitted light, I have a few words to add with regard to the illumination of opague objects by reflected light. A very early and efficient form of opaque illumination is the well-known Lieberkilihn. This has not been entirely sturpassed hy more recent inventions. The concare speculum termed a Lieberkiln, so named after its eelebreted inventor, directly reflects down upon the object the light received either from the mirror or bull's-cyo lens. It consists of a silver cap, which slides over tho
objective (Fig. 154), a indicating the lower part of the compound body; and l the objective orer which slides the Lieberkiihn, c; the ray's of light are collected to a focus upon the object at d. The object may' either be mounted on a slip oif glass, or

Fig. 154. -The Lieberkiihn. held by the stage-forceps, f; if very small, or transparent, it may be gummed to the dark well, e, or mounted on a Beck's opaque disc-revolver.

This holder will be found useful for the examination of opaque or other objects that camnot be conveniently held by the stage forceps, the specimen being temporarily attached to it by gum or gold size. The holder is intended to rotate, so that every portion of the object can be brought into view. In this way it will be found useful in the study of insects, foraminifera, dc.

With the Licberkiihn, however, the illumination of opaque objects must be more or less one-sided, and therefore, the silvor side-reflector

Fig. 155.-Stage Forceps, for holding objects while under examination.
has superseded it for gencral use (Fig. 157). To ensure a more perfect illumination of the object, the bull's-cye lens should also be used. Mr. Sorby devised a reflector to fit over the objective. It consists of a semi-circulalr cap;

Fig. 150.—Beck's Disc-holder. is, in short, a modification of the parabolic reflector. The light from the mirror can, loy slightly varying its inclination, be brought into use with this reffector:
I'he silver side-reflector is ustally made with a hall-and-socket joint, so that it can be turned in any directions. It is seemred to the stage of the microscope by the pin, which dropsinto a hole purposely
drilled to receive it, and facility given for turning up and down, or in any position. If daylight is used the microscope should be placed in such a position that the light from a white cloud falls upon

Fig. 157.-Silver Side-reflector.
the speeulum, but the light of the lamp is far more manageable for use with the refleetor.

The lieberkuihn is only intended to be used with low powers-a 2 -inel, $\frac{1}{2}$-ineh and a $\frac{2}{3}$-inch. Such objects as the elytra of the diamond and other beetles are well suited for examination.

While experimenting with a parabolic reflector (Fig. 158), Mr: Sorby saw the value of examining objeets under every kind of illumination. As on viewing speeimens of iron and steel with this refleetor he found that, from the great obliquity of the illumination obtained, the more brilliantly polished parts of the specimen refleeted the light beyond the aperture of the objeetive, and these eould not be distinguished from those parts whieh absorbed light, he there-

Fig. 158. -Sorby's Modification of the Parabolic Reflector. upon proeeeded to place a small flat mirror in front of the objeetive, and eover half its aperture, and at the same time stop off by means of a semi-cylindrieal tube the light from the parabolie refleetor. This arrangement produeed the reverse appearanee of that first employed, and it proved to be a useful aid in determining strueture.

The Bull's-eye Condensing Lens.

This aeeessory is brought into constant use for the purpose of eonverging rays from a lamp or mirror'; or, for reducing the diverging rays of the lamp to parallolism with the parabolie illuminator, or
silver side-reflector. The form in use is a plano convex lens of about three or four inches in focal length (Fig. 159). It is usually mounted on a brass stand, so that it may be placed and turned in any direction, and at any height. When used by daylight, its plane side should be turned towards the object, and the same position maintained when

Tig. 159.--Bull's-eye Lens.
used for converging the rays of light from the lamp; but when used with the side-reflector the plane side must be towards the lamp. Much attention has been paid to this very necessary accessory, the bull's-eye lens. A doublet has been brought into use which has increased the value of the bull's-eye condenser in bacteriological rescarch, and in micro-photograplyy generally.
"During a recent investigation of the spherical aberration in doublets, it was believed to be impossible to construct a doublet
of the form known as 'Hersehel's doublet' free from aberration, althongh these doublets figure in many books on opties. In a eondenser made by Baker the aberration is redueed to a minimnm, 27 per eent. less than Sir John Hersehel's. This doublet, it appears, differs from Herschel's both in the ratio of the radii of the meniseus, and also in the ratio of the foei of the two lenses; indeed, the only point of similarity is in the first lens, whieh is erossed. To test this, projeet the image of the flat lamp-flame on a pieee of white eard with a plano-eonvex lens (the field-lens of the Hnyghenian eye-picee), use first the convex side and then the plane side towards the eard, the lamp being placed about 6 feet from the leus. Foeus the lamp-flane as sharply as possible, and a eireular halo of misty light will be seen to surround the lampflame; but when the plane side of the lens is made to face the eard this halo of misty light will be seen to be greatly redueed, and the brightness of the image of the flame proportionately inereased. If the lens, then, were strietly aplanatie there should be no misty halo, all the light being coneentrated in the image of the lamp-flame, and the image of maximum brightness. In short, the diameter of the halo or misty light is the measure of the spherieal aberration. If the condenser referred to above, having the form of minimum aberration for two planes, be eompared in the same manner with an ordinary single bull's-eye of the same focus, the diameter of the misty halo will be found reduced to a radius of about $\frac{1}{5}$-inch, but, with this new eondenser there is a further reduction, so that the radius of the misty halo measures only $\frac{1}{20}$-inch. These experiments are instructive, becanse the brightness, or the mistness of the microseopical image is an associated phenomenon." *

A sectional view of the optical arrangement of Baker's aplatatic bull's-eye doublet is shown, together with lamp, in Fig. 148.

The Hicroscope Lamp.-The introduetion of paraftin into honsehold use has somewhat modified our views with regard to the most. suitable artificial source of illumination. Good paraffin burns with a whiter and purer flame than colza oil, and eonsequently is less liatble to fatigue the eyes. The first eost of the lan! is trifling ; for a moderate sum a handy form of lamp can be had, mounted on an adjustable sliding ring stand, and with a porcelain, netal

[^14]or paper shade, to protect the eyes fiom scattered ray's of light. All opticians supply accepted forms of lamps.
'T'o grive the increased effect of whiteness to the light (" white cloud illumination" as it is termed), take a piece of tissue paper, dip it into a hot bath of spermaceti, and, when nearly cold, cut out a cireular piece and secure it over the largest opening in the diaphragm plate. This will be found to materially moderate and soften the light.

Beck's Complete Lamp is construeted especially for delieate microscopical work. It has a burner giving a flat flame; this can

Fig. 160, - Beck © Complete Lamp.
be rotated to enable the edge or the flat of the flame to be used ; likewise a metal chimney with two apertures, in which 3×1 glass slips slide; either white or coloured glasses may be used. A Hersehel aplanatic condenser is carried on a swinging arm, which rotates around the lamp flame as a eentre, and can be clamped in any position. The whole lamp has a raising and lowering motion, with a spring elamp to hold it in any position. The lamp is so designed that at its lowest position the flame is only three inches from the table. Here the microscopist is furnished with a lamp which will aceomplish all he may reepure with regard to illumination.

Watson's lamp (Fig. 161) has a metal chimncy, and is somewhat simpler in structure than those alleady referred to. Fior the

Fig. 161. - Watson's Microscope Lamp. student, the simpler and cheaper form will answer every purpose. A glass holder for carrying varions tinted slips of coloured glass to act as a screcn or modifier of the light is mueh employed, and assists in determining fine structures (Fig. 162).

Fig. 162. - Glass Holder for carrying Coloured Glasses.

Nose-pieces and Objective Changers.

A convenient appendage to the microseope is the rotating nosepiece, invented by Mr. Charles Brooke, F. R.S., and intended to carry two or inore objectives, whereby a saving of time is effected, and the trouble of repeatedly serewing and unserewing is avoided. In the application of the nose-piece attention should be given to centring. Messiss. Baker's oljective changer is intended to facilitate the placing and replacing the nose-picee in position. This adaptation consists of a milled hearl, acting on three jaws, having a miversal screw thread, a decided improvement on the screw. Zeiss has adopted a tube-sliding oljective changer with eontring adjustments. Messrs.

Watson met the difficulty of centring by naking the nose-piece a part of the body-tube of their microscopes (lig. 163). This, when adapted to the shorter body of the students' microscope, fully compensates for want of lengeth.

Their triple nose-picce is eonstructed with much care, and when in use? is fonnd very effective. It is manufactured of that very light metal aluminium, and whieh

Fir. 163.-Watson's Centring Nose-piece of Microscupe. minimises the strain produced by the heavier brass nose-pieee.

Finders. - The finder affords a necessary and useful means of registering the position of any particular objeet, so that it may be readily found again at any subsequent period. In the work of examination the finder will save time when making a speeial rescarch, extending over a considerable surfaee.

That the finder has been of use may be sumised from the number invented and figured in the "Joumal of the Royal Mieroscopical Soeiety." By far the most useful form

Fig. 164. -'riple Nose-pieces. is that of graduating the plates of the mechanical stage, dividing a certain portion into 100 parts. Powell and Lealand have adopted this system in their No. 1 stands, white Baker and Watson have added a graduated scale on silver to $\frac{1}{100}$ th mm . as a finder, and also a stage mierometer in $\frac{1}{10}$ th and $\frac{1}{100}$ th of a millimetre, together with a Maltwood finder for lodging the position of any desired portion of a specimen under examination.
The Multwood finder (Fig. 165) ean be used with any mieroscope, and without a mechanical stage. This nseful finder continues to oceupy a permanent place among the accessories of the mieroscope. It eonsists of a glass slide, $3 \times 1 \frac{1}{1}$ inches, on which is photographed a seale occupying a square inch; this is divided by horizontal and rertical lines into 2,500 squares, each of whel contains two munbers
marking its "latitudc," or place in the vertical series, and its "longitudc," or place in the horizontal series. The scale is in each instance an exact distance from the bottom and left-hand end of the glass slide ; and the slide, when in use, should rest upon the ledge of the stage of the microscope, and be made to abut against a stop, a simple pin, about an inch and a half from the centre of the stage.

Dr. Pantacsek's finder appears to

Fig. 165. - Maltwood's Finder. have some advantage over Maltwood's, but it cannot be used with the same facility, and therefore will not displace an old favourite. The Amyot finder I have long had in use ; it is cfficient and incx-pensive-can indeed, if misplaced or lost, be replaced by the aid of the square and compasses.

The Okeden finder consists of two graduated scales, one vertical, attached to the fixed stage-plate, the other horizontal, attached to an

Fig. 166.-Amyot's Object Finder.
arm carried by the intermediate plate; the first of these scales enables the worker to "set" the vertically-sliding plate to any detcrminate position in relation to the fixed plate, while the second gives the power of setting the horizontally-sliding plate by that of the intermediate.

Hicrometers.-It is of the utmost importance to lave a means of measuring with acouracy the objects, or part of objects, muder
observation. The most efficient piece of apparatus for the purpose is the mierometer eye-piece, the carlier form of which, Jackson's, has been described under the heading Eye-pieces (p. 1+1). In the case of micrometers, as in that of most other accessories, every optician has his own adaptation and method of employing the same.

For the measirement of bacteria, a stage micromoter should be used with a eamera lueida. The stage micrometer consists of a slip of thin glass meled with a seale consisting of tenths and hundredths of a millimetre. The image is

Fig. 167.-The Ramsden Micrometer Eye-piece. projected on to a piece of paper placed on the table, and the drawing made, and the object to be measured ean be readily compared with the seale.

In the Ramsden micrometer eye-piece, as previously explained, two fine wires are stretched across the ficld of an eye-picec, one of which can be moved by a mierometer serew. In the field there is also a scale with teeth, and the interval between them corresponds to that of the threads of the screw.

The ciremmference of the brass head is usually divided into one hundred parts, and a screw with one hundred threads to the ineh is used. The bacterinm to be measured is brought into a position in which an edge appears to be in contact with the fixed wire, and the micrometer serew is turned until the travelling wire appears to be in contact with the other edge. The seale in the field and seale on the milled head, together, give the number of complete turns of the serew and the value of a fraction of a turn in separating the wires.

In the micrometer eye-piece construeted by Zeiss, the eye-piece with a glass plate with erossed lines is carried across the field by means of a mierometer serew. Each division on the edge of a drum corresponds to $01 \mathrm{~m} . \mathrm{m}$. Complete revolntions of the drum are counted by means of a fighred seale in the visual field.

In the micrometer used with Zeiss's apochromatic objectives and compensating eye-pieces the divisions are so computed, that, with a tube-length of 160 mm ., the value of one interval represents, with each objective, just as many micra (0001 mm .) as there are millimetres in its focal length. A ralue of tables is therefore not required

Fig. 168.-'The Wollaston Camera Lucida,
for these cye-pieces, since the focus of the lenses indicates their mierometer values within 5 per cent.

The C'amera Lucida will prove an extremely useful adjunet to the micrometer, and a large number of contrivances have been devised for its employment. There are those which project the image on to the surface of a sheet of paper provided for the drawing, and those which project the pencil and paper into the field of the mieroseope. The former method is that usually adopted. To draw an object, with cither a Wollaston camera lucida or a nentral tint reflector, such as that of Beale's, both of which are made to slide on and take
the place of the cap of the eyc-picce, as shown in Fig. 168, with its flat side uppermost, the whole instrument must be raised until the edge of the prism is exaetly 10 inehes from a picce of paper placed upon the table ; with the latter the instrument retains its vertical position, and the image of the object is thrown on the paper placed in front of the stand. The light must be so regulated that no more than is really necessary is upon the object, whilst a full light should be thrown upon the paper. Only one eye is to he used ; and if one half of the pupil be directed over the edge of the prism, the ohject will

Fig. 169.-Microsenpe in position for drawing.
appear upon the paper, and ean be traced on it by a pencil, the point of which will also he seen. Should any bheness be visible in the field, the prism is pushed too far on, and should be drawn back till the colour disappears.

The position in which the microscope must be plaeed is shown in the aecompanying illustration (Fig. 169).

Beale's noutral tint reflector (Fig. 170) is muelı in use, and its advantages are utility, simplicity, and inexpensivencss.

The Abbe model of camera lucida has heon brought into use because the projeeted image can be better illuminated, and is consequently so much brighter, This form is now made in aluminium
by Messrs. Watson \& Sons. In place of the image being taaced by projection on paper, the reverse is the ease, both the paper and pencil are projeeted into the field of view. The miror reflects the paper on to the silvered surface of a prism plated over the eye-lens of the eyepiece of the microscope, and it is thereby conveyed to the eye. There is a central opening in the silvering throngh which microseopic vision is obtained. It is fitted in a new manner by means of a eloth-lined adapter, fitting over the outside of the mieroseope tube; this saves all trouble in centring and ensures concentricity. Where the instrument has eapped cye-pieces, the camera lucida must be adapted to the eye-piece, the

lig. 170.-Beale's Nentral Tint Reflector. eap being removed. The apparatus ean be disconnected from the fitting adapter by means of a sliding pin, and readily replaced, or

Fig. 171.-The Abbe Model Camera Lucida.
can he lifted over out of the way, as shown in the drawing. Being made almost entirely in aluminium it is very much lighter than other forms of apparatus, and does not canse vibration. It can be used with the mieroscope at any angle, the only neeessity being that
the paper on which the sketeh is made should be kept at the same angle as the instrument.

Micro-Photography.

Micro-photography or photo-micrography, as it is indifferently termed, has, to a very eonsiderable extent, superseded the use of the eamera lueida for the delineation of images seen under the microscope. I may claim to be among the first workers with the microscope (1841) to prove beyond a doubt that the camera could be made to render invaluable aid to the mieroseopist, whereby a great saring of time might be effected, and a drawing obtained with greater aeeuraey than that of the peneil of the draughtsman.

It was about 1864-5 that Dr. Woodward's earlier miero-photographs were first seen in London. His skill in the manipulation of the microseope had been long known. His first series of photographs of test diatoms created, I remember, quite a sensation; they hare probably never been surpassed. These were taken by sun-light, magnesinm, and eleetrie-light. I was the reeipient of a series taken at a later date (1870), and which, bound in quarto volume, are almost as perfeet in definition as any of a later clate taken by oilimmersion objectives.

The objectives used by Dr. Woodward, throughout, were a $\frac{1}{8}$-ineh of Wales's (new series), and a $\frac{1}{16}$-inch immersion, of Powell dt Lealand's, especially produeed for work with the eamera. The magnifieation varied from 800 to 3,000 diameters, a frustule of Girammatophora Marina magnified 2,500, and a scale of podura, marked 3,000 in my eolleetion, are equal in definition to those tiken by a high-angle $\frac{1}{12}$-inch oil-immersion. Pathologieal specimens taken with lower powers are equally instrnetive, a seetion of epithelial eancer showing both nuelei and eells with distinetness.

Dr. Maddox in 1864 was also experimentally engaged in the improvement of the proeesses of photography for the purpose of promoting the work of mieroscopists. His labours were attended with great suceess. " To him we are indebted for the gelatine dryplate proeess, which gave a remarkable impetus to photography in general. Dr. Maddox has, for a period extending over forty years, diligently and sueeessfully cultivated and promoted mierophotography. Among other workers to whom we are indebted for
improvements in micro-photography l may mention Wenham, Draper, Shadbolt, Highley, Koch, Sternberg, Pringle, Leitz, and Pfeiffer.

Dr. Koch justly claims the eredit of having extended the application of micro-photography to the delineation of bacteria. A sories of instructive miero-photographs were published by him in 1877.

The importance of the eamerat has become more matifest as the work of the bacteriologist has progressed. Koch strongly advocated miero-photography on the ground that illustrations, especially of bacteria, should be as true to nature as possible. Dr. Edgar Crookshank holds the same opinion, and in support of his views we have mumerous illustrations of the bacteria given in his valuable "Text-book of Baeteriology." But he does not disguise the truth that there are diffienlties to be encountered, the first of which is owing to the fact that the smallest and most interesting bacteria can only be made visible in animal tissues by staining. This drawback has been very nearly overcome by the use of cosin-collodion. With this medium, and by shutting off portions of the spectrum by coloured glasses, Koch suceceded in obtaining photographs of bacteria, which were stained with blue and red aniline dyes. This method, however, introdued a disturbing element of another kind. Owing to the longer exposure required, the results were wanting in definition, attributable, it was thought, to vibrations of the apparatus produeed by passing traffic, or by assistants moving about over the floor of the laboratory.

Koch nevertheless showed, at the great meeting of the International Medical Association in London, 1881, a series of mierophotographs of baeteria and tissue sections, which were the admiration of all who saw them. To meet a diffieulty oecasioned by the aniline dyes, Koch recommended that the preparations should be stained brown ; other experimenters found that preparations stained either yellow or yellowish-brown gave good photographic representations ; but it is by no moans an easy matter to find a good differential stain of bacteria in the tissues, as even Bismarck brown is not entirely successful. Other bacteriologists have encountered similar difficulties at the ontset. Hanser suceected in showing the value of micro-photography in the production of pictures of impression preparations and eolonies of bacteria in mutrient-gelatinc. But to give the general effect, as woll as faithfully reproduce the minute
details in these preparations of bacteria by the aid of the peneil, would in most eases create insurmomable difficulties, except in the hand of the most aecomplished dranghtsman. Hatuser employed (ierlach's apparatus, and Sehleusser's dry-plates, and ohtained his illumination by means of a small incandesecnt lamp, which gave a strong white light. The preprations so photorraphed were for the most part stained brown, and mounted in the ordinary way in (Gunada balstm.

In 1884, Yan Ermengen succeeded in photographing preparations of comma-baeilli stained with fuehsine and methyl violet. These pietures afforded the first practical illustration of the value of isochromatic plates in miero-photography, and their introduction marks a distinet cra in the progress of micro-photography. The isochromatic, or more properly the ortho-ehromatie, dry-plate process was introdueed beeause in photography blue or riolet eomes out almost or quite white, while other eolours, yellow and red, are represented by a sombre shade or even by black. This is due to the want of equality of strength between the luminous and the aetinie or ehemical rays of light. In other words, the riolet and blue rays are more ehemieally active than any other portion of the speetrum. It was found, then, that if plates were eoloured yellow with tumeric, the blue and violet rays were intercepted, and their aetinism proportionately reduced.
"In 1881, the so-ealled iso-chromatie plates were introdueed. The emulsion of bromide of silver and gelatine was stained with cosin, and it was clamed that colours could be represented with their relative intensity ; chlorophyll and other stains have also been tried, and by sueh methods the ordinary gelatine dry-plates can be so treated that they will reproduce various colours, according to their relative light intensity, and thus be rendered iso-, or what is now known as ortho-chromatic."

Apparatus and Material.

Appuratus and Naterial used in micro-photography have, from time to time, been greatly varied by different workers, some preforing to use the microscope in the rertical position with the camera superimposed or fitted on the eye-picee of the microseope tube ; others, again, prefer that both the microseope and the eamera should be
arrayed horizontally. In another form the ordinary mieroseope is dispensed with aml the objective stage and mirror are alapted to the front of the eamera, together with a suitable arrangement for holding the object. Lastly, the camera is lain aside, and an neratingroom rendered impervions to light, takes its place, and the image is projected and focussed upon a ground glass sereen held in its place by a separate support. This method has been made practical since the introduction into microscopy by Zeiss of the mojection eye-picec. It is well known that micro-photogriphs ean be produced by employing these projection eye-picees, as well as for screen illustrations in the lecture-room.

With regard to the position of the microscope and camera, the horizontal affords greater stability than the vertical, and is on this account to be preferted. The simplest apparatus consists of a camera fixed upon a base board, four or five fect in length, upon which the

Fig. 172.-Swift's Horizontal Apparatus.
microseope can be elamped, and which also carries the lamp and bull's-eye lens (Fig. 172). This arrangement I have found ceonomical and uscful. No more elaborate arrangement is actually necessary. Sunlight is no doubt the best, but a good paratfin lamp is a handy and available illuminant.

With the former, and rapid plates, a short exposure of three or four seconds, even when high powers are used, is found sufficient; whereas, with the paraffin lamp it will vary from three to ten minutes.

Walmsley gives the following talbe for exposures with the lamp:-

For micro-photography the following practical rules must be observed. The sub-stage condenser may be dispensed with whon low powers are used, as well as the mirror, and the lamp so placed that the image of the flat of the flame appears accurately adjusted in the centre of the field of the microscope. The bull's-eye lens is so interposed, that the image of the flame disappears, and the whole ficld becomes equally illuminated with high powers; the sulb-stage achromatic condenser must be used, and a greater intensity of illumination is obtained by placing the lamp-flame edgeways. It is advisable to begin the practice of micro-photography with low powers, and a trial experiment should be made with some well-known object as the blow-fly's tongue.

Dr. Crookshank is of opinion that, in the case of micro-organisms when their biological characters are stndied under low powers of the microscope, photographs are preferable, because they give a more faithful representation of the object. A micro-organism, even under the highest powers of the microscope, is so minute an object, that to represent it in a drawing requires a vcry delicate touch, and it is only too easy to make a picture which gives an crroneous impression to those who have not seen the original. Photography enables the scientific worker to record rapid changes, and it is quite possible as the art advances we may find the film more sensitive than the human retina, and that it will bring out details in bacteria which would be otherwise unrecognised. The result, therefore, of experionce is that in rescarch laboratories it will come into more general use as a faithful and graphic method. I cannot better bring these observations to a close than by giving a quotation from Dr. Piersoll's practical method of obtaining micro-photographs.

The three essential conditions to ensure success in micro-photography are:-(1) Satisfactory apparatus; (2) good illumination ; (3) suitable preparations. With high amplifications (1,000 diameters and over), the conditions are greatly changed by the approach to the limit both of the shortuess of the foens of the objective and of the length of the camera which can be advantageonsly used; for the first experience leads to the adoption of the $\frac{1}{5}$-inch, for the second four feet is the limit, since a given high amplification, say 2,000 diameters, can be more satisfactorily and more conveniently obtained with a superior $\frac{1}{12}$-inch connection with suitable optical
means to inerease the initial magnifying power of the objective, than with an unaided $\frac{1}{2}-$-inch lens, and the plate removed to a greater distance. Until quite recently the various amplifiers offered the best means of increasing the power of an objective, but the introduetion of the projection-oculars of Zeiss is an aecessory pieee of apparatus, far superior to any older deviee. These projeetion-oeulars resemble ordinary mieroseopieal oculars or eyepieces only in general form and name, being optieally a pro-jeetion-objeetive in eomneetion with a eollecting lens. The new oil-inmersion apochromatie lenses, in eombination with these projection-neulars, form undoubtedly the more effieient equipment for high-power work; it is as true for high-power photography as for mieroseopieal observation in general, that the best results are obtained with fine and neeessarily expensive, optieal applianees. If for the satisfactory study of the intimate strueture of a cell, or of a miero-organism, the most improved immersion lenses are neeessary, it is to be expected that, for the sueecssful photography of the same, tools at least as good are needed. Sunlight eertainly affords the most satisfaetory illumination whereby good miero-photographs ean be obtained, as well as for reeording microseopieal images. That by good lamp-light fair impressions of objeets under extreme magnifieation ean be seeured is eneouraging, but the negatives produeed by sueh illumination seldom, if ever, possess the eharaeteristies of a really good sunlight negative, where the sharpest details are eombined with an exquisite softness and harmony of half-tones.

If the mirror of the mieroseope be of good size, it will only be neeessary to make an arm on which to support the removed mirror outside some southerly exposed window, sinee it is desirable to have a greater distance between the mirror and the stage than would be possible were the mirror attaelied in its usual place. Where the mieroseope mirror is too small to be satisfaetorily used, a reetangular wood-framed looking-glass is readily mounted, with the aid of a few strips of wood, so as to turn about both axes.

The rays from the plane side of the miror should pass through it eondensing lens (of 8-10-ineh foens, if possible), so placed that they are brought to a foens before reaching the plane of the objeet. The exact position of the eondonsing lens is a matter of experienee;
usually, however, the most firourahle illumination is obtained at that point where the field is brilliantly and uniformly ilhminated, just before the rays form the image souree of light; the nearer the foens the less disturbanee from diffaction rings. Ordinary objectives will require the employment of monoehromatie lightprodueed either by a deep blue solution of ammonia-sulphate of copper, or by the green glass screen-since the optical and actinie foci do not usually perfeetly eoincide. Powers up to the $\frac{3}{4}$-inch will require no further condenser; with the $\frac{1}{4}$ or $\frac{1}{6}$-inch objeetives, the low power (1 or $\frac{3}{4}$-ineh) serves with advantage as an aehromatie condenser, when attaehed to the sub-stage. The Abbe condenser, although so important for fine mieroscopieal investigation, is not adapted to photography unless a very wide eone of light is desired, which, for the majority of preparations, is some adrantage; a lowpower objeetive, used as a eondenser, is found to be more satisfactory than the Abbe with a small diaphragm.*

The greatest clelieaey in manipulation is neeessary, as in working with a $\frac{1}{12}$-inch objective a turn too much of the fine adjustment will eause the image to ranislı. With fine preparations of baeteria it is not easy to trace the image, and henee the adrantage of eommeneing with a well-marked objeet, as that of the fly's tongue. The development and fixation of the image must be proeecled with as in the ordinary photographie proeess. In the text-books of photography full aecounts of failures will be found, their eauses and prevention. Numerous papers and suggestions for miero-photographie work will also be found seattered throughout the "Journal of the Royal Mieroseopieal Society."

The Projection Eye-piece has beeome an essential part of mierophotography, and it is so arranged that it may be employed with advantage with objectives of either the apochromatie or ordinary series for photographie purposes, projeeting an exquisitely sharp image of the objeet on the plate. A diaphragm between the lenses limits the field, and a sharp image of it shonld appear on the sereen when the eye-pieee is adjusted. 'The adjustment may be effeeted by revolving the eye-piece cap in a spiral slot, so that the eye or top lens is either brought closer or remored farther away from the diaphragm, as may be required, and divisions and a reader are

[^15]usually provided for registering positions. Such eye-pieces are made th fit any size microscope borly:

> Initial magnifying powers:-
> English lengeth of tuhe- $10-\mathrm{in} . \quad 3$ and 6.
> Continental ",, (i-in. 2 and 4.

The microscope and canera (Fig. 173) are here seen to be part of the same instrument. The bellows of the eamera have an extension varying from 6 in . to 30 in . The board on which the microscope and limelight jet are fixed is made to turn out of the line of the eamera to facilitate adjusting the instrument and radiant, either limelight, electric light or paraffin lamp; when this is done the board carrying the same is turned back to a stop which brings the mieroscope into a central position with the focussing sereen. An adjustment is supplied at the side of the eamera, geared to the slow movement, for fincly focussing the object upon the sereen. A light-excluding connection is fitted to the front of the camera and mieroscope ; immediatcly behind this, in the hellows, is an exposing shutter which is manipulated by means of a small milled head. Two focussing screens are usually supplied, one grey, and one patent plate, together with a donble dark slide.

Mr: Audrew Pringle's vertical microphotographie apparatus is an excellent form; it consists of a heavy base and brass support, carrying a quarter-plate

Fig. 173. - Paker's Pringle Vertical Micro-plotographie Apparatus. camera, grey and plain glass focussiug screcn, double dark back, camera extending to 24 inches, and turning aside as shown in Fig 173. It is light-tight in all its connections,
'To secure unform results in microphotography, only thin preparations, which lie as nearly as possible in ono plane, can be relied upon for grood and perfect negatives.

An electric are lamp specially designed for micro-photographic work, wherever the cleetric current is available, is that known as "the Ross-Hepworth projection are lamp." The advantage gained by this form of lamp is not only on account of the casc with which it may be employed, but also on account of its superior power and quality. It is of primary importanec that the lamp employed to convert the electricity into light should be of a good and reliable pattern. It is not essential that

Fig. 174.-Ross's Are Lamp. it should be automatic in its working-many experienced mierophotographers preferring a simple haud-feed lamp to the onc of a more complicated kind, being so much less difficult to keep in order. A good hand-fecd microscope-lamp has the advantage of greater simplicity and portability.

The argand gas-light arranged for me many years ago for microphotography may be cmployed witl advantage. It is clean, and always ready for use when brought down to the table attached by a piece of india-rubber tubing. The incandesecnt form of burner enhances its value, since the light is thereby rendered whiter. The arrangement is shown in the diagrammatic drawing, Fig. 175.

Over the argand burner B, is a palc-bluc glass chimmer, resting on a wire ganze, stage A; this secures a uniform current of air. The colour of the flame may be still more influcuced by a dise of neutral tint, or other coloured glass, inserted into the circular opening at E , in a halfecylinder of metal, G, used to cut off all extrancons light; can be rotated on the stage by the ivory nob at H , a metallic reflector I, attached to the standard rod, on being brought parallel to F serves to concentrate the light and send it on to the bull's-eyc, and through it to the mirror, or directly to the photo-mieroseopie cameria

By removing the shield G, and hringing the shade $I f$ over the burner, it is at once converted into a useful microscopical lamp, for all ordinary purposes. The serew R clamps the lamp-flame at

Fig. 175.-Table Incandescent Gas-lamp.
any leight, while the support N earries a water-bath O, or a plate P, both of which will be found useful in proparing and mounting objects.

A special incandeseent gas-lamp is made by Messrs. R. \& J. Beek.

Polarisation of Light.

Common light moves in two planes at right anglos to each other, while polarised light moves in one plane only. Common light may be turned into polarised light either by tramsmission or reflection; in the first instance, one of the planes of common light is got rid of by reflection; in the other, by absorption. Huyghens was one of
the first physicists to notiee that a ray of light has not the same properties in every part of its eireumference, and he emmpared it to a magnet or a collection of magnets; and supposed that the minute partieles of whieh it was said to he eomposed had different poles, whieh, when aeted on in certain ways, arranged themselves in particular positions; and thence the term polarisation, a term having neither reference to eanse nor effeet. It is to Malus, however, who, in 1808 , diseorered polarisation by reflection, that we are indebted for the series of splendid phenomena whieh have sinee that period been developed; phenomena of sueh surpassing beauty as to exeeed most ordinary oljjects presented to the eye under the microseope.

Certainly no more misleading name could well have been found to deseribe the causation, in one partienlar direetion, of small displacements in the medium, through which the light waves are made to pass.

The effeet of "polarising" light is simply to alter the directions of the vibrations of light, and allow of certain waves to pass which are vibrating in one direction only, vertieal, horizontal, or oblique, as the ease may be. The most efficient agent discovered for the polarisation of light is that of Ieeland spar, ent and momeded as a "Nicol" prism.

By cutting erystals of Ieeland spar into two parts, at a partieular angle, and eementing them together again in the reverse way, Nieol suceeeded in showing that one of the two polarising peneils could be totally defleeted to one side, while the other is direetly transmitted through the Nieol-prism, and thereby the beam of light beeomes at once "polarised" in one plane only. No apparent difference ean be seen in the prism on holding it up to the light, exeept it be in a very slight loss of brightness; but if another similarly heated erystal be held before, and made to revolve around, a quarter of the eirele just where the two eross each other, total darkness results. This phenomenon alternately recurs at every quadrature of the cirele. A pair of Nieol prisms, when appropriately mounted, constitute "ir polarising apparatus" for the microscope, one being fitted into the sub-stage, and the other either immediately above the objective or eye-piece, where it can be easily rotated, the object to be examined being placed on the stage of the mieroseope, that is, between the polarising and analysing prisms.

Polariscope ()b.ifects

Tuffen Weat, del.
Plate VIII.

The significance of polarised light contres in the fact that it affords a wider insight into the structure of crystals, minerals, and a number of other substances, and which eonld not otherwise be obtained without its aid. Its usefnlness is multifold, as even glass itself, when not properly amealed, cxhibits points of fracture, by a display of Newton's rings. The knowledge thus aequired is turned to aecount by glass manufacturers.

Double refiaction.-When an incident ray of light is refraeted into a erystal of any other than the cubie system, or into eompressed or unannealed glass, it gives rise to two refraeted rays whieh take different paths; this phenomenon is termed double refraction. Attention was called to this in 1670, by Bartolin, who first observed it in Ieeland spar; and the laws for this substance were aceurately determined by Huyghens.

Iceland spar or eale spar is a form of crystallized carbonate of lime. It is eomposed of fifty-six parts of lime and forty-four parts of earbonic acid, and is usually found in rhombohedral forms of erystallization.

To observe the phenomenon of double refration, a rhomb of lceland spar may be laid on a page of a printed book, when all the letters seen through it will appear double; the depth of the blaekness of the letters is seen to be eonsiderably less than that of the originals, exeept where the two images overlap.

In order to state the laws of the phenomena with preeision, it is neeessary to attend to the erystalline form of Ieeland spar, whieh las equal obtuse angles. If a line be drawn through one of these eorners, making equal angles with the three edges whieh meet there, it, or any line parallel to it, is called the axis of the erystal; the axis being, properly speaking, not a definite line but a definite direction.

The angles of the crystals are the same in all speeimens. If the crystal is of such proportions that these three edges spoken of are oqual, as in the smaller crystal (Fig. 176), the axis is the direction of one of its diagonals, as represented.

Any plane contaning (or parallel to) the axis is called the principal plane of the erystal.

In the next diagram, Fig. 177 , the line appears double, as a 6 and $r d$, or the dot, as e and f. Or allow a ray of light, $g h$, to fall thus on the crystal, it will in its passage through be separated into
two rays, $h f, h e$; and on coming to the opposite surface of the crystal, will pass out at ef in the direction of $i k$, parallel to $g h$. The plane $l m n o$ is designated the prineipal section of the erystal, and the line drawn from the solid angle l to the angle o is where

Fig. 176.-Axis of Crystals of Iceland Spar.
the axis of the erystal will be found; this is its optie axis. Now when a ray of light passes along this axis, it is undivided, and there is only one image; but in all other directions there are two images.

Mr. Nicol, of Edinburgh

l'ig. 177.-A Rhomb showing the passage of Rays of Light. first succeeded in making a rhomb of Iecland spar into a single-image prism. His method of splitting up the crystal into two equal parts was as follows:-

A rhomb of Iceland spar of onc-fourth of an inch in length, and about foureighths of an ineh in breadth and thickness, is divided into two equal portions in a plane, passing throngh the acute lateral angle, and nearly tonehing the obtuse side angle. The sectional plane of each of these halles must he earefully polished, and the two portions cemented firmly together with Cimada balsam, so as to form a rhomb similar to that before division; by this management the ordinary and extrardinary rays are so separated that only one is tramsmitted : the canse of this great
divergence of the rays is considered to bo owing to the action of the Canada balsam, the refraetive index of which (1.549) is that between the ordinary (1.6543) and the extraordinary (14833) refraction of ealcareons spar, and whieh will ehange the direction of both rays in an opposite mamer before they enter the posterior half of the combination. The direction of rays passing through sueh a prism is indicated by the arrow, Fig. 178.

Polarised light camnot be distinguished from common light, as

Fig. 178. already said, by the naked eye ; and for all experimental purposes in polarisation, two pieees of apparatus must be employed, one to produce polarisation, and the other to show or ana'yse it. The former is ealled the poluriser; the latter the analyser; and every apparatus that sorves for one of these purposes will also serve for the other.

Fig. 179.-Polariser.

Fig. 179a.-Analyser.

Polatising Apparatus for Students' Mieroscope.
In all cases there are two positions, differing by 180°, which give a minimum of light, and the two positions intermediate between these give a maximum of light. The extent of the changes thus observed is a measure of the completeness of the polarisation of light.

The two prisms mounted as shown in Figs. 179 and 179a constitute the apparatus adapted to the microscope. The polariser slips into place below the stage, and the analyser, with the prism fixed in a tube, is screwerl in above the objective.

The definition is eonsidered by some experimenters as somewhat better if the analyser he used above the eye-piece, and is eertainly more easily rotated.

Method of employiny the Polurising Prism (Fig. 179). - After having adapted it to slide into a groove on the under-sinfice of the stage, where it is secured and kept in place by the

Fig. 180.-Prism mounted as an Eyc•pieee. small milled-head screw, the other prism (Fig. 179a) is screwed on above the objeet-glass, and thus passes directly into the borly of the microscope. The light from the mirror having been reflected through them the axes of the two prisms must be made to eoincide; this is done by regulating the milled-head screw until, by revolving the polarising prism, the field of view is entirely darkened twiee during its revolution. If very mimute salts or erystals are submitted for examination then it will be found preferable to place the analyser above the eye-pieee, as in Fig. 180. Thus the polariscope is seen to consist of two parts; one for polarising, the other for analysing or testing the light. There is no essential differenee between the two parts, exeept what eonvenienee or ceonomy may lead us to adopt; and either part, therefore, may

Fig. 181. - More Molern Polariser and Analyser.
be used as polariser or analyser; but whichever is used as the polariser, the other becomes the analyser.

Opticians lave their own methods of adapting the polariser and amalyser to their several microseopes. Watson's speeial form of apparatus is represented in Fig. 181, the polariser being adapted to the sub-stage, and the analyser to serew into the objeetive.

Tourmaline.- λ semi-transparent mineral, of a neutral or huish tint, ealled tourmaline, when eut into thin sliees (about $\frac{1}{2} \frac{1}{0}$-inch thiek) with their faees parallel to their axes exhibit the same phenomena as the Nicol prism. The only objection to which is that the transmitted polarised bean is more or less eoloured. The tourmaline to be preferred stops the most light when its axis is at right-angles to that of the polariser, and yet admits the most when in the same plane. Make ehoice of a tourmaline as perfect as possible; size is of less importanee when intended for use with the mieroseope.

Transmission of rays through tourmaline is only one of several ways in which light ean be polarised. When a beam of light is reflected from a polished surface of glass, wood, ivory, leather, or any other non-metallie substanee, at an angle of 50° to 60° with the normal, it is more or less polarised, and in like manner a refleetor eomposed of any of these substanees may be employed as an analyser. In so using it, it should be rotated about an axis parallel to the ineident rays whieh are to be tested, and the observation eonsists in noting whether this rotation produees ehanges in the amount of refleeted light.

For every refleeted substance there is a partieular angle of ineidenee, whieh gives a maximum of polarisation in refleeted light. It is called the polarising angle for the substanee, and its tangent is always equal to the index of refraction of the substance ; or, what amounts to the same thing, it is that partieular angle of incidence which is the complement of the angle of refration, so that the refracted rays are at right angles. This important law was diseovered experimentally by Sir David Brewster.

Tourmaline, like Ieeland spar, is a negative uniaxial erystal ; and its use as a polariser depends on the property which it possesses of absorbing the ordinary mnch more rapidly than the extraordinary ray, so that a thickness which is tolerably tramsparent to the latter is almost eompletely opaque to the former. Its pale eobalt blue colour enhances the beauty of eertain crystal and mineral substances, but like Iceland spar; the paler and more perfect crystals are becouning scaree.

Selenite is mother mineral of rahue in polarisation experiments. It is a mative crystalline hydrated sulphate of lime. A boantiful fibrous variety oalled satin-gypsum is found in Derbyshire. The
form of the crystal most frequently met with is that of an oblique rectangular prism, with ten rhomboidal faces, two of whieh are much larger than the rest. It is usually split up into thin lamine parallel to their lateral faees; each film should have a thickness of from onetwentieth to one-sixtieth of an inch. In the two rectangular directions these films allow perpendicular rays of polarised light to traverse them unclianged, termed their neutral axes. In two other direetions, however, which form respeetively angles of 45° with the neutral axes, these films have the property of double refraction, a direetion known as the clepolarising axis.

The thiekness of the film of selenite determines the particular tint. If, therefore, we use a film of irregular thickness, different colours are presented by the different

Fig. 182.- Darker's Selenite Films and Stage. thicknesses. These faets admit of very curious and beautiful illustration, when used under the object placed on the stage of the mieroseope. The films employed should be mounted between two glasses for protection. Some persons employ a large film, mounted in this way between the plates of glass, with a raised edge, to aet as a stage for supporting the object, it is then ealled the "selenite stage." The best film for the microseope is that which gives blue, and its eomplementary colour yellow. The late Mr. Darker construeted a selenite stage for the purpose (Fig. 182). With this a mixture of eolours will be brought about, by superimposing three films, one on the other. By slight rariations in their positions, produced by means of an endlessserew motion, all the eolours of the spectrum ean be shown. When objects are thus exhibited, it should be borne in mind that all negative tints, as they are termed, are diminished, and all positive tints increased; the effect of which is to mask the true character of the phenomena.

For a certain thickness of selenite the ellipse will become a circle, and we have thus what is ealled circularly-polarised light, whieh is characterised by the property that rotation of the analyser produces
no change of intensity. Cireularly-polarised light is not, however, identical with ordinary light; for the interposition of an additional thickness of selenite converts it into elliptieally (or in a particular case into planc) polarised light.

It is necessiry, for the exhibition of colour in our experiments, that the plate of selenite shonld be very thin, otherwise the retardation of one component vibration as eompared with the other will be greater by several complete periods for violet than for red, so that the ellipses will be identical for several different colours, and the total non-suppressed light will be sensibly white in all positions of the analyser.

Two thiek plates may, however, be so combined as to produce the effect of one thin plate. For example, two selenite plates of nearly equal thiekness may be laid one upon the other, so that the direction of greatest clastieity in the one shall be parallel to that of least

Fig. 183.-Red is represented by perpendieular lines; Green by oblique.
elasticity in the other. The resultant effect in this case will be that due to the differenee of their thieknesses. Two plates so laid are said to be crossed.

The following experiments will well serve to illustrate some of the more striking phenomena of double refraetion, and will also be a nseful introduction to its practical applieation. Take a plate of brass (Fig. 183) three inches by one, perforated with a series of holes from about one-sixteenth to one-fourth of an inch in diameter; the size of the smallest should be in aecordance with the power of the objeetive, and the separating power of the double refraction.

Experiment 1.-Plaee the brass plate so that the smallest hole shall be in the centre of the stage of the microscope; employ a low power ($1 \frac{1}{2}$ or 2 inehes) objective, and adjust the focus as for the ordinary microscopie object; place the double image prism over the eye-picee, and two distinet images will be seen; by revolving the prism, the inages will describo a cirele, the ciremmference of which will eut the centre of the field of view; one of whieh is the ordinary,
the other the extraordinary ray. By moving the slide from left to right the larger orifices will appear in the field, the innges seen will not be completely separated, but will overlap, as represented in the figure.

Experiment 2.-Insert the Nicol's prism into its place under the stage, still retaining the double image prism over the eye-picce; then, by examining the object, there will appear in some positions two images, in others only one image; it will be seen, that at 90° this ray will be cut off, and that which was first observed will become visible; at 180°, or one-half the circle, an alternate change will take place; at 270°, another change; and at 360°, the completion of the circle, the first image will reappear.

Bcfore proceeding to make the ucxt experiment, the position of the Nicol's prism should be adjusted, and its angles brought parallel with the square of the stage. The true relative position of the selenite should also be determined by noticing the natural flaws in the film, which shonld run parallel with each other; and be adjusted at an angle of about 46° with the square bars of the stage.

Experiment 3.-If we now take the plate of sclenite thus prepared, and place it under the picce of brass on the stage, we shall see, instead of the alternate black and white images, two coloured images composed of the constituents of white light, which will alternately change by revolving the eye-picce at every quarter of the cirele; then, by passing along the brass, the images will overlap; and at the point at which they do so, white light will be produced. If, by accident, the prism be placed at an angle of 45° from the square part of the stage, no particular colour will be perccived, and it will then illustrate the phenomena of the neutral axis of the selenite, because when placed in the relative position no depolarisation takes place. The phenomena of polarised light may be further illustrated by the addition of a sccond double image prism, and a film of sclenite adapted between the two. The systems of coloured rings in crystals ent perpendicularly to the principal axis of the erystal are best seen by enploying the lowest object-glass.

Biaxial Crystals.-T'o show perfectly the beautiful series of rings and brushes which biaxial crystals exhibit, it becomes nceessary to convert the microscope, for the time being, into (so to speak) a wideangled telescopc.

For the purpose, screw on a low-power nbjective to the end of the draw-tube (Fig. 184).* As the light requires to be passed

Fig. 184. - Diagrammatic armagement of the Polarising Mieroscope.
In Sub-stage: P, polarising prism; C, sub-stage eondenser on stage; M, mineral or enystal. On nose-picce: O^{1}, oljejective, ${ }_{1}^{4}$-inch; Λ, analysing prism.
In Draw-hube: $\mathrm{O}^{2}, 2$ of 3 ineh Ohjeetive; H , Hnyghenian cye-pieec.
through the erystals at a considerable angle, a wide-angled condenser should be employed, but it need not be achromatic. The objective most suitable is a $\frac{4}{1}$-inch, of 64 numerical aperture, but a $\frac{1}{4}$-inch
*"Journal of the Royal Mieroseopical Society," 1892, p. 684.
of $\cdot 71$ numerical aperture, or a $\frac{3}{3}$-inch of 65 numerical aperture, will answer the purpose equally well. As the whole of the back lens of the objective should be visible through the analysing Nicol prism, the back lens of the objective must not be too large; thus a $\frac{1}{2}$-inch of 65 mumerical aperture will not be so effective. The analysing prism may be placed either where it is in the drawing, below the stage, or above the eye-piece. It works equally well above the objective, the position it ordinarily occupies in the microscope.

For the draw-tube a 2 -inch objective and a B Huyghenian eyepiece answers very well. Before serewing the objective on to the end of the draw-tube centre the light in the usual manner, the Nieol's being turned so as to give a light field, then screw the objective on to the end of the aperture, and put the crystal on the stage, rack down the body so that the objective on the nose-piece nearly tonehes the erystal, then focus with the draw-tube only. The sub-stage condenser should be racked up close to the underside of the crystal.

Opticians, however, have more recently furnished a special form of mieroscope (The Petrological Microscope, Fig. 79, p. 112), for the use of those students who may desire to prosecute so fascinating a study, and determine the optic axial angles of crystals.

Fuess* lately introduced a new form of microscope for polarising and viewing biaxial erystals, which lie believes to be needed, as in the ordinary microscope the opening of the polariser is scarcely a third of that of the condenser; moreover, it is not absolutely neeessary that the polariser and analyser shonld be Nicol's prisms. This fact was diseovered by myself many years ago. Fuess utilises a bundle of thin glass plates, as in the older Nuremberg polariscope. The frame holding plates can be readily adjusted at the proper polarising angle, the analyser being the ordinary small Nicol, screwed above the objective. The illuminator is an Abbe's triple condeuser, of numerical aperture $1 \cdot 40$, which can be adjusted in the ordinary way. The front lens of this should have a diameter of $11 \cdot 12 \mathrm{~mm}$. and the lower lens of 30 mm . This increase in the condenser fully compensates for the loss of light by the bundle of glass plates, and also enables thick sections of crystals to be examined in convergent polarised light. The oeular used should hare a large field; the A Hnyghenian answers best. A suggestion to return to the original * "Jourmal of the Royal Microscopical Society," 1. 57S, 1897.

Nuremberg polariser is very opportune, as Iceland spar is becoming scarce.

Mr. A. Mickel accidentally discovered that an opalescent mirror can be converted into an excellcut and inexpensive substitnte for the Nicol-prism polariscr.

Rotation of Plane of Polarisation.

When a plate of quartz (rock-crystal), even of eonsidcrable thickness, cut perpendicular to the axis, is intcrposed between the polariser and analyscr, colour is exhibited, the tints changing as the analyser is rotated ; and similar effects of colour are produced by cmploying, instead of quartz, a solution of sugar enclosed in a tube with plain glass ends.

The action thus exerted by quartz and sugar is called rotation of the plane of polarisation, a name which sufficiently expresses tho observed phenomena. In the case of ordinary quartz, and solutions of sugar-candy, it is necessary to rotate the analyser in the dircction of watch-hands as seen by the observer, and the rotation of the planc of polarisation is said to be right-handed. In the case of what is called left-handed quartz, and of solutions of non-crystallisable sugar, the rotation of the plane of polarisation is in the opposite direction, and the observer must rotatc the analyser against watch-hands.

Quartz belongs to the uniaxial system of crystals, and accordingly cxhibits one series of rings only, and no perfect central black cross.

On revolving the tourmaline the colour gradually changes, and passes through all the colours of the spectrum. It can be cut to exlribit cither right-handed polarisation or left-handed polarisation and also to exhibit straight lines.

Calc Spar.-A uniaxial crystal showing only one system of rings, and a black cross, changing into a white cross on revolving the tourmalinc.

Topaz.-A biaxial erystal exhibiting only one system of rings with onc fringe, owing to the wide scparation of the axcs. The fringe and colours clange on revolving the tourmalinc.

Borax.-A biaxial crystal; the colours are secn to be more intense than in topaz, but the rings not so completc-only one set of rings can be scen, owing to thicir wide scparation.

Rochelle Salt.-A biaxial erystal; the colours are more widely spread ont than the former, and only one set of rings seen at the same time.

Carbonate of Lead.-A biaxial crystal ; axes not so far separated, and both systems of rings are more widely spread than those of potassium nitratc.

Aragonite.-A biaxial crystal; axes widely separated, but both systems of rings seen at the same time. A fine crystal for displaying the biaxial system.

It was long believed that all crystals had only one axis of double refraction ; but Brewster found that the greater number of erystals

Fig. 185.- Clystal of Potassium Nitrate.
which oceur in the mineral kingdom have two ares of double refraction, or rather axes aromed which double refraction takes place; in the axes themselves there is no double refraction.

Potassimm nitrate erystallises in six-sided prisms with angles of about 120°. It has two axes of double refraction. These axes are each inclined about $2 \frac{12}{2}$ to the axes of the prism, and 5° to each other. If, therefore, a small piece be split off a prism of potassium nitrate with a knife driven by a sharp blow of a hammer, and the two surfaces polished perpendieular to the axes of the prism, so as to leave the thickness of the sixth or eighth of an inch, and then a ray of polarised light be transmitted along the axes of the prism, the clouble system of rings will be elearly visible.

When the line comecting the two axes of the erystal is inclined 45° to the plane of primitive polarisation, a cross is seen on revolving the potassimm nitrate; it gradually assumes the form of two hyperbolie curves, as in Fig. 185, But if the tommaline be
again revolved through half a quadrant, the black cross will be replaced by white spaces, as in the second figure. These systems of rings have, generally speaking, the same eolours as those of thin plates, or as those of a system of rings revolving around one axis. The orders of the colonrs commence at the eentres of each system ; but at a certain distanee, which corresponds to the sixth ring, the rings, instead of returning and encirching each pole, encircle the two poles as an ellipse does its two foci. If the thickness of the plate of nitre be diminished or inereased, the rings are diminished or inereased aecording to the thickness of the erystal.

Small speeimens of various salts may be crystallised and mounted in Canada balsam for viewing under the stage of the mieroseope; by arresting erystallisation at certain stages, a greater variety of forms and eolours will be obtained : we may enumerate salieine, asparagine, acetate of eopper, phospho-borate of soda, sugar, earbonate of lime, potassium chlorate, oxalic acirl, and all the oxalates found in urine, with the other salts from the same fluid, a few of which are shown in Plate VIII.

The late Dr. Herapath described a salt of quinine, remarkable for its polarising properties. The crystals of this salt, when examined by refleeted light, have a brilliant cmerald-green eolour, with ahmost a metallie lustre; they appear like portions of the elytrie of the eantharides beetle, and are also very similar to murexide in appearance. When examined by transmitted light, they seareely possess any eolour, there is only a slightly olive-green tinge ; but if two erystals, erossing at right-angles, be examined, the spot where they interseet appears perfeetly black, even if the crystals are not more than one five-hundredth of an inch in thiekness. If the light be in the slightest degree polarised - as by reflection from a eloud, or by the blue sky, or from the glass surface of the mirror of the mieroseope placed at the polarising angle $65^{\circ} 45^{\prime}$-these little prisms and films assume eomplementary eolours : one appears green, and the other pink, and the part at which they eross is choeolate or deep chestnut-brown, instead of blaek. Dr. Herapath sueeceded in making artifieial tourmalines large enough to surmount the eye-piece of the microseope ; so that all experiments with those erystals npon polarised light may be made without the tourmaline or Nicol's prism. The finest rosette erystals are made as follows:-To a moderately strong
solntion of Cinchonidine add a drop or two of Herapath's testfluid.* A few drops of this is placed on the eentre of a glass slide, and put aside montil the first crystals are observed to be formed near the margin. The slide should now be placed upon the stage of the mieroseope, and the progress of formation of the crystals elosely watehed. When these are seen to be large enough, and it is deemed necessary to stop their further development, the slide must be quiekly transferred to the palm of the hand, the warmtl of which

Fig. 186. - In this figure heraldic lines are adopted to denote colour. The dotted parts indicate yollow, the straight lines red, the horizontal lines lilue, and the diagonal, or oblique lines, green. The arrows show the plane of the tommaline, a, blue stage; b, red stage of selenite employed.
will be found suffieient to stop further erystallisation. These erystals attraet moisture, deliquesee, and should therefore be kept in a perfeetly dry place.

To render these erystals evident, it merely remains to bring the glass-slide upon the field of the microseope, with the selenite stage and single tommaline, or Nieol's prism, beneath it; instintly the erystals assume the two eomplementary eolours of the stage: red and green, supposing that the pink stage is employed; or blue and yellow, provided the blue selenite is made use of. All those erystals

[^16]at right angles to the plane of the toumaline produce that tint which an analysing-plate of tourmaline would produce when at right angles to the polarising-plate; whilst those at 90° to these educe the complementary tint, as the analysing-plate would also have done if revolved through an are of 90°.

This test is a delicate one for quinine (Fig. 186, a and b); not only do these peculiar erystals act in the way just related, but they may be casily proved to possess the optical properties of that remarkable salt, the sulphate of iodo-quinine.

Fig. 187.-Polarised Crystals of Quinidine.
To test for quinidine, it is mercly necessary to allow a drop of acid solution to evaporate to dryness upon the slicle, and to examine the crystalline mass by two tommalines, crossed at right angles, and without the stage. Immediately little circular dises of white, with a well-defined black cross, start into existenec, should quinidine be present even in rery minute traces. These erystals are represented in Fig. 187.

If the selenite stage be employed in the examination of this object, one of the most gorgeous appearances in the whole domain of the polarising microscope is displayed: the black eross disappears, and is replaced by one consisting of two colours, and divided into a cross having a red and green fringe, whilst the four intermediate sectors are a gorgcous orange-yellow. These appearances alter
on the revolution of the analysing-plate of tommaline; when the blue stage is employed, the cross assumes a blne or yellow tint, varying according to the position of the analysing plate. These phenomena are analogous to those exhibited by certain circular erystals of boracie acid, and to circular dises of salicine (prepared by fusion), the difference being that the salts of quinidine have more intense depolarising powers than either of the other snbstances; the mode of preparation, however, excludes these from consideration. Quinine prepared in the same manner as quinidine has a very different mode of erystallisation ; but it oceasionally presents circular

Fig. 188. - Urinary Salts, seen under Polarised Light.
a, Uric acid; b, Oxalate of lime, octahedral crystals of; c, Oxalate of lime allowed to dry, forming a black cube; d, Oxalate of lime as it occasionally alpears, termed the dumb-bell crystal.
corneous plates, also exhibiting the black cross and white sectors, but not with one-tenth part of the brilliancy, which of course enables us readily to discriminate the two.

Urinary salts are more readily seen under polarised light than by white light. Ice doubly refracts, while water singly refracts. Ice takes the rhomboidic form ; and snow in its crystalline forms may be regarded as the skeleton crystals of this system (Fig. 189). A shent of elear ice, of about one inch thick, and slowly formed in still weather, shows circular rings with a cross by polarised light.

It is probable that the conditions of snow formation are more complex than might be imagined, familiar as we are with the conditions relating to the crystallisation of water on the earth's
surface. A great variety of animal, vegetable, and other substances possess a doubly refracting or depolarising structure, as: a quill cut

Fig. 189.—Snow Crystals.
and laid out flat on glass; the comea of a sheep's eye; skin, hair, a thin seetion of a finger-nail; sections of bone, teeth, horn, silk, cotton, whalcbone; stems of plants containing silica or flint; barley, wheat, \&e. The larger.graned starehes fom splendid objects;
tous-les-mois, the largest, may be taken as a type of all others. This presents a black cross, the arms of which meet at the hilum (Fig. 190). On rotating the analyser,

Fig. 190.-Potato Starch, under Polarised Light. the black cross disappears, and at 90° is replaced by a white cross ; another, but much fainter, black eross is seen between the arms of the white cross, no colour boing pereeptible. But if a thin plate of selenite be interposed between the starchgrains and the polariser, a series of delieate eolours appear, all of which change on revolving the analyser, beeoming complementary at every quadrant of the cirele. West and East India arrow-root, sago, tapioea, and many other stareh-grains, present a similar appearance; but in proportion as the grains are smaller, so are their markings and colourings less distinct.

Molecular Rotation.

For the purpose of studying the various interesting phenomena of molecular rotation, a few neeessary pieces of apparatus must be added to the mieroscope. First, an ordinary iron threc-armed retort stand, to the lower arm of whieh must be attaehed either a polarising prism or a bundle of glass plates inelined at the polarising angle; in the upper an analysing prism. The fluid to be examined should be eontained in a narrow glass tube about eight inches in height, and this must be attaehed to the middle arm. If the prisms be erossed before inserting a fluid possessing rotatory power, the light passing through the analyser will be coloured. If a solution of sugar be employed, and the light which passes through the second prism is seen to be red, but on rotating the analyser towards the right the colour ehanges to ycllow, and passes through green to violet, it may be coneluded that the rotation is right-handed. If, on the eontrary, the analyser requires to be turned towards the left hand, we conclude that the polarisation is left-handed. These phenomena are wholly distinct from those aeeompanying the action of doubly refracting substances upon plane polarised light. It is not casy to explain in a limited space the course to be followed in
ascertaining the amount of rotation produced by different substances. Monochromatic light should be used. If we are about to examine a sugar solution with the prisms crossed, the index attached to the analyser must first be made to point to zero. The sugar is then introduced, when it will be necessary to rotate the analyser 23° to the right, in order that the light may be extinguished. This is the amoment of rotation for that partieular fluid at a given density and that height of column. As the are varies with increase or decrease of density and height of the fluid, it is needful to reduce it to a unit of height and density. The following formula is that given by Biot:- $\mathrm{P}=$ quantity of matter in a unit of solution ; $d=\mathrm{sp}$. gr.; $l=$ length of column ; $a=$ arc of rotation $; m=$ molecular rotation.

Then $m=\frac{a}{l p d}$.

The application of the polarising apparatus to the mieroscope is of much value in determining minute structure. It may also be defined as an instrument of analysis ; a test of difference in density betwecu any two or more parts of the same substance. All structures, therefore, belonging either to the animal, vegetable, or mineral kingdom, in which the power of unequal or double refraction is suspected to be present, are those that should especially be reinvestigated by polarised light. Some of the most delicate of the elementary tissues of animal structure, the ultimate fibrillæ of muscles, de., are amongst the most interesting subjects that might be studied with advantage under this method of investigation. The chemist may perform the most dexterous analysis; the crystallographer may examine crystals by the nicest determination of their forms and cleavage ; the anatomist or botanist may use the dissecting knife and microscope with the most exquisite skill; but there are still structures in the mincral, vegetable, and animal kingdoms which will defy all such modes of examination, and will yield only to the magical analysis of polarised light.

Formation and Polarisation of Crystals.

The inorganic kingdom will afford to the microscopist a neverending number of objects of unsurpassed beauty and interest. The phenomena of crystallisation in its varied combinations can be made
a useful and instructive occupation. Although ignorant of the means whereby the great majority of minerals and erystals have been formed in the vast laboratory of Nature, we can, nevertheless, imitate in a small degree Nature's handiworks by crystallising out a large number of substances, and watch their numerous transformations in the smallest appreciable quantities, when aided by the microscope.

Among natural erystals we look for the material for the formation of our lenses, while the varieties of granites present us with the earliest erystallised condition of the earth's crnst as it cooled down, the structure of which is beautifully exhibited under polarised light. In Plate VIII. varions erystalline and other bodies are displayed. In No. 158 is a section of new red sandstone; 159 of quartz; and 160 of granite. Special reference is made to others in the following list of salts and other substances which form a beautiful series of objects for study under polarised light:-

SALTS.

Alum.
Asparagine.
Aspartic Acid. Plate VIII. No, 168.
Bitartrate of Ammonia.
Boracic Acid.
Borax. No. 164.
Carbonate of Lime.
Soda.
Chlorate of Potash.
Chloride of Barium.
Cobalt.
", Copper and Ammonia.
,, Sodium.
Cholesterine.
Chromate of Potash.
Cinehonine.
Cinchonidine.
Citric Acid.
Hippurie Acid.
Iodide of Mereury.
" Potassium.
,, Quinine.
Iodo-disulphate of Quinine.
Kreatine. No. 166.
Murexide.
Nitrate of Bismuth.
, Barytes.
,, Brueine.
,, Copper.
,, Potash.
,, Strontian.
", Uranium.

Oxalate of Ammonia.
,, Chromium.
,, Chromium and Potash.
", Lime.
,, Socla.
Indurated Sandstone, Howth.
Indurated Sandstone, Bromsgrove.
Gibraltar Rock.
Granite, various localities. No. 160.
Hornblend Schist.
Labrador Spar.
Norway Rock.
Quirtz Rock, varions. No. 159. $\because \quad$ in Bog Iron Ore.
Quiartzite, Mont Blane.
Sandstone. No. 158.
Satin Spar.
Selenites, various colonrs.
Tin Ore, with Tommalin.
Oxalic Aeid.
Oxalurate of Ammonia.
Permanganate of Potash.
Phosplate of Lead and Soda.
Platino-eyanide of Mannesia.
Plumose Quinidine.
Prussiate of Potash, red and yellow. Quinidine.
Sintonine.
Salicine.
Saliguine. No. 162.
Snlphate of Cadmimm. ,, Copper. No. 161.

SALTS-conlinued.
Sulphate of Copper and Potash.
" Iron. No. 163.
", Iron and Cobalt. No. 165.
,, Magnesia.
" Nickel and Potash.
", Soda.
", Zinc.
Sugar.
Tartaric Acid.
Thionurate of Ammonia.
Triple Phosphate.
Urate of Ammonia.
Sola.
Urea, and most urinary deposits.
Uric Acid.

MINERALS.

Agates, varions.
Asbestiform Serpentine. Avanturine. Carbonate of Lime. Carrara Marble.

ANIMAL STRUCTURES.

Cat's Tonguc. No. 174.
Grayling Scale. No. 176.
Holothuria, Spicules of. Nos. 171-2.
Prawn Shell. No. 175.

VEGETABLE CRYSTALLINE SUBSTANCES.

Cuticle of Leaf of Correa Cardinalis. ,, ,, Deutzia scabra. No. 173.
, ", Elæagnus.
", ", Onosma taurica.
Equisetum. No. 170
Fibro cells from orchid. No. 169. Oncidium bicallosum. Scalariform Vessels from Fern.
Scyllium Caniculum. No. 177. Silicious Cuticles, various. Starches, various. No. 167.

The formation of artificial crystal may be readily effected, and the process watched, under the microscope, by simply placing a drop of saturated solution of any salt upon a previously warmed slip of glass.

Intercsting results will be obtained by combining two or more chemical salts in the following manner. To a nearly saturated solution of the sulphate of copper and sulphate of magnesia add a drop on the glass-slide, and dry quickly. To effcct this, heat the slide so as to fuse the salts in its water of crystallisation, and there remains an amorphous film on the hot glass. Put the slide aside and allow it to cool slowly ; it will gradually absorb a certain amount of moisture from the air, and begin to throw out crystals. If now placed under the microscope, numerous points will be seen to start out here and there. The starting points may be produced at pleasure by touching the film with a finc needle point, so as to admit of a slight amount of moisture being absorbed by the mass of salt. Development is at once suspended by applying gentle heat; cover the specimen with balsam and thin glass. The balsam should completcly cover the edges of the thin glass circle, otherwise moisture will probably insinuate itself, and destroy the form of the crystals.

Mr. Thomas succecded in crystallising "the salts of the magnctic metals" at very high temperatures, with very curious results. In Plate VIII, are scen crystals of sulphate of ion and cobalt, No. 163;
and of nickel and potash, No. 165, obtained in the following manner:-Add to a concentrated solution of iron a small quantity of sugar, to prevent oxidation. Put a drop of the solution on a glass slide, and drive out the water of crystallisation as quickly as possible by the aid of a spirit lamp; then with a Bunsen's burnce bring the plate to a high temperature. Immecliatcly a remarkable change is seen to take place in the form of the crystal, and if properly managed the "foliation" represented in the plate will be fairly exhibitcd. The slide must not be allowed to cool down too rapidly or the crystals will probably absorb moisture from the atmosphere, and in so doing the crystals alter their forms. Immerse them in balsam, and cover in the usual way before quite cold.

Sublimation of Alkaloids.--The late Dr. Guy, F.R.S., directed the attention of microscopists to the fact that the crystallinc shape of bodies belonging to the inorganic world might be of service in medical jurisprudencc. Subscquently, Dr. A. Helwig, of Mayence, investigated this subject, and found the plan applicable not only to inorganic but also to organic substances, and espccially to poisonous alkaloids. By using a white porcclain sauccr Dr. Guy was able to watch the process of crystallisation more minutely, and to regulate it more exactly. He was, in fact, able to obtain characteristic crusts composed of crystals of strychninc weighing not more than $\frac{1}{3000}$ th or $\frac{1}{5000}$ th of a grain. Morphia affords equally characteristic results. For the examination of thesc, Dr. Guy recommended the use of a binocular microseope with an inch object-glass. But it is not to crystalline forms alone that one need trust ; the whole behaviour of a substance as it melts and is converted into rapour is ominently characteristic, and when once deposited on the microscopical slide, under the object-glass, the application of re-agents may give still morc satisfactory results. The re-agents, however, which are here to be applied are not of the kind ordinarily employed. Colour-tests under the microscope are, comparatively speaking, uselcss ; those that give rise to peculiar crystalline forms are rather to be sought after. For instance, the crystals produced by the action of carbozotic acid on morphia are by themselves ahmost perfectly characteristic. These experiments should not, however; be undertaken for medico-legal purposes by one unskilled in their conduct, for the eftects of the reagents themselves might be mistaken by the uninitiated for the
result of their action on the substanee under examination. For the special method of procedure, sce Dr. W. Guy, "On the Sublimation of the Alkaloids." **

The Micro-spectroscope.

Speetrum analysis has, from its first introduction by Kirsehoff in 1859, maintained its faseination over mon of seience throughout the eivilised world. Mieroscopists, astronomers, and chemists have assigned to the spectroseope a lighly important position amongst scientifie instruments of research. At quite an carly period of its history it appeared to ourselves to promise an extension of the work of the microscope in pathology and mieroscopy, and seeond only to that of astronomy and chemistry. The chicf hindrances to the use of the spectroscope were, in the early days, of a twofold nature; a widespread, but quite erroncous view of the serious difficulties of employing the instrument, and the want of a first aid to its use.

So valuable a means of researeh has this process of analysis proved to be, that the discoveries made by the spectroseope appor marvellons. The spectroscope was first made known as a refined instrument for the analysis of light by two (Yermans, a physicist and a ehemist, Kirschoff and Bunsen. In 1860, the latter succeeded in detecting and separating two now alkaline bodies from all other bodies from the waters obtained from the Durkeim springs, less than 0.0002 part of a milligramme of which can be detected by speetrum analysis. It is to the labours of Huggins, Norman Lockyer and others that we are indebted for the wonderful discoveries made in astronomy ; and ehiefly so to Brewster, Hersehel, and Talbot, for showing that certain metals give off light of a high degree of refrangibility ; that distinct bands are situated at a distance beyond the last visible violet ray ten times as great as the length of the whole visible spectrum from red to violet.

With regard to the discoveries made in comneetion with physiologieal research, we are indebted to li. Hoppe, who in 1862 first described the absorption bands of human blood. His results were eonfirmed by the investigations of Professor Sir Gcorge Gabriel Stokes, who,

[^17]by adding eertain reducing agents to the blood, found that he could change scarlet blood into purple-"purple cruorine" - and in this way the place occupied by the absorption band in the speetrum could be made to change. He redueed the hæmoglobin by robbing the blood of its oxygen. Thus, by Stokes' and other methods, we have since arrived at extremely valuable results, and the explanation of the difference in colon between arterial and venous blood; and it has also enabled us to show wherein the breathing power of the red corpuscles resicles, and further explains phenomena which before his investigations were inexplicable.

The spectroscope secms likely to be of almost as great use in medieine as it has already proved to be in solar and terrestrial

Fig. 191.-Fräunhofer's Spectrum Lines.
chemistry, if we may form an opinion from the large amount of literature which has appeared on the subject. The inception of this magical instrument arose on the instance of a diseovery made by Dr. Wollaston in 1802, who, on making a slit in the shutter of his room, instead of a round hole, the spectrum of sunlight, instead of being eomposed of a number of coloured dises, was now a band of pure colours, each colour being free from admixture with the next to it. Moreover, he found that this colour band was not continuous, as Newton deseribed it, but intermpted here and there by fine black: lines.

In 1814, Fräunhofer,* a German optician, discorered these lines quite independently, and mapped out 576 of them, calling the more prominent of them A, B, C, D, E, F, C, H, which lines he used as marks of eomparison. He also found that the distances of these lines

[^18]from each other may vary according to the nature of the substance composing the prism ; thus, their relative distanees are not the same in prisms of fint-glass, crown-glass, and bisulphide of carbon, but they always oecupy the same position relatively to the colours of the spectrum. Kirschoff and Angström had mapped out in 1880 no less a number than 2,000 Fräunhofer lines, a portion of which are correctly shown in the aecompanying chart (Fig. 191).

In 1830, Simms, a London optician, made an improvement in the eonstruction of the spectroseope by placing a lens in front of the prism, so arranged that the slit was in the focus of the lens. This lens turns the light, after it has passed through the slit, into a eylindrical beam before entering the prism. Another lens, also introduced by him, receives the circular beam emerging from the prism, and compels it to throw an image of the slit, which may be magnified at pleasure for each ray. The lens between the prism and the slit is termed the collimating lens. Thus the following are the essential parts of a chemical spectroscope:-(1) a slit, the erlges of which are two knife-edges of steel very truly ground, and exactly parallel to each other, and in a direction parallel to the refracting edge of the prism, to admit a pencil of rays. (2) A collimating lens; a convex lens with the slit at its principal focus, which renders the rays parallel before entering the prism. (3) A prism of dense glass, in which the rays are refracted and dispersed. (4) An observing. telescope construeted like an astronomical refraetor of small size, and plaeed so that the rays shall traverse it after emorging from the prism. Such are the essentials of a one-prism chemieal spectroscope.

The form of instrument in use with the microscope is the "direct vision" speetroseope, consisting of two prisms of flint-glass, plaeed between three of crown-glass eemented together by Canatda balsam; the speetrum being viewed directly by the eye. The earliest constructed form of micro-speetroseope is shown in Fig. 192, the BrowningHuggins.

It was, however, Mr. Sorly who suggested that the prism should be made of dense flint-glass and of such a form that it eould be used in two different positions, and that in one it should give twice the dispersion that it would in the other, but that the angle made by the incident and emergent rays should be the same in both positions.

Figs. 193 and $193 a$ represent prisms of the kind arranged to use in two different positions, i and i^{\prime} being the same angle as I and I^{\prime}.

For most absorption-bands, partientarly if faint, the prism should be used in the first position, in which it gives the least dispersion ; when greater dispersion is required, so as to separate some particular

Fig. 192. -The Browning-Huggins Micro-spectroscope.
lines more widely, or to show the spectra of the metals, or Fräunhofer's lines in the solar spectrum, then the prism must be used as in Fig. 193a. This answers well for liquids or transparent objeets, but it is, of eourse, not applicable to opaque objects.

Fig. 193.

Fig. 193a.

To eombine both purposes, some form of direct vision-prisms that may be applied to the body of the microscope is required. Fig. 194 represents an arrangement of direct vision-prisms, invented by Hersehel. The line $\mathrm{R} \mathrm{a}^{\prime}$ shows the path of a ray of light through the prisms, where it would be seen that the emergent ray n^{\prime} is parallel and eoineident with the incident rily r .

Another very compaet eombination is shown in Fig. 194a. Any number of these prisms (P P r) may be used, aeeording to the amount
of dispersion required. They are mounted in a similar way to a Nicol's prism, and are applied directly over the eye-piece of the microscope. The slit s is is placed in the focus of the first glass (F) if a negative, or below the second glass if a positive cye-piece be employed. One edge of the slit is movable, and, in using the instrument, the slit is first opened wide, so that a clear view of the objeet is obtained. The part of the object of which the spectrum is to be examined is then made to coincide with the fixed edge of the slit, and the movable edge is serewed up, until a brilliant coloured spectrum is produced. The absorp-tion-bands will then be readily

Fig. 194.

Fig. 194 a. found by slightly altering the focus. This contrivance answers perfectly for opaque oljects, without any preparation ; and, when desirable, the same prisin can be placed below the stage, and a micrometer used in the eye-piece of the microscope, thus avoiding a multiplicity of apparatus.

A later and better form of instrument is the Sorloy Browning eye-picec (Fig. 195), shown in section (Fig. 196) ready for inserting into the body-tulse of the microscope, the prism of which is contained in a small tube, removable at pleasure. Below the prism is an achromatic cye-picce, having an adjustable slit between the two lenses, the

Fig. 195. -The Sorby-Browning Micro-spectroscopic Eye-piece. upper lens being furnished with a serew motion to focus the slit. A side slit, capable of arljustment, admits, when required, a second bean of light from any object whose spectrum it is desired to compare with that of the object placed on the stage of the microscope.
'This second beam of light strikes against a very small prism, suitably plaeed inside the apparatus, and is reflected up throngh the compound prism, forming a spectrum in the same field with that obtained from the object on the stage.

A is a brass tube, carrying the compound direct vision prism; B , a milled head, with screw motion to adjust the focus of the achromatic eye lens C, seen

Fig. 196. -Sectional view of bright-line Spectroscope; the letters also apply to the staudard spectrum scale (Fig. 198). in the sectional view as a triple eombination of prisms. Another serew at right angles to c , which from its position eannot be well shown in the figure, regulates the slit horizontally. This serew has a larger head, and when once recognised cannot be mistaken for the other. D D is a clip and ledge for holding a small tube, so that the speetrum given by its eontents may be eompared with one from an object on the stage. E is a round hole for a square-headed screw, opening and shutting a slit, admitting the quantity of light required to form the second spectrum. A light entering the round hole near e strikes against the rightangled prism, whieh is placed inside the apparatus, and is reflected up through the slit belonging to the compound prism. If any incondescent object be plaeed in a suitable position with reference to the round hole, its speetrum will be obtained. F shows the position of the field lens of the eye-piece. The tube is made to fit the microscope to which the instrument is applied. To use this instrument insert F as an eye-piece in the mieroscope tube, taking care that the slit at the top of the eye-piece is in the same direction as the slit bolow the prism. Screw on to
the mieroscope the object-glass required, and place the object whose spectrum is to be viewed on the stage. Illuminate with the stage mirror if it be transparent; with mirror, Licberkühn, and dark well, by side reflector, or bull's-eye condenser if opaque. Remove A, and open the slit by means of the milled-head, not shown in figure, but which is at right angles to D D. When the slit is sufficiently open the rest of the apparatus acts as an ordinary cye-piece, and any object ean be focussed in the usual way. Having focussed the object,

Figs. 197 and 197a. - The Beck-Sorby Micro-spectroscope Eye-piece, drawn on a scale of onc half size.
replace A, and gradually close the slit till a good spectrum is obtained. The spectrum will be much improved by throwing the object a little out of focus.

Every part of the spectrum differs a little from adjacent parts in refrangibility, and delicate bands or lines can only be brought out by accurately focussing that particular part of the spectrum. This can be done by the milled-head B. Disappointment will ocene in any attempt at delicate investigation if the directions given be not carefully followed out.

Opposite e a small mirror is attached. It is like the mirror below the stage of a microscope, and is mounted in a similar manner: by
means of this mirror light may be reflected into the eye-piece, and in this way two spectra may be procured from one lamp.

Method of using the Micro-Spectroscope.

A beginner with the micro-spectroscope should first make himself fully acquainted with the spectroseope by holding it up to the sky and noting the effects of opening and regulating the slit, by rotating the serew c, Figs. 195 and 197. The lines will be well seen on closing down the opening. This serew diminishes the length of the slit, when the speetrum is seen as a narow ribbon of prismatie colours. The screw e regulates the admission of light through the aperture above D . The better objeets with which to eommence the study of the absorption bands are, aniline dye, much diluted, madder, permanganate of potash, and blood. As each colour raries in refrangibility, the focus must be adjusted by the serew e. When it is desired to view the spectrum of a very minute objeet, the prisms should be removed by withdrawing the tube containing them, the slit set open, and the objeet brought into the eentre of the field; the vertieal and horizontal slits must then be partially closed up, and the prisms replaced, when a suitable objeetive is employed to examine the speetrum. For ordinary observations a magnifying power of an inch and a half or two inehes will be suitable, but for small quantities of material a higher power must be employed, when a single blood eorpusele can be made to show its characteristie absorption band. After having obtained the best image of any object on stage, throw it slightly out of foeus, and substitute the mierospectroscopic eye-pieee for the Huyghenian. Opaque oljjects should be examined by reflected light, by means of the bull's-eye eondenser, or side reflector. Mr. Sorby uses a binocular microseope, which enables him to regulate the focussing and throwing out of focus of the object.

In examining crystals or other small objects, a small cardboard diaphragm should be placed beneath them; and when examining the spectra of liquids in cells, slip a small cap with a perforation of $\frac{1}{10}$-inch in diameter over the tube containing the $\frac{1}{2}$-inch or 2 -inch objective. Substanees whieh give absorption bands or lines in the red are best seen by artificial light, while those which show bands
in the violet are better seen by daylight. By following rules of the kind we are less likely to mix the bands of the absorption spectrum with the Fräunhofer lines. For example, if the edge of a band happens to coincide with a Fräumhofer line, the observer is apt to imagine that the band is better defined and more abruptly shaded on one side than it really is.

Cells and T'ubes.-These are either supplied ready-made by the optician, or ean be formed out of small picees of barometer tubing, with the edges ground down and eemented on ordinary glass slips. In Fig. 198 is seen the several kinds of eells and tubes usually employed, while the little flat tubes commonly in use as bouquet

holders will be found of use, with the side stage refleeting spectrum as emparison tubes; being of different diameters they allow of two or more depths of colour in the fluid intended for examination.

In the ease of many other fluids the sloping form of eell (Fig. 198) will be useful, as different shades of fluids ean be examined without removal from the stage of the microseope. The deeper eells are eut from a picee of barometer tubing of about half to an inch long, one end being eemented to a pieee of flatted glass, and the other covered over temporarily or permanently with a thin piece of glass on the top, beld in its place by eapillary attraction, thus admitting of the tulse being turned upside down.

Re-agents required.-A diluted solution of ammonia, citrie aeid, donble tartrate of potash and soda (the last being used to prevent the precipitation of oxide of iron), and the double sulphate of the protoxide of iron and ammonia (employed to deoxidise blood, de.).

In some special cases, dilute hydrochloric acid, purificd boric aeid; and sulphate of sodia are required.

The character of stains of blood varies with age and with the nature of the substance with which it happens to be combined. This is important to remember in comection with Jurismudence, when the micro-spectroscope is brouglit into use for the detection of blood stains. The spectrum used in important cases of the kind should have a compound prism, with enough, but not too great dispersive power, otherwise the bands become, as it were, diluted, and less distinct.

If the blood stain is quite recent, the colouring matter will be hromoglobin only. This easily dissolves out in water, and when sufficiently dihuted gives the spectrum of oxy-hrmoglobin, which on the addition of ammonia, together with a small quantity of the double tartrate, a small piece of ferrous salt, and stirring carefully without the admission of air, changes the spectrum of reduced hremoglobin. When stirred again, so as to expose the solution as much as possible to air, the two bands reappear ; on gradually adding citric acid in small quantitics the colour begins to change, and the bands are seen to gradually fade away; if there should have been much blood present, a band appears in the red; the further addition of ammonia makes all clear again, but does not restore the original bands, because the hæmoglobin has been permanently changed into hæmatin. This reaction alone distinguishes blood from most other colouring matters, since other substances after being changed by acids are restored by alkalics to their original state. There are many other curious facts comnected with the spectroscopic analysis of blood, which are fully explained and illustrated by Dr. Macmumn in his book on "The Use of the Spectroscope in Medicine," and also in *Dr. Thudicum's reports and eharts, which are the most complete. Sir George Stokes, F.R.S., was one of the first to show the essential value of the spectral phenomena of henatine, and who proved, after Hoppe had first drawn attention to the fact, that this colouring matter is capable of existing in two states of oxidation, and that a very different spectrum is produced according as the

[^19]substance, which he termed cruorine, is in a more or less oxidised condition. The chart appended to his paper * affords in imperfect representation of the changes seen in the spectrum.

Proto-sinphate of iron, or proto-chloride of tin, causes the reduction of the colouring-matter, but, on exposure to air, oxygen is absorbed, and the solution again exhibits the spectrum characteristic of the more oxidised state. The different substances obtained from blood colouring-matter produce different bands. Thus, hematin gives rise to a band in the red spectrum D; hcemato-globulin produces two bands, the second twice the breadth of the first in the yellow portion of the spectrum between the lines 11 and E , No. 1. The absorption-bands differ aecording to the strength of the solution employed, and the medium in which the blood-salt is dissolved; but an exccedingly minute proportion dissolved in water is sufficient to bring out very distinct bands. B represents the red end of the spectrum and G the green as it approaches the riolet end.

No. 1.-Arterial Blood, Searlet Cruorine.

No. 2. - Venous Blood, Purple Crnorine.

No. 3.-Blond treated with Acetic Acid.

No. 4,-solution of Hematin.
Fig. 199. -Sir George Stokes' Chart of the Absorption Bands of Bloorl.

Mapping the Spectra.-In the sectional view given of the microspectroscope (Fig. 196), the internal construction of the instrument is shown, and the arrangement made for throwing a bright point on to the surface of the upper prism is clearly seen. The mapping out is accomplished by means of a photographic seale fixed as a standard spectrum (Fig. 198), in the position of A A, illuminated by

[^20]the small mirror at n, and focnssed by a simall lens at c, so that on looking into the instrument one can see the spectrum accurately divided into one hundred equal parts, and scale readings can be made at once; the only precantion needed is to be sure the D (or the sodium line, if D camnot be got) always stands at the same number on the scale. To map absorption spectra on this scale we have to lay down a line, as many millimetres long as there are divisions in the scale, and mark the position of the bands on this line. Mr. Browning supplies scales printed off ready for use. But the mapping out of spectra, as Mr. Sorby pointed out, requires some consideration; since the number of divisions depends on the thickness of the interference-plate, it becomes necessary to decide what number should be adopted. Ten it was thought would be most suitable; but, on trial, it appeared to be too few for practical work. Twenty is too many, since it then becomes extremely difficult to
$$
012345667889101112
$$

count them. Twelve is as many as can well be counted; it is a number easily remembered, is sufficiently accurate, and has other practical advantages. With twelve divisions the sodium-line 0 comes very accurately at $3 \frac{1}{2}$; thus, by adjusting the plate so that a bright sodium-light is brought into the centre of the band, when the Nicol's prisms are also crossed accurately at $3 \frac{1}{2}$, parallelism is secured, together with a wider field of observation. The general character of the scale will be best understood from the following figure, in which the bands are numbered, and given below the principal Fräunhofer lines. The centre of the bands is black, and they are shaded off gradually at, each side, so that the sharled part is about equal to the intermediate bright spaces. Taking, then, the contres of the black bands as $1,2,3$, de., the centres of the spaces are $1 \frac{1}{2}, 2 \frac{1}{2}, 3 \frac{1}{2}$, de., the lower edges of each $\frac{3}{4}, 1 \frac{3}{1}$, irc., and the upper $1 \frac{1}{4}, 2 \frac{1}{4}$, de., we can easily divide these quarters into eighths by the eye: and this is as near as is required in the subject before us, and corresponds as nearly as possible to $\frac{1}{10}$ th part of the whole
speetrum, visible under ordinary circumstances by gaslight and daylight. Absorption-bands at the red end are best scen by lamplight, and those at the blue end by daylight.

On this scale the position of some of the principal lines of the solar spectrum is about as follows:-

A........ $\frac{3}{4}$	B........ $1 \frac{1}{2}$	C........ 238	D........ $3 \frac{1}{2}$
E...... $5 \frac{11}{16}$	b...... $6 \frac{3}{16}$	F......... $7 \frac{1}{2}$	G...... 10 ${ }^{\frac{5}{8}}$

At first platcs of sclenite, which are easily preparcd, were used, beeause they can be split to nearly the requisite thickness with parallel faees; but their depolarising power varied much with temperature. Even the ordinary atmospherie changes alter the position of the bands. However, quartz eut parallel to the principal axis of the erystal is but slightly affected, and is not open to the same objeetion ; but this is prepared with some difficulty. The sides should be perfeetly parallel, the thickness about $\cdot 043$-inch, and gradually polished down with rouge until the sodium-line is seen in its proper plaee. This must be done with eare, since a difference of $\frac{1}{10000-i n c h ~ i n ~ t h i c k n e s s ~ w o u l d ~ m a k e ~ i t ~ a l m o s t ~ w o r t h l e s s . ~}$

The two Nicol's prisms and the intervening plate are mounted in a tube, and attached to a piece of brass in such a manner that the centre of the aperture exaetly corresponds to the eentre of any of the cells used in the experiments, and must be made to eorrespond with equal care, so that any of them, or this apparatus in particular, may be placed on the stage and in proper position without further adjustment, whereby both time and trouble are saved.

Absorption Spectrum of Chromule.

In 1869 I published in the Journal of the Royal Microscopical Soeicty * a paper on results obtained by the spcctrum analysis of the eolouring-matter of plants and flowers, some of which were of considerable interest in many respects. My examinations extended to several hundred different specimens, from which I was led to conclude that the ehromule of flowers is, for the most part, due to the ehemical action of the actinie rays of light over the protoplasm of the plant, more so than to that of soil. But as

[^21]eertain roots of plants, as those of the alkanet, yield their colouringmatter to oil, and in a much smaller degree to spirit or water, it follows then that conclusions of any kind ean only be drawn after a long and careful study of the question. Some of the results obtained were, however, of some interest at the time, that, for example, seen in three different solutions of the ehlorophyll of Cinchona succirubra, one of three solutions in alcohol, scareely coloured, having in fact only a faint tinge of green colour, and the spectrum of whieh much astonished me at the time. It gave four well-marked absorption-bands; one deep sharp line in the red; another, rather narrower; in the orange, eoincident with D, or the sodiumline; one in the green, about b, coincident with the Thallium green band; and a fourth on the blue line F, nearly as broad as that in the red. The ethereal solution gave different results. It showed only three bands of absorption, nearly the same as in the last case (though all of them fainter); but the fourth in the blue was not apparent, the whole of that end of the speetrum being absorbed a little beyond the green line b. This solution was deep emeraldgreen, and even dilution did not alter the phenomena. The acid aleoholie solution was as deeply green as the last, but gare only the sharp broad absorption-band in the red, and two very faint ghostly bands in the position described above of the D and b lines respectively.

Further additional researehes on the ehlorophyll of plants furnished eurious results, the ehlorophyll being dissolved out by alcohol, digested for some hours, and without heat; some plants being fresh, and others dried. Five classes of phenomena exhibited themselves, but all agreed in having the red absorption-band broad, sharp, and well defined, some having this one band only, the Lilac being of this type.

There are two elasses in which two absorption-bands occur. One has the red and the orange bands, of whieh the Fuchsia, Guelder-rose, and Tansy are examples; another, in which the red and the green bands are alone co-existent. Ivy is the type of the class, and it is immaterial whether we take last year's leaves or those of the early spring; the results are the same.

The fourth class consists of the two former speetra superposed. Three lines oceur, the red, the orange, and the green bands, at c, d ,
and b, as before. This is by far the largest class, and I have thirty or forty exmmples of it. E'nothera biennis, Laurestinus, dee, are types with the ethereal solution of the leases of Red Bark.

The fifth clats's consists of those having properties similar to the alcoholic solution of Red Bark described. But I only found cight of these, and not all equal in colour power, namely: Berberry, Sloc, Tea, Hyoscyamus, Digitalis, Senna, and Red Bark. The results obtained appeared at the time to. be well worth following up to a more practical conclusion than that arrived at. It should be noted that in the preparation of vegetable colouring matters for the micro-spectroscope, carc must be taken to employ only a small quantily of spirits of wine to filter the solution, and evaporate it at once to dryness at a very gentle heat, otherwisc if we attempt to keep the colouring matters in a fluid state they quickly decompose. It is necessary also to employ various re-agents in developing characteristic spectra. The most valuable re-agent is sulphite of soda. This admits of the division of coloms into gromps.

It is better to use a dilute alcoholic solution for the extraction of colour from plants, and to observe the spectrum in a column of about threc-quarters of an inch in height. By this means it is quite possible to ascertain that the spectrum of chlorophyll presents seven distinct absorption bands.

For further information on this interesting subject I must refer the reader to Mr. Sorby's paper "On a Definite Method of Qualitative Analysis of Vegctable and Animal Colouring Matter by means of the Spectrum Microscopc," "Proc. Roy. Soc.," No. 92, 1867.

CHAPTER IV.

Practical Microscopy: Manipulation, and Mode of Using the Microscope.

In this ehapter it will be my aim to disenss the best praetieal methods of employing the microseope and its applianees to the greatest advantage. First, the student should select a quict room for working in, with, if possible, a northern aspeet, free from all tremor oeeasioned by passing velicles. The table selcetcd for use should bo firm, and provided with drawers, in which his several appliances can be kept ready to hand. The microseope must be plaeed at such an inelination as will enable him to work in comfort, and without putting strain on the museles of the neck or fatiguing the eyes. The next important point is that of light. Daylight, in some respects, is an advantage ; this should come from a white elond on a bright day, but as a rule more satisfaetory results will be obtained by using a wellmade lamp, as this can be controlled with ease, and used at a proper height and distance from the microscope. To have a good form of lamp is as much to be desired for the student as for those engaged in the morc advanced work of microseopy.

Whatever the souree of light we must on no aeeomint overilluminate. The object having becin plaeed on the stage of the microseope, the body should be racked down to within a quarter or half an inch of the specimen, and then, while looking through the eye-pieee, should be slowly withdrawn until a sharp image comes into vicw. The fine adjustment may now be used for the more delicate focussing of the several parts of the field.

Aeeurate adjnstment of focus is required when using a $\frac{1}{4}$-inch objective; details of the object, as strix, being brought into view when a stronger light is thrown obliquely upon them from the mirror. If a 1 -ineh objective is used the light often proves to be in exeess of
what is required, and this must be regulated by the aid of the diaphragm.

The iris diaphragm, made to drop into the under-stage, is more generally employed, as when racked up to the objeet it affords every necessary graduation of illumination.

To illuminate opaque objects the light should be thrown upon them from above by the bull's-eye lens (Fig. 201). The foeus of such a lens and the lamp placed at four inches from it, is about three inches for daylight, or two inches for artificial light. A large objeet may be placed upon the stage of the microseope at onee, but smaller objects are either laid on a glass slide or ${ }^{\circ}$ held in the stage foreeps.

When illuminating objects from above all light from the mirror, or that which might enter the objective from below the stage, should be carefully excluded. Dark-field illumination is a means of seeing a transparent object as an opaque one. The principle, however, is that all the light shall be thrown from below the objeet, but so obliquely that it cannot enter the object-

Fig. 201.-Bull's-eye Lens. ghass unless interrupted by the objeet; this is best aceomplished by Wenham's Parabola.

Glass of any kind requires oceasional cleaning; a picee of soft washed ehamois leather should be used for this purpose. The fronts of the objectives may be earefully wiped, but not unscrewed or tampered with; a short thiek-set camel's hair brush may be passed down to the baek lens, and all dust removed without doing any harm. If the objective is an immersion, carcfully remove the fluid from the front lens, as even distilled water will leave a stain behind. For removing oil see special directions given at parge 171 .

When cleaning the eye-pieces, which should be done oceasionally, the cells containing the glasses must be unserewed and replaced one at a time, so that they may not he made to change places.

Any dirt upon the eye-pieces may be detected by turning them round whilst looking through the instrmment; but if the object-glasses are not clean, or are injured, it will, for the most part, only be seen by the object appearing misty.

The object-glusses, when in use lut not on the microscope, shonld be stood upon the table with the screw downwards, to prevent dust getting into the lenses, and they shonld always be put into their brass cases when done with. A large bell-glass shade will be found the most useful cover for keeping dust from the instrument when not in use.

When looking through the eye-piece be sure to place the eye in close proximation to the eap, otherwise the whole field will not be perfectly visible; it should appear as an equally well-illuminated cireular dise. If the eyelashes are refleeted from the eye-glass, the observer is looking upon the eye-pieee, and not through it.

The Mirror.-The working focal distanee of the mirror is that whieh brings the images of the window-bars sharply out upon the object resting upon the stage. In other words, the foens of the mirror is that which brings parallel rays to a eorreet foeus on the object-glass. If employing artificial light, then the flame of the lamp should be distinguishalle ; a slight change in the inclination of the mirror will throw the image of the lamp-flame out of the field.

The strongest light is reflected from the eoneare side of the mirror, that from the flat side is more diffuse and less intense. Oblique light ean be obtained by turning the mirror on one side and then adjusting it so as to illuminate the field from that position. All the necessary mechanism of the microscope is easily and quiekly learned. The objeet-glasses or objectives are, as previously explained, designated aceording to the focal distance of a single lens of the same magnifying power. Thus a 2 -ineh objeetive is understood to be a combination which has the maguifying power of a single lens whose focal point is two inches from the object, and so on with reference to other powers. By the aid of different eye-pieces an extensivo range of magnifying power can be obtained ; for example, the 2 -inch objective with a deep eyeppicee will give the same amplification as the quarter objective with the ordinary eye-piece. Jndeed, for eertain observations, the eombination of a wide-angled
low-power objeetive, with a decp cyc-piece, or compensating eye-piece, is considered to hare an adrantage.

It has been already explained that two objectives, one of much greater power than the other, but both having only the same numerical aperture, will show only the same amount of detail; the higher power on a larger scale. That is, supposing with a $\frac{1}{4}$-inch objeetive of 1.0 mumerical aperture certain structure is resolved, then a $\frac{1}{8}$-inch substituted with exactly the same numerical aperture, but with donble the magnification, no more resolving power will be found in the latter objective than in the former. For this reason a doubt has been expressed as to whether high-power objectives-especially the more expensive oil-immersions, made to transmit large pencils of light through their larger apertures - are so well adapted for ordinary research as the best series of dry achromatic objectives, or cren, in some instmees, the medinm aperture lenses; undoubtedly, for histological (physiological and pathological) work, the latter will be found to meet the students' requirements quite as well as the former.

The student or amateur will do well to commence with moderate or modium powers, a 2 -inch, a 1 -inch, a $\frac{1}{2}$-inch, a $\frac{4}{10}$-inch, or $\frac{1}{4}$-inch. Thesc, together with the A and B eye-pieees, will give a range of magnifieation from 30 to 250 diameters.

Penetration in the objective is a quality for consideration, as the adjustment of high powers is a work of delicacy, and in some cases their penetration is impaired by the arrangement made to obtain fincr definition. The value, however, of penetration in an objective is always considered to be of more or less importance. It is a quality whereby, meder certain conditions, a more perfect insight into structure is obtained. As a rule, the objective having the largest working distance possesses the better penetration. Theoretieally, the penetration of an objective decreases as the square of the angular aperture increases. For this reason the medical student will be justified in choosing the objectives I have named, since these will be hetter adtapted to his work and pursuits. The penctration of the oljecetive is a relative quality assesserl at a different ralue by workers whose ains are widely different. But for the observation of living arghasms, the cyclosis within the rell of the elosterium or valisneria, for instance, preference will untoubtedly be in favour of the objective with goocl penctration.

Resolving Power.-This is a quality highly prized by the baeteriologist. In the case of the high-angled apochomatic oil-immersion, with its eompensating eye-picee, its resolution is found to be of very eonsiderable advantage, beeause of its capacity to receive and recombine all the diffiraction spectra that lie beyond the range of the older achromatic objective, with its smaller angular aperture. The aetual loss of resolving power eonsequent upon the eontraction of aperture from 180° to $128 \frac{1}{2}^{\circ}$ is ten per cent., if not more. Resolution depends, then, upon the quality and quantity of the light admitted, the power of colleeting the greatest number of rays, and the perfection of centring. In other words, upon the co-ordination of the illuminating system of the mieroseope-mirror, achromatic condenser, objective and eye-piece. If diatoms are employed as test-objects, it should not be forgotten that there are great differences, eron in the same speeies, in the distanees their lines are apart. For this reason ruled lines of known valuc, as Nobert's lines, are to be preforred. The following example will suffice to show the value of a dry $\frac{1}{8}$-ineh objeetive of 120° in defining the rulings of a 19 -band plate, which is equivalent to the $\frac{67}{6} \frac{1}{000}$ th of an inch. This objective, with eareful illumination, showed them all; but when eut down by a diaphragm to 110°, the eightecuth line was not scparable; further eut down to 100° the seventcenth was the limit, to 80° the fourteenth, and to 60° the tenth was barely reached.

Flatness of Field.-This quality in the objective has, by the introduction of the immersion system, lost much of the importanee formerly attaelied to it. Some writers assume it to be an "optieal impossibility." The eompensating eye-piece has had the offect of contracting the visual ficld, consequently the peripheral imperfeetions of the objective are of a less disturbing character. It has, howerer, not been made perfectly elear whether the highest perfection of the two primary qualities of a good objective, clefining poneer and resolving pouer, can be always obtained in one and the same eombination of lenses.

Doubtless, defininy power can be more satisfactorily determined by the examination of a suitable object, and the perfeetion of the inage obtained : to assist in seeuring which, a solid axial cone of light equal to about threc-fourths of the aperture of the objeetive must be employed.

T'o snm np, then, "the focal power of all objectives depends in their perfect defintiom, a property on which their converging power depends, and in turn their magnifying action is dependent; again, focal power is the cmrvature imprinted by the lens on a plame wave, and is reciprocal of the truc focal length. It is appropriately expressed in terms of the proper unit of focal curvature, the dioptric; a unit of curvature."*

It may be taken as an axiom with mieroseopists that "ncither the penetrating power nor the high-power defining objective is alone sufficient for every kind of work. The larger the details of ultimate structure, the narower the aperture-and the converse; the minuter the dimensions of elementiry structure, the wider must be the aperture of the objective." Every worker with the microscope must have satisfied himself of the trinth of this statement, when chgaged in the study of the movements of living organisms, or defining the intimate structure of the minuter diatoms, or of the podura seale.

T'est for Illumination.—Dr.

Fig. 202.-Seiler's Test Slide. ('.S'ciler recommends the human blood corpuscle as the best test of good ilhmination. He prepares the object in the following manner: 'Take for the purpose a clean glass slide of the ordinary kind, and place near its cxtreme edge a drop of fresh blood drawn by prieking the finger with a needle. Then take another slide of the same size, with ground edges, and bring one end in contact with the drop of blood, as shown in Fig. $20 \cdot 2$, at an angle of 45°; then draw it evenly and quickly across the underslide, and the result will be to spread out the corpuscles evenly throughout. Blood dises being lenticular bodies, with depressed contres, act like so many little glass-lenses, and show diffraction rings if the light is not properly adjnsted. \uparrow

Eirons of Interghefation.--T'o be in a position to dratw an accurate conchasion of the nature and properties of the olnject muler exammation

[^22]is a matter of great importance to the microscopist. The viewing of objects by transmitted light is of quite an exceptional character, rather calculated to mislead the judgnent as well as the cyc. It requires, therefore, an unusual amount of care to avoid falling into crrors of interpretation. Among test objects the precise nature of the structural elements of the Diatomacea have given rise to great divergenee of opinion. Then, again, the minute seales of the podurit Springtails, one of the Collembola, and their congeners Lepismu sacchurina, the structure of which is equally debatable. Mr. R. Beck, in an instructive paper published in the "Transactions of the Royal

Fig. 203.-Portions of Scales of Lepisma.
Microscopical Society," says that the seales of the Lepisma can be made to put on an appearance which bears little resemblanee to their actual structure.

In the more abundant kind of seales the prominent markings appear as a series of double lines. These run parallel and at considerable intervals from end to end of the seale, whilst other lines, generally much fainter, radiate from the quill, and take the same direction as the outline of the seale when near the fixed or quill end : but there is, in addition, an interrupted appeanance at the sides of the scate, which is very different from the mere mion, or "erosshatenings," of the two sets of lines (Fig, $\because 03$, Nos. 1 and 2 , the upper portions).

The scales themselves are formed of some truly transparent substanee, for water instantly and almost entirely obliterates their markings, but they reappear umaltered as the moisture leaves them; therefore the fact of their being visible at all, under any cireumstances, is due to the refraction of light by superfieial irregularities, and the following experiment establishes this fact, whilst it determines at the same time the structure of each side of the scale, whieh it is otherwise impossible to do from the appearance of the markings in their unaltered state :-
"Remove some of the scales by pressing a clean and dry slide against the body of the insect, and eover them with a picce of thin glass, which may be prevented from moving by a little gum at each corner. No. 3 may then be taken as an exaggerated section of the various parts. A B is the glass slide, with a scale, C , elosely adherent to it, and D the thin glass-eover. If a very small drop of water be placed at the edge of the thin glass, it will run under by eapillary attraction ; but when it reaches the scale, c, it will run first between it and the glass slide, A B, because the attraction there will be greater, and eonsequently the markings on that side of the seale whieh is in contaet with the slide will be obliterated, while those on the other side will, for some time at least, remain unaltered: when such is the case, the strongly marked rertical lines disappear, and the radiating ones become continuous. (See No. 1, the lower left-hand portion.) To try the same experiment with the other, or inner surface of the scales, it is only requisite to transfer them, by pressing the first piece of glass, by which they were taken from the inseet, upon another piece, and then the same process as before may be repeated with the scales that have adhered to the second slide; the radiating. lines will now disappear, and the vertical ones become eontinuous. (See No. 2, left portion.) 'lhese results, therefore, show that the interrupted appearance is produced by two sets of uninterrupted lines on different surfaces, the lines in each instance being caused by corrigations or folds on the external surfaces of the scales. Nos. 1 and $\frac{2}{2}$ are parts of a camera lucida drawing of a scale which happened to have opposite surfaces obliterated in different parts. No. 4 shows parts of a small scale in a dry and natural state ; at the upper part the interrupted appoanance is not much malike that seen at the sides of the larger scales; but lower down, where lines of equal strength
cross nearly at right angles, the lines are entirely lost in a series of dots, and exactly the same appearance is shown in No. 5 to be produced by the two scales at a part where they overlie each other, although each one separately shows only parallel vertical lines."

A well-known skilled observer of test objects* satys: "Practically the resolving power of on achromatic objectives on lined objects reached their maximmm in the late Dr. Woodward's hands. Ampheipleura pellucila was then, as now, the finest known regular structure of the diatoms. There appeared then nothing more to be gained in

Fig. 204.-Outer Membrane of Upper Plane of Real Beads thrown by eaeli alternate hole of grating; on lowering the foens white interspaees turn into blue beads.

Fig. 204r.-Onter Membrane of Lower Plane of Beads thrown from remaining holes of grating; on raising the foens white interspaees turn into red beads.

Objective used, Zeiss's apoehromatie $\frac{1}{12}$-iuch oil-immersion, numerieal aperture $1 \cdot 40$, magnifying power 1,750 diameters.
resolution when one of the apochromatie $\frac{1}{12}$-inch objectives of Zeiss, with its entire absence of colonr, passed into my hands, and I soon became convineed that it possessed the power of scparating the different layers of structure in the valve, beyond the grasp of the dry-objective. The result of this inerease of power enabled me to split up, as it were, the one plate of silex forming the valre of Plenrosigme formosum into three layers, and which had never before appeared to be possible; proving, in fact, that magnitication without corresponding aperture is of little or no account."
"The intimate structure of these test olbjects," say's Xh" Smith, "is hailt up on one plan, each being composed of two or more hayers,

* Mr. J. F. Smith, "On the Strneture of the Valse of Phenrosigma Pellucita," "Quekett Club Traus."
(1) a valve with two layers, as in Pleurosigma bulticum; (2) two layers with a grating and sceondary markings placed diagonally, as in Pleurosigma formosum ; (3) with two layers of a net-like structure, as in Pleurosigmac angulatum, the fincness of the strix or gratings of which measure the $\frac{1}{50000}$ th of an inch. Five other diatoms afford evidence of this compound structure. The presence of beads or hemispheres in one of the focal planes, and depressions or pits in another, are emphasised in the miero-photograph itself; redueed portions of the valve are represented in Figs. 204 and $204 a$.

A portion of a diatom valse, Plenrosignae anyulatum, microphotographed on a ligher scale of magnification, 4,500 diameters, is given further on.

Errors of interpretation arise either from the small cones of illumination afforded by the dry-objective, or the oblique illumination

Fig. 205.-Sections of an old-fashioned crlass Tumbler, from $1^{\text {hotographs }}$ by the late Mr. R. Beck.
formerly resorted to for the resolution of these diffieult test objects, and several of the lights and shadows resulting from the refractive power of the object itself. But the most common error is that produced by the reversal of the lights and shadows resulting from the refractive powers of the object itself. To make this clear; I reproduce two reduced photographs of a small section of ann old-fashioned glass tumbler, covered externally with numerous hemispheres, ilhminated by transmitted light (Fig. 205).

This illustration well emphasises the difficulty there is in determining structure under precisely similar conditions to those we are accustomed to of examining valves of diatoms under the microseope. If these photographis be held in front of a strong light, they at once convey different impressions to the mind, the hemispheres appearing depressions in the onc, and raised beads in the other. Buth are
prints from the same negative, but in mounting are reversed ; and therefore the apparent dissimilarity is due to a slight inequatity of illumination, which the mind accepts as light and shade.

Very similar appearances to those described will result if a thin plate of glass were studded with minute, equal, and equi-distant plano-convex lenses, the foci of which would very nearly lie in the same plane. If the focal surface, or plane of vision, of the objective be made to coincide with this plane, a series of bright points will result, from the excess of light falling on each lens. If the plane of vision be next made to coincide with the surfaces of the lenses, these points would appear dark, in consequence of the rays being refracted towards points now out of focus. Lastly, if the plane of vision be made to coincide with the plane beneath the lenses that contain their several foci, so that each lens may be, as it were, combined with the object-glass, then a second series of briglit points will result from the accumulation of the rays transmitted at those points. Moreover, as all rays capable of entering the objective are concerned in the formation of the second series of bright focal points, the first series being formed by the rays of a cone of light only, it is evident that the circle of least confusion must be much less, and therefore the bright points better defined in the first than in the last series.

There are no set of objects which have given rise to more discussion as to their precise character than the scales of the podura (Lepidocyrtus cervicollis), to the intimate structure of which Mr. Smith turned his attention, and succeeded, I am inclined to think, in his attempt to settle the structure of these very minute scales, and which heretofore have been described as "notes of exclamation." By the aid of the same power as that employed in the examination of the plewrosigma formosum, the old conventional markings have disappeared, and, well-defined "featherlets" have taken their place. By careful focussing up and down, a series of whitish pin-like bodies is to be seen, with an intervening secondary structure. A microphotogiaph of a portion of a scale taken hy Mr. Smith shows that these pin-like bodies are inserted in a foll of the basement membrane, which, in his opinion, furnish ummistakable eridence of the fact that these projecting bodies are real, and must no longer be looked upon as mere ghosts. Quite recently, a micro-photograph of a portion
of a podura seale was plaeed in my hands, taken by Mr. J. W. Gifford with a Swift's $\frac{1}{12}$-inch apochromatic objective, of mumerical aperture $1 \cdot 40$, and a deep cye-picce, haring a combined magnifying power of :3,827 diameters. Fig. 206 shows a portion of the photograph which,

Fig. 206. - Podura Scale, taken with $\Omega \frac{1}{1} \frac{1}{2}$ Swift's Immersion $\times 3,827$.
it will be admitted, supports Mr. Smith's view of the strueture of the podura seale.

Many other errors of interpretation are not unknown to the experienced operator with the microscope, arising, for the most part, from an influence exerted by peculianties in the internal structure of certain objects; for example, that offered by the human hair, and which, when viewed by transmitted light, presents the appearance of a flattened-ont band, with a darkish centre, due to the refractive
influence of the rays of light transmitted throngh the hair. That it is a solic or tubular structure is proved by making a transverse section of the hair-shaft, when it is seen filled up by medullary matter, the centre being somewhat darker than the outer part. It is, in fact, a spiral outgrowth of the epithelial scales, overlapping each other, imparting a striated appearance to the surface. A cylindrical thread of glass in balsam appears as a flattened, bandlike streak, of little brilliancy. Another instance of fallacy arising from diversity in the refractive power of the internal parts of an object is furnished by the mistakes formerly made with regard to the true eharacter of the lacunce and canaliculi of bone structure. These were long supposed to be solid corpuseles, with radiating opaque filaments proceeding from a dense centre; on the contrary, they are minute chambers, with diverging passages-excarations in the solid osseous structure. That sueh is the case is shown by the effeets of Canada balsam, which infiltrates the osseous substanee.

Air bubbles are a perplexing source of trouble. The better way of becoming accustomed to deceptive appearances of the kind is to eompare the aspect of globules of oil in water with bubbles of air in water, or Canada balsam.

The molecular movements of finely divided particles, seen in nearly all eases when eertain objects are first suspended in water, or other fluids, are a frequent cause of embarrassment to beginners. If a minute portion of indigo or carmine be rubbed up with a little water, and a drop plaeed on a glass slide under the microscope, it will at once exhibit a peculiar perpetual motion appearance. This movement was first observed in the granular particles seen among pollen grains of plants, known as fovilla, and which are set free when the pollen is crushed. Important vital endowments were formerly attributed to these partieles, but Dr. Robert Brown showed that sueh granules were common enough both in organic and inorganic substances, and were in no way "indicative of life."

* Professor Jevons suceeeded in throwing light on these curious movements. He showed that they wore not due to evaporation, as some observers contended, as they continue when all possibility of evaporation is cut off, when the fluid is surrounded by a layer of oil, and enclosed in an air-tight case: but as Professor Jevons pointed
*"Quarterly Journal of Microscopical Science," New Series, Vol, viii., 1878.
out, these movements are greatly affeeted by the admixture of various substances with water, being inereased by a small quantity of gum, and eheeked by a drop of sulphuric acid, or a few grains of some saline substance, which inereases the condueting power of water for electricity. The Brownian movement, now termed pedesis, mueh depends upon the size of the partieles, their speeific gravity, and the nature of the liquid in which they are immersed.

The eorrect eonelnsions to be drawn by the mieroscopist regarding the nature of an objeet will neeessarily depend upon previons experience in mieroscopic observations, a knowledge of the elass of bodies brought under observation, and the skill of the observer in the use of the instrument-that is, in securing the best foeus possible with any objeetive brought into use. I am indebted to Messrs. Beek for the following series of illustrations, showing the effeet of under and over eorrection of the objective.

Directions for finding the best Focus.

The method of finding and determining when the serew eollar adjustment of the high-power objeetive has arrived at a point of perfeet definition and magnifieation is as follows:-

Select any dark speek of dust, or an opaque portion of the object, and carefully foeus this small partiele by working the serew of the fine adjustment, move the screw up and down until you are satisfied the image is the sharpest and blackest that ean be obtained, then onee more test the focus a little above and a little below while elosely serntinising the effeet on the image. It will now be seen that whereas in focussing on one side of the best foens the objeet disarppears in a fog, by foenssing on the other side it remains in view for a longer period, but alters its appearance; it is now no longer a black dot, but a bright dot of light surrounded by a blaek margin. The effects being thus dissimilar on different sides of the best foens, show that the oljective is not perfectly adjusted for the eover-glass in use.

The next step is to find out whether the bright image is above or below the best focus, as on this depends the direetion in which the adjustment-eollar should be turned. To determine this it is only neesssary to asecrtain which way the slow-motion milled head of the microseope turns when moving the objective upwards.

In the case under consideration, the bright image will be ahome the best focus, which shows that the cover-glass in use is therler. than that for which the ohjective is adjusted, consequently the adjustment-collar must be moved in the opposite direction.

If the collar be turned too fir in the opposite direction, it will be found that the bright inage is below the best fochs, and the coverglass is then thinner than that for which the oljective is adjusted.

Fig. 207.-Podura Scale Test.
The collar must then be turned back again until the effect on each side of the best foous is exactly similar. This effect in the ciase of a cireular speck of dust will be that the object disappears equally rapidly on cither side, and does not instantly vanish into fog, on either side presenting the bright spot appeariance, though not in so marked a degree on either side. When the object is in perfect adjustment the expansion of the outline is exactly the same, both within and without the focus.

A different indication, however; is afforded by such test-objects as the finer diatoms, and the podura scale, in which we have to do with
a set of distinct dots and other markings. If the dots have a tendency to run into lines when the objeet is without the focus, tho glasses should be brought closer together ; on the contrary, if the lines apperr when the object is within the foeal point, the glasses sliould be farther separiated.

The adjustntent of the objective by the screw-eollar in the case of the podura scalde should be warried dut in the way described, when the following effects whll be observed to take plaed, usually in the order of their arrangement:

Fig. 1 shows the appearance of a podura scale when the adjustment of the objeet-glass is correct, and Fig. 2 shows the effect prodtreed on eath side of the exact focis. Fig. 3 shows the way in whieh the markings individually divide when all the adjustmente are correet, and when the foeus is altered the least possible amount unly each way.

Figs. 4 and 5 show the two appearanees on one and the other side of the best foeus when the adjustment is incorreet, Fig. 6 showing the appearanee of the same at its best foens.

The sates are magnified 1,300 diameters, and each square measures 001 of an ineh.

This method, however, of finding the best focus of an objective ean searcely be aecomplished without a sub-stage eondenser. It may therefore be of serviee to the student, and to those who are not disposed to purehase expensive forms of condensers, to know that cither an ineh or an inch and a lialf objective, or eonvex-lens mounted on a simple wooden ring with a flange, ean be artanged to slip in the place of the diaphragm under the stage. This kind of condensen will prove to be of considerable value with a $\frac{1}{2}$-ineh, a $\frac{4}{10}$ =inch, and a $\frac{1}{4}$ inch; while a still more excellent achromatic condentser ean be made out of a Steinheil's aplanutic-loup arranged to drop into the eentral fitting of the sulb-stage. As withont a eondenser of some kind it is hardly possible to enter upon any course of histologieal or scientifie researeh.*

[^23]
Working Accessories.

Troughs-Live-cages-Compressors.
A glass phute with a ledge, and some pieces of thin glass, although applicable for many purposes, are specially designed for objects in fluid. Thus a drop of fluid containing the object songht for is placed upon the slide and covered by a piece of thin glass; or,

Fig. 208. - Varley's Live-box.
the object being put upon the glass slide and the thin glass orer it, the fluid is applied near one side, and runs under by capiltary attraction.

Troughs and Live-box.-These are made of various materials, glass, vulcanite, brass, ite., expressly for examining infusoria and live

Fig. 209.-Ross's Compressorium.
animals. They should be so constrneted as to admit of the use of a medium power, a $\frac{1}{2}$-inch at least, under the mieroscope. They: should also admit of being easily cleaned and repaired when broken ; matters rarely thought of by those who construct them. An carly devised live-box (Varley's, Fig. 208) consists of two circular pieces of hrass tubing, one sliding over the other carrying a dise of glass and fitting over another glass with bevelled edges to prevent the fluid flowing awny:

The Compressorium is used for similar purposes. By a graduated pressure the fluid is thimed out and a higher power can be employed for the examination of the object. Ross's early compressorimn consists of a plate of brass about three inches long, having in its centre a cirele of glass like the botton of the live-box. This piece of glass is set in a frame, 73 , which slides in and out so that it ean be removed for the convenience of preparing any object upon it-under

Fig. 210. - Beek's Parallel-plate Compressor.
Water if clesirable. The upper movable part, D, is attached to a screwmotion at C; and at one end of the brass plate, A, which forms the bed of the instrument, is an upright piece of brass grooved so as to receive a vertical plate, to which a downward motion is given by a single fine serew, surrounded by a spiral spring, which elevates the plate as soon as the screw-pressure is removed.

Bech's Parallel-plute Compressor (rig. 210) atfords a more exact,

Fig. 211.-Rousselet's Compressorium.
moans of regulating the pressure, and can be used for a variety of pmposes. It is also casily cleaned.

Rousselet's Compressorium (rig. 211) is a very effective form for general nse. It is so arranged that the student has perfect control over the pressure to which the specimen should be sulbjeeted. The cover-glass is large in comparison with that bencath; being bevelled canses evaporation to go on very slowly while the pressure between the two glass surfaces is kept perfectly parallel.

Botterill's Line-trough (Fig .212) consists of two brass plates serewed together by binding serews, and holding between them two plates of thin glass, which are maintained at a proper distance loy inserting a semicircular flat dise of india-rubber.

Glass troughs for chara and polypes (a sectional view of one shown at Fig. 213) are made of three pieces of glass, the bottom being a thick strip, and the front (a) of thinner glass than the back (1) ; the whole is cemented together with Jeffery's marine-glue. The method adopted for confining objects near

Fig. 212.-Botterill's Live-trough.

Fig. 213.-Glass Trough.
the front glass varies aecording to eireumstances. The most convenient is to place in the trough a piece of glass wide enough to stand across diagonally, as at c; then, if the object be hearier than water, it will sink until stopped by the glass plate. At other times, when used to view chara, the diagonal plate may be made

Fig. 214.-Weber's Slip with Convex Cell for use as a Live-trough.

Fig. 215.-Current-slide Live-cell.
to press it close to the front by means of a wedge of glass or eork. When using the trongh the microscope should be placed in a nearly horizontal position.
(iells for viewing living objects, and watching their morements, take many forms, usually determined by the makers for the purposes they are required to serve. The smaller glass troughs (Figs. 216 , $216 a)$ are made for examining the small infusoria, rotifers, de., some of which take special forms, as the donble or divided trongh
(Fig. 217) intended for viewing the eirenlation of the blood in the tail of a small fish, and at the same time keep up a supply of water and air.

The Frog.plate consists of a strip of plate-glass, or wood, pierced with holes on cither side, through which tipes are passed to secure the frog in its place. It the extreme end is a shallow glass trough,

Fig. 216.

Fig. 216 a.
made to hold a sufficient quantity of water to keep the web of the foot moist while under examination. In this way a continuous view of the eireulation of the blood of the animal is obtained.

Growing Cells have received more attention from those who devote attention to the lower forms of life, the eonstruction of which, for the purpose of maintaining a eontinuous supply of fresh water to objects under observation, and for sustaining their vital energy for a

Fig. 217. long period, is of some importance. The employment of live-cells is resorted to by microscopists, as doubtless there is much to be diseovercd concerning the metamorphoses which some of the lower micro-organisms, both of plant and animal life, pass through.

Fig. 218.-Frog-plate,
Holman's life slide consists of a 3×1 inch glass slide, with a reep oval cavity in the middle to reeeive the specimen for observation. I shallow oval is ground and polished around the deep eavity, forming a bevel. From this bovel a fine cut extends, to furnish fresh air to the living low forms of life which invariably seek the hevelled edge of the cavity, thus bringing them within reach of the highest powers. He also contrived a convenient form of "moist
chamber," or anmalcule-cage (kig. こ2. 0), for the purpose of sturlying the growth of minute organisms, withont in any way risturbing them for a lengthened period. This is also fommel useful as a dry chamber for holding mimute insects.

Zomemayer's IIolman sypiton Slide is used cither as a hot or cold water eell. It should be deep enough to hold ia small fish or newt,

Fig. 219. - Holman's Life Slide. Full size.
and retain it without any unduc pressurc. When in use it is only necessary to place the animal into it (as shown in Fig. 221), with some water, and secure it with a glass cover; then immerse the

Fing. 220.-Holman's Moist Cliamber.
upper tube in a jar of water, while another, at a lower level, maintains a eurrent. When the slide is on the stage of the microscope, one jar should stand on a lower level than the other, the slide heing marle the highest part of the syphon. The pressure of the atmosphere is sufficient to keep the cover-glass in its place.

The examination of the various kinds of infusorial life-rotifers, for instance-is facilitated by the addition of the smallest particle of colouring matter, cither earmine or indigo. A small quantity of
either of these colours should be rubbed up in a little water in a watch-glass, and a portion taken up on the point of a brush, and the brush run along the edge of the cover-glass; sufficient will be left behind to barely tinge the water with the colour, and this gradually distributes itself orer the rotifers. Under the microscope this minute quantity will be scen like a rising eloud of dust, and as it approaches a rotifer it is whirled round in different eurves, showing at onee the action of its wonderfully rapid cilia. This colouring matter appears to be devoured, as it may be traced from the mouth

Fig. 221.-Holman's Syphon Slide.
to the digestive canal. Monads may be detected by this means, and the smaller forms of alger, Euglena vividis and Protococcus mluvialis.

Dipping-tubes.-In dealing with infusorial or monad life it is convenient to keep a stock-bottle ready for their reecption, and in a light favourable to lealth. When a live specimen is required for examination, the dipping-tube is brought into requisition. These tubes are open at both ends, and vary in length and diancter. Their ends should be nicely rounded off in the flame of a blow-pipe : in form cither straight, or bent and drawn out to a fine point, as represented in lig. 222. When any special specimen is required for examination, then one of the tubes must be passed down into
the water, the upper orifice having been previonsly closed by the forefinger, and kept tightly pressed, mintil its lower orifice emmes in contact with the object. On the finger heing remored, the water rushes up and carries the creature sought for with it. The finger is unee more replated at the top of the tube ; it is then lifted out, and the contents deposited in one or other of the glatss cells deseribed. 'Tubes with india-rubber covers cem be liad.

Fig. 222.-Dipping-tubes.

Fig. 223. -Stock-bottle.

Moist and Wurm Stayes.-In addition to the moist eells and chambers deseribed it is often found necessary in working out the histories of minute organisms to keep them for some time muder observation, and as far as possible in an undisturbed condition, and it is equally necessing to prevent evaporation of the water in which they are immersed. One of the hest wam stages is that known as Maddox's growing stage; this can be had of any optician. More clathorate adaptions are required for the study of special organisms, and for experimental researeh.

In that canse Burtley's $\|^{r}$ erm Stage (Fig. 22.t) is recommended. There are other forms of warm stages in use, many of an inexpensive lind and readily adaptable to any stage. Bartley's has proved uscful; it consists of a ressel, f, three parts filled with water and supported on a ring stand. This may be kept at any temperature by the small spirit-lamp, C; a syphon tube d conveys the warm water along f, and through the bent tubing which surrounds the object under observation on the stage, D, and then passes off through the open end, C, into the receptacle, B, placed to receive the

Fig. 224.-Bartley's Warm Stage.
overflow. Steam can be used for heating, or iced water for observing the effects of cold upon the organism.

A simple form of warm stage may be made of an oblong copper plate, two inches long by one wide, from one side of which a rod of the same material projects. The plate has a round aperture, the centre half an inch in diameter, and is fastened to an ordinary slide with sealing-wax. The drop or object to be examined is placed on a large-sized cover-glass and covered over with a smatler one. Olive nil or vascline is painted round the edge of the smaller one to prevent evaporation, and the preparation is placed over the aperture in the plate. The slide bearing the eopper plate is elamped to the stage of the !nicroseope. The flame of the spirit-lamp is applied to the extremity
of the rod, and the heat is conducted to the plate and thence transmitted to the spocimen. In order that the temperature of the copper plate may be approximately that of the borly, the lamp is so adjusted that a fragment of eacao butter and wax placed close to the proparation is melted.

Fig. 225. - Stricker's Wirm Stage.
Professors Stricker and Schäfor have constructed warm stages for aceurate observations, and which fully answer every purpose.

Stricker's S'tage (Fig. 225) consists of a rectangular box witha

Fig. 226.-Scläfer's Warm Stage.
central opening, C, permitting the passage of light through the specimen under cxamination. The water makes its exit and entrance at the side tubes $B B^{\prime}$, and the temperature is indicated by a thermometer in front. In this apparatus cither wimm or eold water oan be continnously used.

Schäfer's apparatus (Fig. 226) consists of a ressel filled with water (seen near the stage) which has been first hoiled to expel the air,
and them heated by means of a gas flame. The wam water ascends the india-rubber tubing to the brass box on the stage. The box is pierced by a tubular aperture to admit light to the object, and has an exit tube by which the cooled water from the stage returns by another piece of tubing to be reheated by the gas flame. There is it gas-regulator, by means of which any temperature can be maintained.

Methods of Preparing, Hardening, Staining and Section Cutting.

Numerons methods are employed for the preparation, hardening, staining, and section cutting of animal and vegetable tissues for the microscope, the details of which are modified, or varied as may be found needful, from time to time, by those whose intimate acquaintance with the subject entitles them to make innovations and changes in this very important department of microscopy. In the hands of the original worker, formule and methods will only be regarded as finger-posts pointing out a means of saving time in turning over pages to find this or that special method of staining. For this particular reason I have collected all the most accredited formulæ together in an Appendix at the end of the book, and arranged them alphabetically for ready reference.

As to section cutting, the student will do well to practise himself in making dissections, thick and thin sections, of vegetable and animal substances. The medical student will require no advice on this point, as the use of the scalpel, and those instruments necded for microscopical work, form an important part of his education. Of all the instruments contrived for delicate dissections, none are more serviceable than those which the student may make for himself out of ordinary needles. These may be fixed in handles as represented in Fig. 229, in addition to which, a pair of scissors and forceps, and a few small knives, such as those used in eyeoperations, will prove most suitable. The double-bladed scissors represented in Fig. 227, with curved blades, are brought into use for cutting vegetable and other soft structures, the disadvantage attendant npon the nse of which is owing to the curvature of the blades; when dealing with flat surfaces, the middle of the section is left too thick to exhibit structure.

The double-hladed knife of Professor Valentin was formerly held in high estimation by the microseopist, but this has been ahmost superseded by the microtome, which has taken the place of all other instruments, since by its aid miform series of nearly all smbstances can be cut. The standard mit of a perfect section cutter, of any kind, has been fixed by the Royal Mieroseopical society at the one-thousandth of a millimetre.

Fig. 227.-Section Scissors and Forceps.
The use of the razor for cutting sections has not been wholly abandoned, the method of using which is as follows:-Take the tissue between the thumb and finger of the left hand, hold the finger horizontally, so that its ipper surface may form a rest for the razor to glide upon, take the razor firmly, and keep the handle in

Fig. 228.-Dissecting Knives.
a line with the blade, then draw it through the tissue from heel to point and towards yourself. While cutting keep the razor well wetted with diluted methylated spirit.

Some preparation is required for eutting sections with the single microtome. The substance to be cut must be embedded in some other material, as carrot, tmmip, potato, alder pith, paraftin, or thick gum, with either of which the cylinder or well of the mierotome must be so nearly filled as to leave only an excavation in the centre for the specimen to be operated upon to occupy. The various forms of
microtomes in use, and the selection of the most suitable, is thorefore a matter of some diffienlty. 1 must content myself by particularising two or three typieal forms in general use. As all the substanees intended for cutting require preparation, it will be first necessary to attend to the following direetions given by one experienced in section cutting, Mr. M. J. Cole*:-(1) Alway's use fresh tissnes. (2) Cut the orgous into small pieces with a sharp knife. (3) Nëver wash a specimen in water; when it is necessary to remove any matter, allow some weak salt solution to flow over the surface of the tissue, or wash it in some hardening re-agent. (4) All specimens should be hardened in a large quantity of the re-agent; too many pieces should not be put into the same bottle, and keep them in a cool place. (5) ln all eases the hardening process must be eompleted in spirits.
(6) Label the bottles, stating the contents, the hardening flnid used, and when changed. Attention to details is neeessary, as if hardening is neglected, good seetions eannot be made.

Embedding in Paraffin Wax or Lard.-Melt together, by the aid of gentle heat, four parts of solid paraffin and one part of lard. A quantity of this may be made and kept ready for use. Melt the paraffin mass over a water bath, take the speeimen, and dry it between the folds of a cloth to remove the spirit, so that the paraffin may adhere to its surface, plaee it in a small chip-box, in the desired position, and pour in enough melted paraffin to eover it, then set aside to solidify; when quite cold break away the box, and cut sections from the embedded mass with a sharp razor.

To infiltrate a tissue with paraffin, place the specimen in absolute aleohol or chloroform for an hour or two, then transfer to a bath of melted paraffin, at its melting point (about $110^{\circ} \mathrm{F}^{\mathrm{r}}$), and keep it at this temperature for several hours, so that the paraftin may penetrate to the middle of the tissue. Then remove the speeimen from the paraftion and put it into a small ehip-box, pom in enough paraffin to cover it, and set aside to cool. When quite eold, make sections as before, with a razor, or fix it into a mierotome, with a little melted paraffin. The sections when eut must be plaeed in turpentine to remove the paraffin, and then into absolute aleohol to remove the turpentine, and finally in distilled water to romove the alcohol, when they may be forthwith stained. It is often fomd better to stain the

* "Moderu Microscopy," by Martin J. Cole.
tissue in bulk before embedding. In this case the sections will only require the turpentine to dissolve away the paraftin, and may then be momnted in Canada balsam.

Hardening and Preparing Animal T'issues for section cutting and microscopical examination,-Fresh tissues are not well suited for

Fig. 2e9.-Needles for teasing out Sections.
microscopical examination, but it is sometimes advisable to observe the appearances of a fresh specimen, especially if it is suspected to contain amaloid bodics or parasites. It will then be necessary to tectse out a small portion of the tissue immersed in a weak solution

Fig. 230.-Dissecting Microseope.
of salt and water by the aid of a pair of fine needles (Fig. .2.29) and the dissecting microscope (F Fg . 2330).

The most important point in conncetion with an instrument of this kind is, that it affords firm and convenient rests for the hands, and should not be raised too high from the table.

The stage should either be made of glass, or provided with a glass dish for dissecting under water, or preservative fluid. A pair of
aplanatic lenses, mounted on a foenssing bar as shown in Fig. 230, will be found the most convenient to work with.

Lnvestigations of this natme should be always carried ont in the mamer described, but preparations of the kind camot be preserved any length of time, unless properly hardened in spirit or Formalin solution. The method of teasing out mener the light of a condensing lens is shown in Fig. 231.

It may be as well to state at the outset that physiological and patholugieal tissues can be hardened by immersion in metlyylated

Fig. 231. - Method of teasing out Muscular Fibre, \&ce, in a fluid medium under Condensed Light.
spirit alonc, or a saturated solution of pieric acid in methylated spirit in about a weck, and it is said to yield satisfactory results, cren some of the tissues being ready in twenty-fom hours. The only drawback is that sections thus quickly hardened must be stained with picrocanminc. But, whatever method of hardening adopted, the tissue should be washed by means of a stream of water for half an hour, to remove all traces of the havdening agent, and on its removal pressed between folds of cotton eloth or fine Swedish filtering paper.

The principal hardening re-agents nsmally kept in bulk ready for use are the following :-

Alsolute Alcolool.-This is suitable for the internal organs of
animals, glands, de. These organs must be perfectly fresls, and should be eut into small pieces, so that the alcohol may penctrate them as quickly as possible. The hirdening is usually complete in a sloort time.*

Chromic Acid and Sipirit.-Chromic acid one-sixtl per cent., water' solution two parts, and methylated spirit one part. This reagent hardens in about ten days. Then transfer to methylated spirit, which should be changed every day until all colour is discharged from the tissue. This is a suitable reagent for the preparation of eartilage, nerve trunks, heart, lips, blood ressels, trachea, lungs, tongue, intestines, and gullet.

Potassium Bichromate.-Make a two per cent. Water solution of this salt. This will harden specimens in about three weeks. Then transfer the preparation to methylated spirit, and change it every day until all eolour is diseharged. This is suitable for spinal eord, medulla, eerebellum, and cerebum.

Miller's Fluid.-Bichromate of potash 30 grains, sulphate of soda 15 grains, distilled water $3 \frac{1}{2}$ ounees. This hardens in from three to six weeks. Then transfer, as before, to methylated spirits, and ehange it every day until colour ceases to appear: Most suitable for lymphatic glands, eye-loall and its internal structures, as well as for tendons, and thymus gland.

Methylated Sprivit may be generally employed, but it has a tendeney to shrink some tissues too much; it hardens in about ten days. It is usual to change the spirit daily, for the first three days at least. Skin, mammary gland, supra-renal glands, tonsils, and all injeeted organs may be hardened in it. (See note on the adulteration of methylated spirit with rack-oil, whieh utterly spoils it for use.)

Decalcifying solution for bones and teeth. Take one-sixtly per cent. watery solution of chromic aeid, and to every measured ounce add five drops of nitrie acid. This reagent will soften the femur of any small animal in about three weeks; larger requite a longer time. Change the fluid several times, and test its action by rmming a

* With regard to the use of absolute alcohol, this re-agent requires to be nsed with caution; all minute details are lost, and it eanses irregular shinking of the finer tissues, while fibrous tissue is brought into madne prominence at the expense of the celhmar clements. Consequently in certain biological laboratories the method of hardening in alcohol has been abandoned in firom of other re-agents.
needle through the thickest part of the bonc. Should it not pass through easily, then continue the process until it does. When soft enough transfer to water, let it soak for an hour or two, then pour off the water and add ton per cent. solution of carbonate of soda, and soak for twelve hours to remove all trace of acid. Wash again in water, and transfor to mothylated spirit until required. Tecth require a large quantity of the docaleifying solution for softening.

Nicrotomes.-The simplest form of "hand-cutting machine" is that worked by a sorew, which raises the preparation, and at the same time regulates the fineness of the section. When a number of

Fig. 232. - Hand Section Cutter.

Fig. 233.-Cule's Section Cutting Microtome.
scetions are required, or when a complete series of sections of an orgau is dosired, Cole's simple microtome (Fig. 233) is in overy way adapted.

The method of using it is as follows:-Screw the microtome firmly to the table, and with the brass tube supplied with the microtome, punch out a cylinder of carrot to fit into the well. Cut this in half longitudinally, and serape out enough space in one half of the currot to take the specimen ; then place the other half of carrot in position, and make sure that the specimen is hold firmly between them, but, it must not be crushed. Now put the cylinder of carrot and specimeni into the well of the microtome and commence cutting the section. A good razor will do, but it is better to use the knife which Messrs. Watson supply with the microtome. While cutting keop the knife and plate of the microtome well wetted with dilute methylated spirit,
and as sections are eut place them in a saucer of dilute spirit. A number of sections may be eut and preserved in methylated spirit umtil required for examination or mounting.

When a specimen has a very irregular outline, it cannot be very successfully embedded in carrot; paraffin will then be found to be more suitable. Place the tissue in the well of the microtome in the proper position, pour in enough melted paraffin to cover it, and put it by to get cold and hard before attempting to cut sections.

Fig. 234. - The Cambritge Rocking Nicrotome.
Cambridye Rocking Microtome.-This new pattern Cambridge Rocking Mierotome (Fig. 234) possesses advantages over other instrumonts in use for cutting flat scetions, and not parts of a cylindrical surface. The tube containing the paraffin is 30 millimetres in internal diameter instead of 20 millimetres, as in the earlier forms. The forward movement is also increased, so that an object 12 millimetres long can be eut throughout its whole length. It is provided with a dividing are for reading off the thickness of the section in thousandths of a millimetre. The razor may be fixed cither with its edge at right angles to the direction of motion of the object, or diagonally, for giving a slicing cut. The object can also be raised and fixed in position clear of the razor,

This microtome has both steadiness and stiffiness in its geometrical arrangement and bearings, while the simplicity and efficiency of its
mechanism for advancing the section between each stroke of the razor is remarkable. Although it may appear more complicated at first sight, it is found not to be so when brought into use.

Catheart's Preezing Microtome.-'This is a conrenicnt and uscful microtome for freczing purposes. Since its first introduction it has been much improved. The clamping arrangements give steadiness, and the principal serew is more effective; the freezing-plate is circular, and the arrangements made for preventing the ether from

Fig. 235. - Catheart's Microtome.

Fig. 235a.-Section Cutting Holder for Microtome.
reaching the upper plate sceures the object in view. This instrument can now be used for embedrling as well as freczing. The directions for freezing are as follows :-

1. Place a few drops of mucilage (one part gum to three parts water) on the zine plate.
2. Take a piece of the tissue to be cut, of about a quarter of an inch in thickness, and press it into the gum.
3. Fill the ether bottle with anhydrous methylated ether, and push the spray points into their socket. All spirit must of course have been previously removed by soaking for a night in water. The tissuo should afterwards be soaked in gum for a like time before being cut.

Work the spray bellows briskly until the gum begins to freeze; after this work more gently. Be always careful to brush off the frozen vapour which, in a moist atmosphore, may collect below the
zine plate. If the ether should tend to collect in drops below the plate, work the bellows slower.
5. Raise the tissue by tuming the milled head, and cut by sliding the knife along the glass plates.
6. After use, be careful to wipe the whole instrument clean.
7. Should the ether point become choked, clear by means of the fine wire provided for the purpose.
8. The instrument is intended for use with methylated sulphuric ether.
9. In clamping the instrument to a table, or other support, care should be taken that the zine plate is in a horizontal position. If the plate be not horizontal, the gum will tend to run to one side.

The arrangement made for cutting and embedding sections consists of a cylindrical tube (Fig. 235a) fitting into the principal well of the microtome, within which is a hinged plate, upon which the serew acts, as in an ordinary vice. To bring this into use the freczing apparatus must be first removed, and the embedding tube placed in the well, and firmly pressed into place.

Staining Animal Structures.

Specific stains are chiefly employed to assist the eye in distinguishing one elomentary tissuc from another. It is therefore necessary to stain all structures, as certain parts are seen to have a special affinity for one colouring agent rather than another, wheroby they become more deeply stained, and consequently more clearly differentiated. For staining animal structures, borax, carminc, and hæmatoxylin are more frequently employed than others. The formulæ for each will be found in the Appendix "Formule and Methods."

Staining Process.-Place the section in distilled water to wash away the alcohol ; place a little of the carmine in a watch glass, and immerse the section in it for four or five minutes; then remove it to a solution composed of methylated spirit five parts, hydrochloric acid one part; shake well together. This solution should be kept ready for use. Immerse the scetion in this solution and leave it to soak for about five or ten minutes if over-stained, until the desired tint has been obtaincd. Sections of skin and fibrous tissue may be left
until nearly all colour is removed, the glands and hair follicles will then be brought out morc elcarly. The seetion must be transferred to methylated spirit to remove all traees of acid, then to oil of eloves eontained in a watch glass, lift the section from the methylated spirit by one of the lifters (Fig. 250), and carefully float it on the oil, in which it should be allowod to remain for abont five minutes. This is the clearing process, the object of whieh is to remove the spirit and prepare the scetion for mounting in Canada balsam. First, however, place the section in filtered tupentine to wash away the oil of cloves; this is found to answer better than another plan adopted, that of removing the seetion from the oil of cloves and mounting it in balsam dircet. The oil, howevcr, has a tendency to darken the balsam.

Logroorl or Ircemutoxylin Stains (sce Appendix for the several formulæ). Staining by this agent is effceted as follows:-

After the speeimen has been hardened in any of the elnomie acid solutions in usc, transfer it to a seven per cent. watery solution of biearbonate of soda for about five minutes, then wash well in distilled watcr. Spirit prepared preparations do not require to be transferred to the soda solution, but all seetions must be washed before they are transferred to the logwood stain. To a watch glass nearly full of distilled watcr add ten or twenty drops of the \log wood stain, in whien it should remain for twenty or thirty minutes. Wash well with the ordinary tap water, which will fix the dye and cause it to beeome blue. Dehydrate in methylated spirit, elear in clove oil, and mount in dammar or Canada balsam.

Double-staining with Hcrmatoxylin and Rosin.-Stain the section as dirceted above, then place it in an alcoholic solution of rosin, about one gramme of rosin to an ounec of methylated spirit, and let it soak for a few mimutes ; wash well in methylated spirit, clear in oil of cloves, and mount in balsam.

Cinmula balsam should be prepared for use as follows:-One ounee of dried balsam to one fluid ounce of pure benzole; dissolve, and keep in an outside stoppered bottle. Clear the seetion in elove oil, and place it in turpentine, clean a cover-glass and slide, plaee a few crops of balsam on the ecntre of the latter, take the section from the turpentine on a lifter; allow the exeess of turpentine to drain away, and with a necdle-point lift the scetion on to the balsam slide.

Now take up the cover-glass with a pair of foreeps (Fig, 236), and bring its edge in contaet with the balsam, case it down carcfully as shown in Fig. 237, so that no air bubbles are enclosed, and with the needle point press the surfaee of the eover until the section lies quite smoothly and flat, and the exeess of balsam is pressed ont. The slide should now be transferred to the varm-chamber, and there allowed to remain for a day or two, or until set and hardened.

Fig. 236. -Forceps for Mounting.
Any exuded balsam may be washed away with benzole and a soft eamel's hair brush; then dry the slide with an old pieee of linen elotl, and apply a ring of eement or Japanner's gold size. Other methods for staining and mounting will be found to answer quite as well-that of Bencke's is a useful one for staining eonnective tissuc.

Fig. 237. - Mode of placing Glass Cover on Object.
For staining connective tissue a modification of Weigert's method of staining fibrine is resorted to. Portions of tissue that hare been fixed in aleohol having been embedded in paraffin and cut, the seetions are detached and placed on glass slides, and stained for ten or twenty minutes with gentian violet, ten parts, well shaken with water 100 parts; filter, and add five to ten parts of a coneentrated aleoholie gentian violet solution. Afterwards treat for one minute with lugol solution, of a port wine tint, chry with filter paper and decolourise with aniline xylol (aniline oil two parts and xylol three parts). Decolourisation having been stopped at the right point (judged from cxperienec) mount the sections in xylol balsam. The fibres of the eonneetive tissue should appear stained of various shades of violet.

Double Stuining nucleated blood corpuseles. Two kinds of staining agents are required. Stain A : dissolve five grammes of rosin in half an ounee of distilled water, and add half an onnee of rectified aleohol. Stain B: dissolve five grammes of methyl green in nn omee of distilled wator. Place a drop of frog's blood on a glass slide, and with the edge of another stide spread it evenly over the ecntre of the slip, and put it away to dry; when quite dry flood the slide with stain A for three minutes, and wash with water, now flood the slide with Stain B for five minutes, wash again with water, and allow the slide to dry. Apply a drop of the prepared Canada balsam and a cover-glass.

The blood of sueh mammals as are non-nucleated should be treated in a slightly different way. Spread a drop or two of blood on a

Fig. 238.-Shadbolt's Turn-table.
slide and dry it quiekly; then put the slide on Shadbolt's turn-table (Fig. 238) and run a ring of eement around it; allow this time to dry, and then apply a second coating, and before this becomes quite dry place on it a clean glass eover, and press it down gently with one of the fine needles (Fig. 229), until firmly adherent.

Epithelium.-Remove from the mouth of a frog by scraping some squamous cpithelium ; the eolumnar must be taken from the stomach; place it in glyeerine, or Farrant's solution on the slide; apply a oover-glass, and with the point of the needle press it down until the epithelium cells are separated and sproad evenly over the slide. Set this aside for a day or two, then wash away any of the medium which may have eseaped; dry the slide, and run a ring of cement around the edges, on the turn-table. Portions of the intestine of a rablit or other animal may be treated in the same way. If it is

Wished to make permanent specimens of such structures, the intestine must be hardened in a two per cent. solution of bichromate of potash for a couple of days, then washed mutil all colour is discharged, and removed to a solution of picro-carmine for twentyfour hours, after which allow the stain to drain away, when it will be ready for mounting.

By the aid of the handy little spring clip (Fig. 239), objects of delicacy when mounted may be left to dry and harden for any length of time.

Stripel muscular filre, taken from the pig, must be teased out in a two per cent. solution of bichromate of potash, in which it should remain for two or three weeks, when it may be transferred to methylated spirit, and allowed to remain until required for mounting. Soak a piece in water to remove the spirit, place a small fragment on a slide in a few drops of

Fig. 239.--Spring-clip for Monnting. water, and with a comple of needles tease the tissue up, so as to separate the fibres. Drain away the water, aud apply a drop or two of Farrant's medium and a cover-glass, which cement down as before direeted.

Fibrous tissue may be served in the same way. Yellow elcastic tissue must be first placed in a solution of chromic acid and spirit for ten days, and then treated as directed for muscular fibre.

Non-striated Muscle.-A piece of the intestine of a rabbit should be stceped in chromic acid and spirit for ten days, then washed in watcr ; strip off a thin layer of the muscular coat, and stain in hematoxylin solution. Well wash in ordinary water until the colour changes to blue, when it will be fit for monnting. Place a fragment on a slide and a drop of water, and carefully separate the fibres with a pair of necdles. Drain off the water, as it is now ready for mounting, place on slide, and add a drop or two of Farrant's medium, and place on the corer-glass.

Nerve T'issue.-Dissect out the large sciatic nerve from a frog's thigh, and stretch it on a small piece of wood, to which pin both ends of the nerve, and transfer it to a one per ecnt. solution of osmic acid for an hour or two. Wash in distilled water ; tease up a small
fragment on a slide (as shown in Fig. 240), and apply a drop or two of larrant's solution and cover-glass.

Tissues containing air should be soaked in water that has been boiled for ten minutes ; this will displace the air. (For Farrant's medium, sce Appendix.)

Glycevine Jelly.-Dissolve one ounce of French gelatine in six ounces of distilled water, and melt together in a hot-water batli. When quite dissolved, add four omees of glyeerine, and a few drops of creosote or carbolic acid. Filter through white filtering paper while warm, and keep in a capped bottle. This may be used instead of Farrant's solution.

Nitrate of silver darkens by exposure; it is used in a half per cent. watery solution. Spccimens to be acted upon should be

Fig. 240. - Nethod of Teasing out Tissue.
washed in distilled water, to remove every trace of sodium ehloride, and then steeped in the silver solution for some two or three minutes, after which they should be again washed until they cease to turn milky; then place them in glyeerine and expose them to the aetion of light until they assume a dark brown colour, when they should be mounted in glycerine or glyecrine jelly.

By means of this stain the endothelial cells of the lymphatics, blood ressels, fre., and the nodes of Ranvier, constrictions in medullary nerves, are rendered visible. Seetions of any of these may subsequently be stained by logwood or carmine.

Several methods have bcen adopted for staining with gold chloride. Dr. Klcin's and l'rofessor' Schäfcr's are among the best.

Dr. Klein's method of showing the norves of the eornea is as follows :- Pemove the cornen within fifteen minutes of death; place it iu a half per cont. ehloride of gold solution for half aus
hour; or ful hour ; wash in distilled water, and expose to the light for a few days; in the meantime occasionally change the water. Then immerse it in glycerine and distilled water, in the proportion of onc to two ; lastly, place it in water, and brush gently with a sable pencil to remove any precipitate, when it will be fit for mounting in glyccrine. The colour of the cornea should be grey-violet.

Schäfer adopts another method-a donble chloride of gold and potassium solution.

Osmic acid, first used by Schultze, is uscful for the demonstration of fatty matters, all of which it colours black; it is also valuable for certain nerve preparations. Specimens should be allowed to remain in a one or two per cent. aqucous solution of the acid from a quarter to twenty-four hours, when the staining will be completed; but if it is desired to harden specimens at the same time, they should remain in it for some few days. Osmic acid does not penetrate very deeply, therefore small portions should be selected for immersion. This is a useful stain for infusorial animals.

Chloride of palladium, another of Schultze's staining fluids, is used to stain and harden the retina, crystalline lons, and other tissucs of the eye, the comificd fat and conncetive tissues remaining uncoloured. The solution should be used very weak:-Chloride of palladium, one part ; distilled watcr, 1,000 parts. Specimens should be mounted in glyecrine at once, or further stained with carmine.

Dr. Schäfer employs a silver nitrate and gelatine solution for demonstrating lung cpithelium ; this is made as follows:-Take of gelatine ton grammes, soak in cold water, dissolve, and add warm water to 100 ce . Dissolve a decigramme of nitrate of silver in a little distilled water, and add to the gelatine solution. Jnjeet this with a glass syringe into the lung until distension is pretty complete. Leave it to rest in a cool place until the gelatine has set; then cut scetions as thin as possible, place them on a slide with glyecrine, and expose to light till ready for mounting.

Of the double stains Mr: Groves prefers only those where the double colour is produced by a single process-or stains in which one colour is first employed, and then anothcr. Single stains are picro-carmine, earmine and indigo carmine, aniline bluc and aniline red.
licro-carmine is specially useful for staining sections hardened in picric aeid. It is prepared in several ways:-

1. Add to a saturated solution of picrie aeid in water a strong solution of carmine in ammonia to saturation.
2. Evaporate the mixture to one-fifth its bulk over a water bath, allow it to eool, filter from deposit, and evaporate to dryness, when picro-carmine is left as a crystalline powder of red-ochre colour.

Seetions can be stained in a one per eent. aqueous solution, requiring. only ten minutes for the process ; wash well in distilled water, and transfer them to methylated alcohol, then to absolute aleohol, after which they are rendered transparent by immersing in oil of cloves or benzole, before mounting in balsam or dammar.

To summarise Mr. Groves' recommendations :-

1. Let the material be quite fresh.
2. (a) Take care that the hardening or softening fluid is not too strong. (b) Use a large bulk of fluid in proportion to the material. (c) Change the fluid frequently. (d) If freezing be employed, take care that the specimen is thoroughly frozen.
3. (a) Always use a sharp razor. (b) Take it with one diagonal sweep through the material. (c) Make the sections as thin as possible; and (d) Remove each one as soon as cut, for if sections accumulate on the knife or razor they are sure to get torn.
4. (a) Do not be in a hury to stain, but (b) Remember that a weak colouring solution permeates the section better, and produees the best results ; and (c) That the thinner the section the better it will take the stains.
5. (a) Always use glass slips and covers free from scratehes and bubbles, and chemieally elean. (b) Never use any but extra thin cireular covers, so that the specimens may be used with high powers. (c) Always use cold preservatives, except in the case of glyeerine jelly, and nover use warmth to hasten the drying of balsam or dammar, but run a ring of cement round the cover.
6. Label specimens correetly; keep them in a flat tray, and in the dark.

Double and Treble Staining.

Dr. W. Stirling* furnishes a brief but useful acconnt of the methods he has employed with much success.

Osmic Acicl and Picro-carmine.-Mix on a glass slide a drop of the blood of newt or frog and a drop of a one per cent. aqueous solution of osmic acid, and allow the slide to stand hy. This will fix the corpuscles without altering their slape. At the end of five minutes remove any excess of acid with blotting-paper, add a drop of a solution of picro-carmine, and a trace of glycerine to prevent evaporation, and set aside for three or four hours to see that no overstaining takes place. At the end of this time the mucleus will be found to be stained red, and the perinuclear part yellow.

Picric Acid and Picro-carmine.-Plaec a drop of the blood of a frog or newt on a glass slide, and add a drop of a saturated solution of picric acid: put the slide aside and allow it to remain for fire minutes; at the end of that time, when the acid has fixed the corpuscles (that is, coagulated their contents), any excess of acid should be removed as before. A drop of solution of picro-carmine should now be added, and a trace of glycerine, and the preparation set aside for an hour. At the end of that time remore the picrocarmine solution by means of a narrow slip of blotting-paper; and add a drop of Farrant's solution of glycerine and apply glass-cover. The perinuclear part of the corpuscles will be seen to be highly granular and of a deep orange colour, whilst the mucleus is stained red. Some of the corpuscles will appear of a delicate yellow colour, and threads are seen extending from the nucleus to the envelopes. The preparation should be preserved and mounted in glycerine.

Picro-carmine and Aniline Dye.-For glandular tissue, none of the aniline dyes answer so well as iodine green, used in the form of a one per cent, watery solution. Stain the tissuc in picro-carmine, wash it in distilled water acidulated with acetic acid, and stain it in a solution of iodine green. As it acts rapidly, care must be taken not to overstain. Wash the section in water, and then transfer it to alcohol; finally clear with oil of cloves. The washing should be done rapidly, as the spirit dissolyes out the green dyc. All preparations stained with iodine green must be mounted in dammar.

[^24]Picro-carmine and Iodine Greer.-Stain a section of the cancellated head of a very young bone (feetal bone) in picro-carminc, wash it in distilled water, and stain it with iodine greon, and monnt in dammar. All newly-formed bone is stained red; that in the contre of the osseous trabecule, the residue of the calcified cartilage in which the bone is deposited, is stained green. Many of the bone corpuscles are also stained green.

Ossifying cartilage, the back part of the tongue, Peyer's Patches, solitary-glands, trachea, and bronchus, may all be treated in the same way. In preparing the skin, take a vertical section from the sole of the foot of a foetus. The cuticle and superficial layers of the epithelium are dyed yellow, the rete Malpighii green ; and the continuation of these cells can be traced into the ducts of the sweat-glands, which are green, and form a marked contrast to the red stained connective tissue of the cutis vera, through which they have to ascond to reach the surface. The outer layer of the grey matter of the cerebellum with Purkinge's cells is, when double stained, red, while the inner or granular layer is green. Logwood and iodinc green stains the mucous glands of the tongue green, and the serous glands, lilac logwood stain.

Eosin and Iodine Green.-Eosin is used as the ground colour Stain the tissue in an alcoholic solution of eosin, which will colour it very rapidly, usually in a few seconds. Wash the section thoroughly in water acidulated with acctic or hydrochloric acid, a onc per cent. solution, and stain with iodine green. This will double stain bone and ccrebellum; but if logwood is substituted for the latter; the cerebrum and gencral substance become stained by the eosin, while the logwood colours the nerve-cclls a lilac.

Gold Chloride and Aniline Dyes.-The tissue must be impregnated with chloride of gold, and then stained with cither aniline blue, iodine green, or rosin. The tail of a young rat, containing as it does so many different structures, is an excellent material for experimenting upon. Remove the skin from the tail, and place pieces latf an inch long into the juice of a fresh lemon for five minutes, wash it to get rid of the acid. The fine tendons swell up under the action of the lemon acid, and permit of the more ready action of the chloride of gold solution. Place tho piece for an hour or more in il one per cont. solution of gold, remove it and wash it thoronghly, and then
place it in a twenty-five per cent. solution of formic acid for twenty-four hours. This reduces the gold. During the process of reduction the preparation must be kept in the dark. The osseous portion has then to be decalcified in the ordinary way, with a mixture of chromic and nitric acid. After decalcification preserve the whole in alcoliol. Transverse sections of the decalcified tail are made, and may be stained with a red dye, as rosin, and afterwards with a watery solution of iodine grecn. Mount in dammar.

Injecting Small Animal Bodies.

The injection of animal bodies practised by the older anatomists, to render the vascular system more apparent, has not been superseded by the more modern methods of staining. The method of injecting

Fig. 241.-Injecting Syringe.

Fig. 242.-Water Bath and Melting Yessels.
even small bodies requires some skill, and a fow picees of apparatus made expressly for the purpose. First, a special form of brass syringe of such a size that it may be grasped with the right hand, the thumb at the same time covering the button at the top of the piston-rod when drawn out to the full. In Fig. 241 the piston rod is seen withdrawn, a is the body, with a serew at the top for firmly screwing down the cover, b, after the piston, c, is replaced ; e is a stop-cock, to the end of which either of the smatler cimmula, g, is
affixed. The transverse wires are for seeuring them tightly with thread to the vessels into which they are to be inserted. In addition to the syringe, two or three timned vessels are required to eontain size, injecting fluid, and hot water.

The size must be kept hot by the aid of a water bath; if a naked fire be used there is danger of burning it. A convenient form of apparatus for melting the size, and afterwards keeping it at a proper temperature, is Fig. 242.

A pair of strong foreeps for seizing the vessel, and a small needle (Fig. 243) is also necessary for passing the thread round the vessel into which the injection pipe has been inserted. These complete the list of apparatus. To prepare the material for opaque injections, take one pound of the finest and most transparent glue, break it into small pieces, put it into an earthen pot, and pour on it three pints of cold water; let it stand twenty-four hours, stirring it now and then with

Fig. 243 -Artery Needle.
a stiek ; set it over a slow fire for half an hour, or until all the pieces are perfectly dissolved, skim off the froth from the surface, and strain through a flanncl for use. Isinglass and cuttings of parchment make an excellent size, and are preferable for particular injections. If gelatine be cmployed an ounce to a pint of water will be sufficiently strong, but in very hot weather it is neeessary to add a little more gelatine. It must be first soaked in part of the cold water until it swells up and beeomes soft, when the rest of the water, made hot, is to be added. The size thus prepared may be fixed with finely levigated vermilion, chrome-yellow, blue salts, or flake white.

To prepare the subject, the principal points to be attained are : to dissolve the fluids and completely empty the vessels; relax the solids ; and prevent the injection from coagulating too soon. For this purpose it is necessary to place the animal, or part to be injected, in warm water, as hot as the operator's hand will bear This should be kept at nearly the same temperature for some time by occasionally adding hot water. The length of time required is in proportion to the size of the part and the amount of its rigidity.

Injectiny the systems of Vessels with different colours: Curmine and Gelatine Injection.-Carmine 30 grains, strong liquid ammonia 60 drops, glacial aeetic acid 43 drops, gelatine solution (one omee in six ounees of water) two ounces, water one ounce: dissolve the earmine in the ammonia and water in a test tube, and mix it witl one half of the warm gelatine, add the acid to the remaining half of gelatine, and drop it little by little into the carmine mixture, stirring it well with a glass rod during the mixing; filter through flamel, and add a few drops of earbolie aeid to make it keep. It is very important that the stain should be quite neutral, the test of which is the eolour and smell of the fluid. It should be a bright red, and all traee of smell of ammonia must be removed.

Prussian or Berlin Blue and Gelatine.-Take $1 \frac{1}{2}$ ounces of gelatine, plaee it in a vessel and eover it with water; allow it to stand until all the water is absorbed and the gelatine is quite soft, then dissolve in hot water: Dissolve one draehm (60 grains) of Prussian or Berlin blue in six ounees of water, and gradually mix it with the gelatine solution, stirring well with a glass rod during the mixing; then filter as before.

Watery Solution of Berlin Blue.-Dissolve $2 \frac{1}{2}$ draehms of the blue in 18 ounces of distilled water, and filter. This staining fluid is used for injeeting the lymphatie system.

Directions for Injecting.-The animal to be injeeted must be first killed by chloroform, and injeeted while still warm; to seeure this plaee the body in a water bath, at a temperature of $10 t^{\circ}$ Fahrenheit. Expose the main artery of the parts to be injeeted, clear a small portion of it from the surrounding tissues, and place a ligature of thin tissue or silk round it, by means of the small artery ncedle (Fig. 243). With a pair of sharp-pointed seissors make an oblique slit in the wall of the vessel, insert the eamnula, and tie the ligature firmly over the artery behind the point of the cammala, into whieh put the stop-cock. Fill the syringe with injeetion fluid, which mast not be too warm, and take care not to draw up any air-bubbles; insert the nozzle of the syringe into the stop-eoek and foree in a little fluid; remove the syringe so that the air may eseape, re-insert the syringe, repeat the process until no air-bubbles eseape, and then proeeed slowly with the injection. Half an hour will be required to complete the proeess in an animal the size of a rabbit. 'To judge of the
completeness of the injection, examine the vascular parts of the lips, tongues and oyes; if satisfactory, tie the ligatnre round the artery and withdraw the syringe; place the animal in cold water for an hour to consolidate the injection fluid. When cold dissect out the organs, eut them up, and place them in methylated spirit to harden. Change the spirit every twenty-four hours for the first three days. The hardening process will be complete in ten days.

To inject lymphatics by the puncture process, a small-sized subcutaneous syringe should be used, filled with a watery solution of the prepared stains. Thrust the nozzle into the pad of the foot, (or tongue), and then rub the limb to cause the injection fluid to flow along the lymphatie vessels into the glands.

When the blue stain is used add a few drops of acetic acid to the spirit while the hardening process is going on.

Of Injecting Different Systems of Vessels with Different Colours.It is often desirable to injeet different systems of vessels distributed to a part with different colours, in order to ascertain the arrangement of each set of vessels and their relation to each other. A portion of the gall-bladder in which the reins have been injected with white lead, and the arteries with vermilion, forms an attractive preparation. Each artery, even to its smallest branches, is seen to be accompanied by two small veins, one lying on either side of it. By this method four different sets of tubes have been injected-the artery with vermilion, the portal vein with white lead, the duct with Prussian blue, and the hepatic vein with lake. There are also opaque colouring matters which may be employed for double injections.

Injecting the Lower Animals.-The vessels of fishes are exceedingly tender, and require great caution in filling them. It is often difficult or quite impossible to tie the pipe in the ressel of a fish, and it will generally be found a much easicr process to cut off the tail of the fish, and put the pipe into the divided vessel which lies immediately beneath the spinal column. In this simple manner beautiful injections of fish may be madc.

Mollusca (shgg, smail, oyster, de.).-The tenuity of the ressels of the molluse often renders it impossible to tie the pipe in the usual manner. The capillaries are, however, usually very large, so that the injection runs very readily. In different parts of the bodies of these animals are numerous lacunæ or spaces, which communicate
directly with the vessels. Now, if an opening be made through the integument of the muscular foot of the animal, a pipe may be inserted, and thas the ressels may be injected from these lacung with comparative facility.

Insects.-Injeetions of insects may be made hy forcing the injection into the general abdominal cavity, when it passes into the dorsal vessel and is afterwards distributed throughout the system. The superflnous injection is then washed away, and sueh parts of the body as may be required removed for examination.

Natural injection of Medusæ may be effected without injuring the ressels, with an opening at the side remote from it. The medusa must be placed in a glass vessel, with the bell downwards, and a bell-jar ending in a narrow tube above is placed over it and made air-tight; the medusa is then eovered with the injeetion-mass, the air in the glass is exhausted, and as the sea-water rums out by slits in the lower side of the ammlar canal, the coloured fluid runs in. In the case of leeches and large species of carthworms, the natural injection is made from the ventral sinus. In all cases al glass tube is used, with a finely drawn-out point. The injection is complete when the injection issues from the counter-opening. Besides the animals mentioncd, large caterpillars, beetles, and larve of various kinds are favourable objects for injeetion ; the glass eamnula being introduced into the posterior end of the dorsal vessel, and the eounter-opening made in the ventral vessel, and rice versâ.

Staining Living Protoplasm with. Bismarck Brown.-Hennegly having treated Paramocium aurelia with an aqueous solution of aniline brown (known as "Bismarck Brown"), found that they assumed an intense yellow-brown eolour. The colour first appears in the vacuoles of the protoplasm, and then in the protoplasm itself, the mucleus gencrally remaining colourless, and becoming more visible than in the normal state. If a yellow-tinted paramecium be compressed so as to eause a small quantity of the protoplasm to exude, it is seen that it really is the protoplasmic substance whieh becomes coloured. All the Infusoria may be staned with Bismarek brown, but no other aniline colour employed exhibits the same property-they merely stain the lnfusoria after death, and are in faet poisonous. Living protoplasm does not as a rule absorb colouring matters, and as Infusoria are chiefly composed of protoplasm,
attempts have been made to asecrtain whether protoplasm in gencral, of aninal or vegetable origin, behaved in the same way in the presence of aniline brown. A tolerably strong solution of Bismarek brown was therefore injected under the skin of the back of several frogs. After some hours the tissues becanc uniformly tinted a deep yellow; the muscular sulbstance especially had a vory marked yellow tint. The frogs did not appear in the least incommoded. Small fry of trout placed in a solution stained rapidly and continued to swim abont. Finally, a g'unea-pig, under whose skin some powder of Bismarck brown had been introduced, soon presented a yellow staining of the buccal and anal mucons membranes and of the skin. Sceds of cress sown on cotton soaked with a coneentrated solution of the Bismarck brown sprouted, and the young plants were strongly stained brown; but on crushing the tissues and examining them under the mieroscope, it was ascertained that the protoplasm of the cells was very feebly coloured: the vessels, on the contrary, showed a deep brown stain up to their termination of the leaf. The mycelium of a mould developed in a solution of Bismarck brown was clearly stained after having boen washed in water, whilst it is known that the mycclium, which frequently forms in coloured solutions, picrocarminc, hæmatoxylin, \&e., remained perfectly colourless. Other aniline colours injected under the skin of frogs stained the conncetive tissuc as deeply as did the Bismarck brown; but the strix of muscle remained colourless. We may conclude, then, that Bismarck brown possesses the quality of colouring living protoplasm both in plants and in animals.

Cutting, Grinding, and Mounting Hard Structures.

Thake the femur of cat, or rabbit, remove as mueh of the muscle as possible and macorate it in water mitil quite clean ; on removal hang it up to dry. With a fine saw make tramsverse and longitudinal sections. File the section down mitil flat, and smooth. Take some Canada balsam, place a piece on a square of glass and warm gently over a lamp until the balsam is plastic enough to allow of the section being pressed into it, and set it aside to consolidate. Take a hone ("Water-ofAyr" stone), moisten it with water, and rub one side of the section upon it until quite smooth, then place the glass slip, with the seetion still
attached, into methylated spirit, and in a very short time the section will be separated; wash it and remount it on the reverse side, and proeeed to rub it down on the hone until it appears to be thin enough for mounting. Polish both sides on a polishing strop with Tripoli powder, and mount in Canada balsam.

Teeth.-The enamel of the teeth is a much harder strueture than that of bone, consequently it is found neeessary to have reeourse to a cutting maehine. Hand maehines have been introdueed for this purpose, but the small lathe deseribed in the earlier editions of my book has in no way been superseded by later eutting machines. Fig. 244 represents the small lathe used for

Fig. 244. - Small Lathe for cutting and polishing Sections of Teeth. cutting and polishing every kind of hard substanec. With regard to the teeth, two scetions should be made perpendieular to one another through the middle of the crown and fang of the tooth from before backwards, and from right to left, which will show the peeuliar structure of the enamel. The seetion mnst be cemented to the earrier of the stock of the lathe, or to the metal plate a, and kept in position by the steel holder b; the wheel being set in motion by the first treadle. The embedding materials in use are cither gum-shellae or Canada balsam. The formor is more generally employed by the lapidary and grinder of lenses than the latter. As the enamel is liable to fraeture nuder the saw, it will be neeessary to lesson the frietion by dripping water on the saw as it is made to revolve. Thiek seetions can be quiekly ground down against the corrondum wheel. The final polishing of the seetion may be done on the lathe, or by rubbing the flattened surface with water upon a "Water-ofAyr" stone, and ultimately set up in Canada balsam, which must not be too fluid, or it will penetrate the lecunce and canaliculi, fill up the interspaees, and eause them to become quite invisible. As the flatness of the polishing surfaces is a matter of importance, the stones themselves should be tested from time to time, and when fond to present an uneven surfaee must be rubbed down
on a granite stone with fine sind, or on a lead plate with emery powder. If it is decided to use Canada balsam as the embedding material, this must be prepared in the following manner:-The section of tooth or bone must be attached to a slip of well-annealed glass by hardened Canarda balsam, and its adhesion effectually secured by placing the slide on the cover of a water bath, or in the hot-chamber (Fig. 256), when the balsam, a thick drop of which should be used, will spread out by liquefaction. The slide should then be removed and allowed to cool in order that the hardness of the balsam may be tested. If too soft, as indicated by its readily yielding to the pressure of the thumb-nail, the heating process must be repeated, eare being taken not to cause it to boil and form bubbles; if too hard, which will be shown by its chipping, it must be remelted and diluted with fluid balsam, and then set aside as before. When it is found to be of the right consistence, the scction must be laid upon its surface with the polished side downwards; the slip of glass is next to be gradually warmed until the balsam is softened, care being taken to avoid the formation of bubbles, then press the section gently down with a needle upon the liquefied balsam, the pressure being just applied on one side rather than over the whole surface, so as to drive the superfluous balsam towards the opposite side ; finally, an cquable pressure over the whole will secure a perfect attachment of the section without air bubbles. If, however, these should present themselves in drying, and they camot otherwise be expelled by pressure, it will be found better to take the section off and relay it as boforc. The thickness of the layer of balsam may be reduced by rubbing it down before applying the glass-cover.

Rock Sections.-Small picces of rock nay be ground down by the aid of the lathe, or on a zinc plate, with emery powder and water, until one side is rendered smooth and flat. Then fasten the polished side of the section to a square of glass on the metal holder of the lathe, with dried Camada balsam, as direeted for bone, and allow it time to become consolidated. When moderately thin take a piece of plate-ghass and some fine emery or putty-powder and rub the section down as thin as possible. When found to be thin enough wash it well in water, and put it aside to dry, or warm it over a spirit-lamp, and with a needle push the section off the glass into a watch-glass of benzole or turpentine, and allow it to soak until all the balsam is
dissolved out. Wash again in turpentine, and monnt in Canada balsam, with or without a cover-glass. Sections of echinus spines, shells, stones of froits, de., are prepared in the same way as those of bones and teeth; but when the grinding is finished, the sections must be passed through alcolol into oil of cloves, after which they should be mounted in Canada balsam. If tolerably thin, sections of these substances ean be eut in the lathe; in the first instance, there will be no aetual oeeasion to attach them to glass at all, except for the purpose of obtaining a hold upon the specimen for polishing, but the surface thus attaehed must afterwards be completely removed in order to bring into view a stratum which the Canada balsam may not have penetrated.

With regard to smaller bodies, these ean searcely be treated in any other way than loy attaching a number of them to slips of glass at onee, and in sueh a way as to make them mutually support each other. Thus in making horizontal and vertieal sections of foraminifera, it would be impossible to sliee them through muless they were laid elose together in a bed of lardened Canada balsam, and first grinding away one side and then turning and rubbing down the other. My friend, Dr. Wallieh, many years ago eommunicated to me the ingenious plan adopted by himself when mounting and turning a number of these minnte objeets together. The speeimens being eemented with Canada balsam, in the first instanee, to a thin film of miea, and then attaehed to a glass slide by the same means, when ground down to the thinness desired, the slide must be gradually heated just suffieiently to allow of the detaelment of the mieafilm and the speeimen it earries; a elean slide with a thin layer of hardened balsam having been prepared, the mica-film is transforred to it with the ground surfaee downward. Its adhesion by drying having been eomplete, the grinding and polishing should be proeeeded with; and as the miea-film will yield to the stone without any difficulty, the speeimen now reversed in position may be further redueed to the requisite thiekness for mounting as a permanent object.

Staining and Mounting Vegetalle Tissues.-Baeteria I propose to treat of in a separate seetion. Vegetable tissnes generally will first receive attention, and their differentiation is based on the employment of delieate gradations of colour stains. The more striking
results are obtained by Multiple Staining, while the cell contents are rendered more palpable. On this account colouring media have been divided into nuclear, plasmic, and specific. The first are chicfly valued in proportion as they prove to have a selective affinity for the nuclei of cells, and leaving the protoplasm eomparatively menstained. Sueh stains are needful for fresll and young tissues. On the other hand, plasmic stains colour tissue uniformly, and are used to give a ground colour by way of eontrast; and specific stains are chiefly employed to distinguish certain elementary structures from the mass of cellulose whieh forms the basis of vegetable tissue, and whieh is also met with to a slight extent in animal mombranes.

Cellulose, as it occurs in plant life, presents a variety of physieal properties: sometimes it is soft, as in young plants, and again quite dense in older struetures. This fact accounts for the varying results obtained when cellulose is subjeeted to the action of staining fluids, and whether the eellulose oeeurs in a ncarly pure form, as in cotton fibre, or in the modified form of lignine or woody-fibre. Stains whieh readily attack young tissue have little or no effect upon it in its maturer form. It is of mueh importanee, thon, in the staining of fibres, as well as sections for the mieroseope, that the ecllulose should take the stain uniformly.

The staining of tissues may be effected in four ways. First, when the stain has sufficient affinity for the tissue to be retained by it without the intervention of any outside agent. Second, when the stain and mordant are mixed and applied to the tissue in one solution. These two are the simplest and easiest methods of staining. Third, when the tissue is first immersed in the staining liquid and then transferred to some other liquid whieh shall fix the colour upon the tissue. Fourth, when the tissue is first impregnated with the mordant, or fixing agent, and then immersed in the stain. The last method is the one usually followed in eommercial works, and it is to be recommended in the staining of microscopieal preparations whieh do not readily take the stain.

Nuclear Stuins.-As in both vegetable and animal sections it is generally the nuelei which form the landmarks of the struetnre, so the most important class of reagents which are used in any of the branches of mieroseopieal work are the "nuclear stains." There are several of these stains, the most important of which is the
hrmatoxylin, and when proper solutions are used the results are very satisfactory. Many formule have been given, but there are three only reliable, Delafield's, Kleinenberg's, and Ehrlich's, in all of which alum is present as an ingredient; the idea being that the alumina forms with the colouring matter an insoluble lake, and so acts as a mordant.

In Delafield's solutions a large proportion of alum to hæmatoxylin is used, and methylic aleohol (wood-spirit in the place of rectified spirit).

For Kleinenberg's solution many different formule exist. Squire's improved formulæ for both stains is given in the Appendix, "Formulue and Methods."

Hæmatoxylin solutions stain the nuelei violet, and in order to change this into blue, the sections should be transferred to water taken from the house supply, not distilled water; but as the alkalinity of the water varies in different localities, a better and more uniform result is obtained by using a weak solution of bicarbonate of sodium (half a grain to the omee).

Carmine is also mueh in vogue as a nuelear stain, and the two solutions more generally employed are Greenacher's aleoholic borax carmine, and Orth's lithium earmine. Under ordinary circumstances they act as general stains, affeeting the ground tissue as well as the nuelei. By subsequent treatment with aeidulated aleohol or aeidulated glycerine the colour is discharged from the ground tissue without seriously affeeting the nuclei. Used in this way, carmine beeomes a good nuclear stain. It should be remembered that the seetions must not be washed in pure water, as the eolour will to a great extent be discharged; nor in acidulated water, as the carmine will be precipitated.

Alum carmine and alum eoehineal are useful muclear stains, not requiring after-treatment.

Picro-carmines are also largely used. The following formmla will be found the most useful:-

Ammonia Picro-carmine.-Carmine, one gramme; strong solution of ammonia, three cc.; distilled water, five cc. Dissolve the carmine in the ammonia and water with a gentle leat, then add saturated aqueous solution of pierie acid, 200 ee. ; heat to boiling, and filter.

Picro-Lithium Carmine.-The following is generally preferred for use-LLithium carmine solution, 100 ce.; saturated solution of picrie aeid, 270 ce.

There are several aniline dyes whieh are used for nuelear staining: methylone blue, methyl green, saframine, gentian violet, vesuvine, fuchsine, and Hoftimann's blue.

The usual process is to stain in $\frac{1}{4}$ or $\frac{1}{2}$ per eent. aqueous solutions and wash in methylated spirit. Methylene blue and methyl green have the reputation of being so readily washed out in the methylated spirit as to be worthless. This is obviated by washing the seetions (when removed from the stain) in distilled water, previous to the differentiation in methylated spirit. Treated in this manner, the nuelear staining is very beautiful. This also applies to Hoffmann's blue and partly to resuvine; with the latter, however, it is not a neeessity. Safranine and gentian violet worked better by transferring the seetions direetly from the stain into 90 per cent. aleohol.

Contrast Stains.-Very frequently other stains are used to dye the gronnd a eolour whieh is in eontrast to that employed for the nuelei. Brown, orange, or pink are used after nuelear blue or green. Carmine is generally eounterstained yellow or indigo-blue; and fuelsine red, as in tubercle bacilli, is counterstained with nuelear blue. It is important that the ground stain should be made weaker than the prineipal stain, so that the whole tissue may be shown without detraeting from the nuclei. The following colours are used as counterstains for animal seetions, but they prove less useful for vegetable seetions: benzo-purpurine, eosin, erythrosine, orange, aeid rubin, and pierie aeid.

Examples of specific stains are fuehsine, methylene blue, and gentian violet for baeteria; osmie aeid for fatty elements; vietoria blue and rose bengale, for demonstrating elastic tissue; methyl violet, iodine, and safranine, for amyloid degeneration. Methylene blue is one of the most useful of aniline dyes, and one of the most variable in composition.

Iodine green, or methyl green, has long been in use as a reagent for amyloid, starchy matters, in ignoranee of the fact that the reaction is due to the methyl violet, eontained as an impurity in the iodine green. It is exeecdingly diffieult to obtain a green quite free from
violet. As muclear stains they are identical, and the amyloid reaction, being dependent wholly upon the contained violet, varies, not with the formula of the green, but with the extent to which it has been purified.

Cellulose reactions.-After the nuclear stains, the most important reagents to the botanist are those which affect cellulose and its several modifications. Pure cellnlose is coloured yellow by iodine, the colour being changed to a blue on the addition of slightly dilute sulphuric acid, or a strong solution of zinc. Solutions containing iodine, iodide of potassium, and chloride of zinc, give a violet reaction with unaltered cellulose, and yellow with lignine.

Schulze's zine re-agent must be used with a certain amount of caution, as the chloride of zinc and potassium undergo decomposition. The formula now in use is as follows: Take of zine chloride solution (sp. gr. 1.85) 70 ce., potassium iodide 10 grammes, iodine 0.1 gramme; but this solution can only be employed as a re-agent and not as a dye, and structures staincd with it camot be mounted in any of the ordinary media, and the only fluid for ringing them down is caoutchone cement.

Cellulose can be stained permanently by carmine, hamatoxylin, nigrosine, methylene blue, saframine, and fuchsine. The aniline dyes are used in dilute aqucous solutions containing onc-eighth or onefourth per cent. of dye. When the cellulose undergoes the change known as lignificatiou its reactions are altered. It is coloured yellow by chloro-zinc iodine, red by phloroglucin, yellow by aniline chloride. The two latter are much assisted by hydrochloric acid. The results of these reactions also cannot be preserved in the usual mounting media.

Scetions containing mixed tissuc, party unaltered cellulose and partly lignified, give striking results with aniline dyes, and with this additional advantage can be preserved for years.

Double Staining.-When a section is passed through methyl green solution and afterwards one of carmine, the lignified portion is coloured green and the unlignified red. Aeid green may be used in the place of methyl green, with a similar result. When pierie acid is used with carmine, ingrosinc, or Hoftmann's blue, the picric acid dyes the ligncous portion and the others colour the unlignifiod structure, red, black, and blue respectively.

Eosin stain is the most useful for sieve-tubes and plates. Make a strong solution of cosin in equal parts of water and alcohol, and stain the section for five or ten minutes. Wash woll in methylated spirit, dehydrate, clean in oil of cloves, and mount in Canada balsam.

Bleaching Process.-The bleaching and clearing of vegctable structures before staining is a very necessary process, especially so if starch be present in any quantity. Clearing agents are of two kinds-those which act by virtue of their property of strongly refracting light, and those which disintegrate and dissolve the amyloid cell contents. To the first class belong the essential oils, - as oil of cloves, Canada balsam, glycerine, and other similar bodies; to the second class, solntions of potash, phenol, and chloral hydrate. The actual value of some of these agents is questionable. The process usually preferred is as follows: Place the sections in a fresh clear solution of chlorinated lime, allowing them to remain until quite bleached, say from two to four or five minutes; then gently warm in a test-tube for a few seconds, and quickly replace the solution with distilled water and boil for two or three minutes; repeat the treatment with boiling water three times; wash with a one per cent. solution of acetic acid, and finally with distilled water. The sections are then quite ready for staining operations.

When the stem is hard and brown, a solution of chloride of lime slould be used-a quarter of an ounce of chloride dissolved in a pint of water, well shaken and stood by to settle down, then pour off the clear fluid for use. For hard tissues this solution answers well, but it is not suitable for leaves, as they require not only bleaching, but the cell contents should be dissolved out to render them transparent. A solution of chlorinated soda answers well for both stems and leaves. It is prepared as follows:-
'To one pint of water add two ounces of fresh chloride of lime, shake or stir it well two or three times, then allow it to stand till the lime has scttled. Prepare meanwhile a saturated solution of carbonate of soda-common washing soda. Now pour off the clear supernatant fluid from the chloride of lime, and add to it, by degrees, the soda solution, when a precipitate of carbonate of lime will be thrown down; continue to add the soda solution till no further precipitate is formed. Filter the solution, and keep it in a well-stoppered bottle in the dark, otherwise it specdily spoils.

Sections bleached in chlorinated soda must, when white enough, be washed in distilled water, and allowed to remain in it for twentyfour hours, changing the water four or five times, and adding a few drops of nitric acid, or at the rate of eight or ten drops to the half-pint, to the water employed before the final washing takes place From water transfer them to alcohol, in which they must remain for an hour or more.

Although alkaline glycerine has been recommended for several purposes in micro-technique, it is not so well known as it shonld be how serviceable it is as an extempore mounting solution in vegetable histology. The best mixture for general use is composed of glyecrine 2 ozs., distilled water $1 \frac{1}{2}$ oz., solution of potash, B.P., $\frac{1}{2}$ oz. This combines the refringent property of the glycerine with the clearing action of the canstic potash, while the swelling action of the potash is considerably diminished.

Cutting Sections of Hard Woods.-The lathe and circular saw will be found as useful for cutting sections of the harder kinds of woods, as for bone structure. It may be necessiry to subject the older and consequently harder picces of wood to the action of steam for a few hours to soften them, and afterwards transfer them to methylated spirit, before making an attempt to cut scetions. But the more open woods, of one, two, or three ycars' growth, will show all that may be required, and these can be cut by hand, or with the microtome, as already described.

With a little practice the finest and thinnest possible slices may be cut by hand. It is usial to take off the first slice to give a smooth and even surface to the specimen. Then turn the screw to raise it a little, sprinkle the surface with spirit and water, and cut with a light hand. Remove the cut sections with a fine camel's-hair brush or a section lifter (Fig. 250) to a small ressel contaning water, when the thimest will float on the surface, and remore to methylated spirit and water, where they should remain until they can be mounted. Sections of hard woods, and those containing gum-resins, or other insoluble material, must first be kept in methylated spirit or alcohol, and finally transferred to oil of clores, to render them sufficiently transparent for mounting in Canada balsan.

If the structure of an exogenous wood is required to be examined,
the sections should be made in at least three different ways: tho transverse, the longitudimal, and the oblique, or, as they are sometimes called, the horizontal, vertical, and tangential, each of which will exhibit different appearances, as seen in Fig. 245: b is a vertical section throngh the pith of a enniferous plant, and exhibits the medullary rays known to the cabinet-maker as the silver grain; e is a magnified view of a part of the same; the woody fibres are

Fig. 245. -Sections of Wood.
seen with their dots l, and the horizontal lines k indieating the medullary rays eut lengthwise; c is a tangential seetion, and f a portion of the same; the medullary rays $m m$, and the woody fibres with vertieal slices of the dots, are shown. Instruetive preparations will be seeured by eutting oblique seetions of the stem. The sections seen are made from the pine. All exogenous stems, however, exhibit three different appearances, aecording to the direction in which the seetiou is made.

Bacteria Cultivation, Sterilising, and Preparing for Microscopical Examination.

That braneh of myeology whieh is now looked upon as a separate department of seicnee, termed bacteriology, took shape in the years 1875-9, when its founder, the veteran botanist Coln, who recognised that the protoplasm of plants corresponded to the animal sareode, published his exact mode of studying bacteria. But it was a pupil
of his, Dr. Koch, who a year later discovered that a specific cattle disease, anthrax, was due to a bacillus, and it was he also who gave us the useful modification of gelatine as a mediun in which to grow bacteria; lie hit upon the method of pouring melted gelatine containing distributed germs on to plates, and thus isolating the colonies and ensuring the further isolation of the spores, and so facilitate the preparation of pure cultures on a large scale, and with great saving of time.

The difficulty of isolating a bacterium and tracing its life history under the mieroscope must at first sight appear great. A further objection that such work is slow and difficult has no more weight here than in any other department of scienec, as will be seen on proceeding to follow out the dircetions I am about to furnish for the use of the student.

Apparatus, Material, and Reagents employed in Bacteriological Investigations.

A good microscope with a wide-angled sub-stage condenser, and objectives of an inch, $\frac{1}{4}$ inch, or $\frac{1}{6}$-inch, and a $\frac{1}{12}$-inch homogeneous oilimmersion.

A large bell-glass for covering the same when fuming acids are in use in the laboratory.

About a square foot of blackened plate-glass.
A white porcelain slab, or a shallow photographic dish of some size.
Glass bottles with ground stoppers for alcoholic solutions and aniline dyes.

Glass bottles with funnels for filtering solutions of stitins, with pipettes.

A specialised form of pipette for the miero-chemical filtration of solutions (Fig. 246).

A small stoppered bottle of ecdar oil (Fig. 247).
Sct of small glass dishes or watch-glasses for section staining.
Stock of glass slides sterilised, together with round thin glasscovers, in boxes (lig. 248).

Needle holders and platinum needles, with a packet of ordinary sewing needles (Fig. 249).

Platinum, or plated copper section-lifters (Fig. 250).

Glass rods, drawn out to a fine point, for manipulating sections when acids are employed.

Fig. 246. - Pipette for Micro-chemical Filtration.

Fig. 247.-ijottle and Dipper for Cedar Oil.

Fig. 248.-Box for keeping Glasseovers.

Fig. 249.-Needle Holders, fine Lifter and Hook for Manipulating Structure.

Fig. 250. -seetion Lifters.

Fig. 251.-Spring Flat Foreeps.

l'ig. 251a.-Forceps with line l'oints.

A pair of small spring stcel platinum-pointed forceps for holding glass-covers (Fig. 251).

One or two pairs of fine-pointed foreeps (Fig. 251a).
Collapsille tubes for eontaining Canada balsam and dammar.
Soft rags or old pocket handkerehiefs for removing cedar oil from lenses and eover-glasses. Cliamois leather for wiping lenses and removing dust.

Reagents, alcohol, bergamot oil, celloidin, dissolved in equal parts of ether and alcohol.

Ebner's solution. (See Appendix.)
Formalin, glyeerine, gelatine, K'lels' and K'leinenberg's solutions. (See Appendix.) The latter eonsisting of a watery solution of pierie aeid 100 parts; strong sulphurie aeid two parts; filter, and add distilled water 300 parts.

Muller fluid. (See Appendix.)
Osmic acicl, a five per cent. solution.
Paraffin, spermaceti and xylol, acetic acid, hydrochloric acid, a one per eent. solution with alcohol.

Ammonia liquid, ether, picro-lithium carmine, potash solution.
Safiranine, eoneentrated aleoholie solution of, and a watery solution.
Turpentine, vesuvin, water distilled and sterilised.
Aqueous solutions of the several dyes may be kept in bottles ready for use.

To both aqueons and aleoholie solutions a few drops of phenol, or a erystal of thymol, should be added as a preservative. For the rapid staining of cover-glass preparations, it is eonvenient to have the most frequently used stains-fuchsine, methyl-violet, de.-in bottles provided with pipette stoppers.

Clearing Agents.-Oils of eedar wood, eloves, origanum, aniline, terebene, toluol and xylol, benzol and spirits of turpentine.

Mountiny Meclia. - Aeetate of potash solution eoneentrated, benzole, balsam, glyeerine jelly, Fanant's medium, dammar and mastic, Canada balsam in xylol, Hollis's glue, zine white.

Cement for fixing small speeimens temporarily to a glass slide. Remove all traces of moisture, place upon it a drop or two of a medium prepared as follows:-Dissolve over a water bath 15 grammes of white lac in 100 grammes of absolute aleoliol, deeant off the clear liquid, and stand it by for a while.

As the aleohol evaporates from the warmed surface of the glass slide a hard transparent eoating is left. This may be slightly
softened at any time by means of a drop of oil of lavender. After arranging the objects the heat of a spirit-lamp will cause the oil to craporate, leaving them firmly attached. Olojects may be mounted on corer-glasses in a similar way. A resinous mounting medium may then be employed in the usual manner. If glycerine or glycerine jelly is the mounting medium omployed, collodion diluted with two or three times its volume of oil of lavender may be found preferable as the fixing agent. The section should be placed in position before the preparation dries and the oil is craporated.

Methylated spirit is often so largely adulterated with rock-oil as to render it unsuitable for techuical purposes. Even to varnishes it imparts a fluorescent appearance as it dries off.

The needles and instruments used must not be passed through a Bunsen burner flame, which is most destructive, but enclosed in a

Fig. 252. - Iron Box for holding Sterilised Instruments and Glass Plates.
sheet-iron box made for the purpose (Fig. 252), and placed in the hot-air steriliser for an hour at $150^{\circ} \mathrm{C}$. The box can be opened at the side, and each instrument withdrawn with a pair of sterilised forceps when required for usc.

Glass plates are sterilised in the same iron box, and the platinum needles for inoculating nutrient media, examining cultivations, de., are served in the same manner before being used. The needles consist of two or three inches of platinum wire fixed to the end of a glass rod. Several of these needles should be made by fixing pieces of wire into a glass rod about six inches long. The glass rod must be heated at the extreme cnd in the flame of a Bunsen burner, or blow-pipe, and the platinum wire held near one extremity with forceps, and fused into the end of the glass rod. Some of these rods should be straight, and some bent, and others provided with a loop, and .kept especially ready for inoculating test-tubes of nutrient jelly.

Gluss Dishes.-Several shallow glass dishes are required for preparing damp chamber cultivations, the upper covers fitting over

Fig. 253.-Damp Chamber for Plate-cultivations.
the under (as in Fig. 253), in the eentre of whieh eulture-plates are stacked one above the other, and when neeessary plaeed in the ineubator.

Apparatus for Incubation and Cultivations in Liquid Media.

Lister's Flashs.-LLister devised a globe-shaped flask with two necks, a vertieal and a lateral one, the lateral being a bent spout, tapering towards the extremity. When the vessel is restored to the erect position after pouring out some of its eontents, a drop of liquid remains behind in the end of the nozzle, and thus prevents the regurgitation of air through the spout. A cap of cotton-wool is tied over the orifiee, and the residue left in the flask for future use. The vertieal neek of the flask is plugged with sterilised eotton-wool in the ordinary way.

Fig. 254. - Pasteu's Bulb Pipette.

Fig. 255.-Storing Cnltivation Tube.

Stermberg advoeates the use of a glass bulb, provided with a slender neck drawn out to a fine point and hermetically sealed. Speeial forms of tubes, bulbs, and pipettes were devised by Pasteur,
and are still in use at the Bacteriologieal Institute, l'aris, and known as tho Pasteur's bulb pipette (Fig, 254).

Others are provided with lateral or with curved arms, one of which is drawn out to a fine point, and the slender neek plugged with eottonwool, as in Fig. 255.

TIIE WARM CHAMBER, STERILISER, AND INCUBATOR.

The Warm Chamber.-This is an aceessory of importanee in bacteriologieal work. For the eontintous heating of specimens

Fig. 256. - Pfeiffer's Warm Chamber.
during eultivation it is an absolute necessity. Pfeiffer's warm chamber (Fig. 256) is suitable for mieroscopical work generally. It
consists of a hard-wood box, made air-tight, with doors and glass windows to allow of the specimen being moved from time to time, and kept under constant observation. The box is mounted on a metal plate tripod stand, and is heated from below by a small gas bmrner, ivith a thermo-regulator. A paraffin lamp will do as well, so long as it maintains a temperature of from 25° to $45^{\circ} \mathrm{C}$., and without danger of injury to the stand and lenses of the microscope. A thermometer is placed in the air space to mark the temperature.

Fig. 257.-Crookshank's Incubator.
Hot-air Incubators and Sterilisers are usually made of sheet-iron, in the form of a cubical chest, with double walls, supported on four logs, as that of Dr. Crookshank's (Fig. 257). They are heated by gas or a lamp from below, while the temperatmre is indicated by a thermometer inserted through a hole in the top, as in that of the Hearson's incubator. Test-tubes, flasks, fumels, cotton-wool, de., must be sterilised by exposure to a temperature of $150^{\circ} \mathrm{C}$. for an hour or more.

Wire Cages or crates are used for containing test-tubes, especially when they are to be sterilised in the hot-air steriliscr, or for lowering
tube's of nutrient jelly into the steam steriliser. All instruments, needles, sealpels, de., before using must be carefully sterilised.

Steam Sterilisers are made either of iron or tin, jacketed with thick felt, and provided with a conical eap or lid perforated at the apex to receive a thermometer (Fig. 258). Inside the vessel is an iron grating or diaphragm about two-thirds of the way down, which divides the interior into two chambers, the npper or steam chamber, and the lower or water chamber. A gauge outside marks the level of the water in the lower chamber ; this should be kept about two-thirds full. The apparatus stands upon three legs, and is heated from below with a Bunsen burner or a lamp. It is employed for sterilising nutrient media in tubes or flasks, for cooking potatoes or hastening. the filtration of agar-agar. When the thermometer indicates $100^{\circ} \mathrm{C}$. the lid is removed, and test-tubes are lowered in a wire-basket by means of a hook and string, and the lid quickly replaced. Potatoes or small flasks are lowered into the cylinder in a tin receiver with a perforated bottom, which rests upon the grating, and admits of the contents bcing exposed to the steam generated.

Onc of the most efficient forms of incubators introduced into the bacteriological laboratory is that known as Hearson's

Fig. 258.-Dr. Koch's Steam Steriliser. (Fig. 259). This consists of a chamber surrounded by a waterjacket, with water space below, to afford room for the pipe, L, which conveys the heated products from the flame of the lamp, ' I , through the water and back again to the lantern. A is the water-jacket surrounding the chamber containing the cultures; O, the pipe through which the water supply is admitted; N , the tap for employing the same; M, the overflow pipe; S, the capsule in a case attached by a tube to the lower plate outside; D, a lever pivoted on the left, earrying at its free end a damper, F , which, when resting on the chimney, V, effectually closes it; 1 , a serew
for adjusting the damper when starting the apparatus; H , a lead weight for bringing more pressure on the capsule ; K, a thermometer, the bulb of which is inside and the scale outside the chamber.

Fig. 259.-The Baird-Hearson Biological Incubator.
The treated products of combustion move in the direction indicated until the water and chamber are sufficiently heated to distend the capsule. When this point is reached the wire between S and P is pushed up by the capsule, and the lever causes the damper to rise more or less off the chimney, V, and on examining the thermometer the inside of the chamber is at length found to remain steadily at the required temperature.

When the thermometer registers the desired temperature, the lead weight must be damped to the lever by means of the milledhead screw which goes through it. After having been once adjusted the heat in the interior will remain constant, notwithstanding the utmost changes of temperature oceurring in these latitudes, nor will very great alterations in the size of the lamp-flame serionsly interfere with the results. The milled-head serew, P, must be turned, after the first adjustment, during the whole time that the incubator is in use. Observe the temperature before opening the door ; observations taken afterwards are worthless.

Preparation of Nutrient Media-Separation, and Cultivation of Bacteria.

To cultivate micro-organisms artificially they must be supplied with the proper mutrient material, perfectly free from pre-existing organisms. The secret of Koch's methods greatly depends upon

Fig. 260.-Plate Cultivation Showing Colonies.
the possibility, in the case of starting with a mixture of microorganisms, of being able to isolate them eompletely one from another, and to obtain an absolutely pure growth of cach cultivable speeies. When sterile nutrient gelatine has been liquefied in a testtube and inoculated with a mixture of bacteria in such a way that the individual micro-organisms are distributed throughout it, and the liquid is poured ont on a glass plate and allowed to solidify, the individual bacteria, instead of moving about frecly as in a liquid medium, are fixed to one spot, where they develop their own species.

In this way colonies are formed, each possessing its own biologieal characteristies and morphological appearances (Fig. 260).

To maintain individuals isolated from each other during growth, and free from contamination, it is only necessary to thin out the cultivation to protect the plates from the air, and to have facilities for examining them from time to time, and observing the characteristic mieroseopical appearances. The colonies on mutrient gelatine examined with a low power (Fig. 260), if microorganisms such as Bacillus anthraces and Proteus mirabilis, the naked eye appearances in test-tubes of the growth of the baeilli of anthrax and tubercle, and the brilliant growth of micro-eoecus prodigiosus, may be given as examples in which the appearances are often very striking and sometimes quite characteristic. I must, however, first direct attention to a well-recognised fact, that bacteriology only touches animal pathology at a few points, and that so far from bacteria being synonymous with disease germs, the majority of these remarkable organisms appear to be beneficent rather than inimical to man. This is of immense importance to seience, as I shall attempt to show further on; although cven a brief deseription of all the useful ferments due to bacteria and brought into use would occupy a volume to themselves, and eall for a sehool of baeteriology quite apart from that involved in the medical aspeet of the question, for the purpose of fully investigating problems raised by the agrieulturist, the forestcr, the gardener, the dairyman, brewer, dyer, tanner, and other industries, whieh open up vistas of praetical applieation, and to some extent are already being taken advantage of in commerce.

The Preparation of Nutrient Gelatine and Agar-agar.-Take half a kilogramme (one pound) of beef as free as possible from fat, chop finely, transfer to a flask or cylindrical ressel, and shake up well with a litre of clistilled water. Place the vessel in an iec-pail, or iee-cupboard, or in winter in a cold cellar, and leare for the night. Next morning commence with the preparation of all requisite apparatus. Thoroughly wash and rinse with aleohol about 100 test-tubes, and allow them to dry. Plug the mouths of the testtubes with cotton-wool, place them in their wire cages in the hot-air steriliser, to be heated for an hour at a temperature of $150^{\circ} \mathrm{C}$. In the same manner eleanse and sterilise sereral flasks, and a small
glass fumel. In the meantime, the meat infusion must be well shaken, and the liquid portion separated by filtering and squeezing through a linen eloth or a meat press. The red juice thus obtained must be brought up to a litre by transferring it to a large measuring glass and adding distilled water. It is then poured into a sufficiently large and strong beaker, and set aside after the addition of ten grammes of peptone, five grammes of common salt, and 100 grammes of best gelatine.

In about half an hour the gelatine is sufficiently softened, and subsequent heating in a water bath causes it to be completcly dissolved.

The next process requires the greatest eare and attention. Some micro-organisms grow best in a slightly acid, others in a slightly alkaline, medium. For example, for the growth and characteristie appearances of the comma bacillus of Asiatic cholera a faintly alkaline soil is absolntely essential. This slightly alkaline medium will be found to answer best for most micro-organisms, and may be obtained as follows:-With a clean glass rod dipped in the mixture, the reaction upon litmus-paper may be obtained, and a concentrated solution of carbonate of soda must be added drop by drop until red litmus-paper becomes faintly blue. If it is too alkaline, it can be neutralised by the addition of lactic acid.

Finally, the mixture is heated for an hour in the watcr-bath. Ten minutes before the boiling is completed the white of an egg beaten up with the shell is added, and the liquid is then filtered while hot.

During filtration the fumel should be covered over with a plate of glass, and the process of filtering must be repeated, if necessary, until a pale straw-coloured, perfectly transparent filtratc results. The sterilised test-tubes are filled to about a third of their depth by pouring in the gelatine carefully and steadily. The object of this care is to prevent the mixture tonching the part of the tube with which the plug comes into contaet; otherwise, when the gelatine sets, the cotton-wool adheres to the tubes and becomes a source of embarrassment to subsequent procedures. As the tubes are filled they are placed in a basket, and then sterilised. They are cither lowered into the steam steriliser, when the thermometer indieates 100 ce., for twelve minutes, for four or five suceessive days, or they may be transferred to the test-tnbe water-bath, and heated for an lour or two for three successive days.

If the gelatine shows any turbidity after, it must be poured baek into a flask, boiled for ten minutes, and filtered again, and the proeess of sterilisation repeated.

Nutrient Agar-agar is a substance prepared from seaweed which grows on the coasts of Japan and India, and is supplied in long crinkled strips. It boils at $90^{\circ} \mathrm{C}$., and remains solid up to a temperature of about $45^{\circ} \mathrm{C}$. It is therefore substituted for gelatine in the preparation of a jelly for the cultivation of those bacteria which will grow best in the incubator at the temperature of the blood, and also at ordinary temperature for bacteria which lignify gelatine. The preparation is eonducted on mueh the same principles as those already described. Instead, however, of 100 grammes of

Fig. 261. - Pure Cultivation in Tubes (Crookshank).
gelatine, only about twenty grammes of agar-agar (1.5 to 2 per cent.), and to facilitate the solution it must be allowed to soak in salt water overnight. Flannel is substituted for filter paper. The hot-water apparatus is invariably employed. The final results, when solid, should be eolourless and elear ; but if slightly milky, it may still be employed.

Wort-gelatine is nsed in studying the bacteria of fermentation. It is made by adding from five to ten per eent. of gelatine to becr-wort.

Glycerine Agar-agar:-This is made by adding five per eent. of glyeerine to mutrient agar-agar, after the boiling and before the filtration.

T'est-tube Cultivations.-To inoculate test-tubes eontaining nutrient jelly, the cotton-wool plug is removed. A sterilised needle, charged,
for example, with blood or pus containing bacteria, is thrust onee in the middlc line into the nutrient jelly, and steadily withdrawn. The tube should be lield horizontally or with its mouth downwards, and the plug replaced as quickly as possible, and an india-rubber cap fitted over the mouth of the tube.

The appearance produeed by the growths in the test-tubes ean be in most eases sufficiently examined with the uaked eye (Fig. 261). In some eases the jelly is partially liquefied, while in others it remains solid. The growths may be abundant or scanty, eoloured or colourless. When liquefaction slowly takes place in the needle tracts, the appearanees whiel result are often very delieate and in some very charaeteristic. The appearance of a simple white thread with branching lateral filaments, of a eloudiness, or of a string of beads in the track of the needle, may be given as examples. In some cases mueh may be learnt by means of a magnifying-glass.

Bencke reeommends that gelatine eulture tubes should be inoeulated by making a puneture quite at the side of the medium, close to the glass. The advantage of this method over the plan of inoeulating the mass in the middle is that the growing culture can be microscopieally examined from the outside, and various details made out, such as the nature of the growth, the comparative appearance of colonies near the surface and those situated more deeply, and the presence of one or more distinct organisms. If the tubes used have the opposite sides flat and parallel, such examinations will be still further facilitated.

Plate Cultivations.-By this method a mixture of bacteria, whether in fluids, excreta, or in eultivations on solid media, ean be so treated that the different species are isolated one from the other, and perfectly pure eultivations of each of the eultivable bacteria in the original mixture established in various nutrient media. We are enabled also to examine under a low power of the microscope the individual eolonies of bacteria. The same process, with slight modification, is also employed in the examination of air, soil, and water.

In order to spread out the liquid jelly evenly on the surface of a glass plate, and to hasten its solidification, it is necessary to place the plate upon a level and cool surface. The glass plates are sterilised in an iron box placed in the hot-air steriliser, at $150^{\circ} \mathrm{C}$., from one to two hours.

The damp chambers for the reception of the inoculated plates arc prepared by cleansing and washing out with one in twenty carbolie acid the shallow glass dish and bell-eover (Fig. 253). A piece of filtcr-paper should eover the bottom of dish, moistened with the same solution.
"In a glass-beaker with pad of eotton-wool at bottom plaee tube containing cultivation, the three tubes to be inoeulated, three glass rods which have to be stcrilised, and a thermometer. Liquefy the gelatinc in the thrce tubes by plaeing them in a beaker containing water $30^{\circ} \mathrm{C}$. Keep the tubes, both before and after the inoeulation, in the warm water to maintain the gelatine in a state of liquefaction. Remove the plug from the eulture and also the plug of test-tube with liquefied jelly. Witl the needle take up a droplet of the eultivation and stir it round in the liqucficd jolly. Replace both plugs, and set aside the cultivation. Hold the freshly-inoeulated tube almost horizontally, then raise it to the vertical, so that the liquid gelatine gently flows back. By repeating this motion, and rolling the tube, the miero-organisms whieh have been introduced are distributed throughout the gelatine. Any violent shaking, and eonsequent formation of bubbles, must be earefully avoided. Inoculate the second tube, and also third, in the same way, but with three droplets from a sterilised needle. The next proeess consists in pouring out the gelatine on glass plates and allowing it to solidify.
"Rcmove eover of box eontaining sterilised plates, withdraw a plate with stcrilised foreeps, and rapidly transfer it to the filter-paper under the bell-glass and quiekly replaee eover of box. Remove plug from the test-tube whieh was first inoeulated, and the eontents are poured out on the platc. With a glass rod the gelatine must be then rapidly spread out in an even layer within about half an ineln of the margin of the platc, the bell-glass is replaced, and the gelatiue is allowed to sct. Mcanwhile a glass beneh is plaeed in damp ehamber, upon whieh the plate is placed when the gelatine is quite solid ; preceisely the same process is repeated with the other tubes.
"The eolonies will be found to develop in the course of a day or two, the time varying with the temperature of the room. The lower plate will contain a countless number of eolonies, whieh, if the microorganisms liquefy gelatine, speedily eommingle, and produee in a very short time a complete liqucfaction of the whole gelatine. On the
middle plate the eolonies will also be very mmerous, but retain their isolated positions for a longer time; while on the uppermost plate the colonies are completely isolated from one another, with an appreciable surface of gelatine intervening.
"The microscopieal appearances of the eolonies are best studied by plaeing the plate on a slab of blaekened glass, or on a poreclain slab if the colonies are coloured. A small diaphragm is used, and the appearances studied prineipally with a low power. A much simpler method of plate-eultivation is to pour the liquefied jelly into shallow flat dishes; they take up mueh lcss room, and in many ways are more convenient.
"Nutrient agar-agar ean also be employcd for the preparation of plate-cultivations, but it is mueh more diffieult to obtain satisfaetory results."

Microscopical Examination of Bacteria.

Bacteria in Liquids, Cultures, and Fresh Tissues.-In eondueting baeteriologieal researches, the importance of absolutc cleanliness eannot be too strongly insisted upon. All instruments, glass vessels, slides, and eover-glasses should be thoroughly eleansed beforc use. The same applies to the preparation and cmployment of culture media; any laxity in the proecsses of sterilisation, or insufficient attention to minute teehnical details, will be followed with disappointing results by eontamination of the eultures, resulting in the loss of much time.

For the preparation of mieroseopical speeimens it will be found eonvenient to use a platinum inoculating needle, stcrilised, as beforc dirceted, in the sheet-iron box; in a few moments it will be cool enough not to destroy the baeteria with which it is brought into contact.

Unstained Bacteria.-The baetcria in liquids, sueh as blood and eulture-fluids, ean be investigated in the unstained condition by transferring a drop with a looped platinum needle, or a eapillary pipette, to a slide, eovering it with a elean cover-glass, and examining without further treatment. If it is desirable to keep the speeimen under prolonged observation, a drop of sterilised water or salt solution must be rum in at the margin of the eover-glass to eounteraet the tendency to dry.

Cultures on the solid media can be examined by transferring a small portion with a sterilised needle to a drop of sterilised water on a slide, thinning it out, nnd eovering with eover-glass as already deseribed. Tissues in the fresh state may be teased out with needles (Fig. 249) in sterilised salt solution, and pressed out into a sufficiently thin layer between the slide and eover-glass. Glycerine may in many eases be substituted for salt solution, especially for sueh as aetinomyces and mould fungi.

Very small baeilli and miero-cocci are distinguished from granular matter or fat-erystals, or vice versâ, by the fact that the latter are altered or dispersed by the addition of acetie aeid, and changed by solution of potash ; ether dissolves out fatty partieles, while mieroorganisms remain unaffeeted. Baumgarten demonstrated tuberele bacilli in seetions by treating them with potash, whieh elarified the tissues and brought the baeilli elearly into view. In examining unstained baeteria the iris-diaphragm should be used, and the sub-stage eondenser earefully centred and focussed.

His's Method of Staining.-A slide is prepared as for baeteria in the fresh state ; the reagents are then applied by plaeing them with a pipette drop by drop at a margin of the eover-glass, and causing them to flow through the preparation by means of a strip of filterpaper placed at the opposite margin.

Babès' Method is as follows: A little of the growth spread out on a cover-glass into as thin a film as possible; when almost dry, apply a drop or two of a weak aqueous solution of methyl-violet from a pipette to the film; any exeess of the stain must be removed by gentle pressure with a strip of filter-paper.

Cover-glass Preparations.-A eover-glass is smeared with the substance to be examined spread out into a suffieiently thin layer; in the ease of eultures on solid media, diffuse the bacteria in a little sterilised water. By means of another eover-glass the juice or fluid is squeezed out from between them into a thin layer, and on sliding them apart eaeh eover-glass bears on it a thin film of the material. The eover-glass is then placed with its film side upwards and allowed to dry. After a few minutes it is passed from above downwards through the flame of a Bunsen burner three times. Apply two or thrce drops of an aqueous solution of fuehsine or methyl-violet to cover the film, wash away any surplus stain after a fow minutes
with distilled water. The cover-ghass is then allowed to dry, when the preparation may be mounted in Canada balsam, or while still wet, turned over on a slide, and the excess of water removed with filter-paper.

If neecssary to apply stain for a much larger period, pour staining solution into a wateh glass and allow cover-glass to swim on surface with prcpared side downwards.

Crookshank, instcad of watcry solutions of aniline dyes, prefers to usc stronger solutions, and to reduce the staining by a momentary immersion in aleohol. The method is as follows : cover-glass prcparations are stained with carbolised fuchsine (Neelsen's solution) for about two minutes, rinsed in alcohol for a few seconds, and quickly washed in watcr. This method is specially valuable for sarcinæ and streptococci.

Gram's Mcthod.-The whole film is first stained violet with gentianviolet, fixed by a solution of iodine, in iodide of potassium in the bacilli, but not in any débris, pus cells, or tissue clements present. Transfer cover-glass to alcohol, the baeilli alone remain staincd, the violct colour being ehanged to blue. By employing a contrast colour, such as eosin, a double staining is obtained.

For staining preparations with gentian-violet Crookshank employs the following uscful method:-Place four or five drops of pure aniline in a test-tubc, add distillcd water to three-quarters full, elose mouth with thumb, shake thoroughly. Filter the emulsion twice, pour filtrate into watch-glass. To the perfcctly clear aniline water thus obtaincd, add, drop by drop, a eoncentrated alcoholie solntion of gentian-violet till preeipitation commences. Cover-glasses must be left in this solution ton minutes, transferred to iodine-potassic-iodide until the film becomes uniformly brown, then rinsed in alcohol. The decolourisation may be hastened by dipping the covcr-glass in clove oil and returning to alcohol. Agaiu immerse covcr-glass in clove oil, dry by gently pressing betwecn two layers of filter-paper, and mount in Canada balsam.

Doulle-staining of cover-glass preparations.-They can be treated by Ehrlich's method for staining tubcroular sputum, or by Neelscu's modification, or by staining with cosin after treatment by the method of Gram.

Fhrlieh's Mcthod is as follows: Five parts of aniline oil are shaken
$11 p$ with one hundred parts of distilled water, and the emulsion filtered through moistened filter-paper. A saturated aleoholie solution of fuchsine, methyl-violet, or gentian-violet, is added to filtrate in watch-glass, drop by drop, until precipitation eommenees. Coverglass preparations are floated in this mixture for fifteen minutes to half an hour, then washed for a few seeonds in dilute nitric acid (one part of nitric acid to two of water), then rinsed in distilled water.

Neelsen's Solution and Methylene Blue.-Zielıl suggested the use of carbolic acid as a substitute for aniline blue. Neelsen recommended a solution of carbolie acid, absolute alcohol and fuchsine. (See Appendix.)

Gram's Solution and Eosin. - After using Gram's method as abore and deeolourising in alcohol, the eover-glass is placed in a weak solution of cosin for two or three minutes, washed in alcohol, immersed in clove oil, dried, and mounted in balsam.

Staining of Spores.-The cover-glass preparation must be heated to $210^{\circ} \mathrm{C}$. for half an hour, or passed about twelve times through the flame of a Bunsen burner, or exposed to the action of strong sulphuric acid for several seconds, then a few drops of a watery solution of aniline dye applied in the usual way. To double-stain spore-bearing bacilli the cover-glass preparation must be floated from twenty minutes to an hour on Ehrlich's fuchsine-aniline-water, or on the Ziehl-Neelsen solution. The stain must be heated until steam arises.

Staining of Flagella.

Koch first stained flagella by floating the cover-glass on a watery solution of hæmatoxylin, transferring them to a five per cent. solution of chromic acid, or to Müller's fluid, by which they obtained a brownish-blaek coloration.

Löffler's Method.-Add together aqueous solntions of ferroussulphate and tamnin (twenty per cent.) until the mixture turns a violet-blaek colour, then add three or four cc. of a one-in-eight aqueous solution of logwood; a few drops of carbolic acid may be added before transferring to a stoppered bottle; that is the mordant. The dye consists of 1 cc . of a one per cent. solution of caustic soda, added to 100 cc . of aniline water, in whieh four or five grammes of either methyl-violet, methylene blue, or fuehsine, are dissolred. A
cover-glass preparation is made in the usual way, then the film is covered with mordant, and cover-glass held over flame until steam rises, the mordant is then washed off with distilled water. The stain is filtered and a few drops allowed to fall on film, after a few minutes the coverglass is again warmed until steam rises. The stain is then washed off with distilled water, and the preparation is ready to be mounted for examination.

As Löfflcr's process is somewhat complicated, a modification has been said to afford more satisfactory results. A specimen is taken from a reecnt gelatine culture and diluted with water. A little of the fluid is then transferred to a warm cover-glass by means of a pipette and allowed to dry, after which a drop of the following mordant is applied:-Aqueous solution of tamin (twenty per cent.), ten ce.: cold saturated solution of ferrous sulphate, five ce. ; saturated solution of fuchsine in absolute alcohol, one ce. The cover is next heated gently for a short time until vapours are given off, then washed carcfully. This process is repeated two or three times, and the specimen washed after cach application. Subsequently, staining is effected by means of Ziehl's fuchsine solution, the cover is afterwards warmed once or twice for about fifteen seconds, then washed, and the specimen examined in water to ascertain if the colour is sufficiently intense. If satisfactory, the preparation may then be dried and finally mounted in Canada balsam or dammar.

Preservation of Preparations.-After examining a cover-glass preparation with an oil-immersion objective the cedar oil must be carefully wiped off, and the slide set aside for the Canada balsam to set. At a convenient time these preparations should be sealed with a ring of Hollis's gluc.

Bacteria in Sections of Tissues.

Method of Mardening and Decalcifying Tissues.-To harden small organs, such as the viscera of a mouse, they should be placed on a piece of filter-paper at the bottom of a small wide-mouthed glass jar, and covered with about-twenty times their volume of absolute alcohol. Larger organs are treated in the same way, but must, be cut up into small pieces. Müller's fluid, methylated spirit, or formalin may be used.

Teeth, or osseous structures, must first be placed in a decalcifying solntion, as Kleinemberg's. When sufficiently softened, soak in water, to wash out picric acid, and transfer to weak spirit. Ebner's solution gives good results.

Methods of embedding, fixing, and cutting.-Crookshank finds that after hardening, the pieces of tissue are embedded in a nixture of ether and alcohol for an hour or more, then transferred to a solution of celloidin in equal parts of ether and alcohol, and left there for several hours.

The piece of tissue is then plaeed in a glass capsule, and some of the celloidin solution poured over it. The capsule can be placed bodily in 60 to 80 per cent. alcohol, and left there until the following morning. The celloidin should be of the consisteney of wax. The piece of tissue is next eut out, and after trimming is put into water until it sinks, then transferred to gum, and cut with the freezing microtome.

Seetions of fresh tissues are to be floated in 8 per eent. salt solution, and then carefully transferred by a platinum lifter to a wateh-glass eontaining absolute alcohol.

Staining Bacteria in Tissue Sections.-Weigert's method is as follows:-Place sections for from six to eighteen hours in a one per cent. watery solution of any of the basic aniline dyes. To hasten, place the eapsule containing solution in the ineubator, or heat it to $45^{\circ} \mathrm{C}$., or a strouger solution may be used. In the latter case the seetions must be treated with a half-saturated solution of earbonate of potash, as they are easily over-stained. In either case the sections are next washed with distilled water, passed through sixty per eent. alcohol into absolute alcohol. When almost decolourised, spread out on a platinum lifter and transfer to clore oil, or stain with picro-earmine solution (Weigert's) for half an hour, wash in water, alcohol, and treat with clove oil, and transfer to clean cglass slide.

Gram's Method.-Sections are stained for ten minutes in al capsule containing aniline-gentian-violet solution, then placed in the iodine and iodide solution until uniformly brown, then plaeed in absolute alcohol, and washed by carefnlly moving sections in the liquid with a glass rod. When completely deeolourised, they are transferred to clove oil and then to a slide.

Double-staining is obtained by transforring the sections after deeolourisation to eosin, Bisnarck brown, or vesuvin (Crookshank).

Formalin is an excellent preservative fluid ; one part to 20,000 is sufficient to prevent fermentation. For the preservation of vegetable sections, a one per cent. solution is required; even the fresh appearance of vegetable structures is preserved for some time when immersed in it. In the nutrient gelatine for biological specimens, if used early, will arrest the liqucfaction of the gelatine by baeteria. For lardening it saves time, and is even better than alcohol, chromic acid, pot. bich., and many others. It does not cause shrinkage of the eells. Tissue $\frac{1}{2}$ to $\frac{3}{4}$ inch thick hardens in twenty-four hours in pure formalin; five to ten per cent. is best for loose tissue. In another method, by whieh time can be saved, instead of placing the speeimen in the formalin and afterwards in mucilage, prior to eutting seetions, nake the mueilage with two per eent. (or stronger) formalin water, and it will then answer both purposes at the same time.

Preparing, Mounting, Cementing and Collecting Objects.

Various materials are required for preparing and mounting mieroscopie objects, as slips of glass, patent flatted plate measuring 3×1 inch, thin glass covers, glass cells, preservative media, varnishes, cements, a glazier's diamond, and a Shadbolt's turn-table.

The glass slides and covers, although sent out packed ready for use, should be immersed in an alkaline solution to ensure perfect freedom from any greasiness derived from touehing by the fingers. Dr. Seller reeommends a particular solution for this purpose, (See Formula, Appendix.)

Varnishes and eements must be seleeted with eare, as these are not only expected to adhere firmly to the glass slide, but also to resist the action of the preservative fluid in which the speeimen may be monnted. Among the numerous preparations employed, I may enumerate Canada balsam, gum dammar, Veniee turpentine, Jipanners' gold size, used for elosing up cells, asphalte varnish, Brunswick black, shellae, ghe and honey, Hollis' liquid ghe, and marine glue. To give a finish to the mounted specimen, eoloured varnishes are sometimes resorted to. A red varnish of sealing-wax is
made by digesting powdered sealing-wax in strong alcohol. Filter, and place the solution in a dish, and eraporate by means of a sand bath to reduce it to a proper consistency. This is said to resist the action of cedar oil. For white, zinc, coment is the best. This is made of benzole, gum dammar, oxide of zinc, and turpentine. Cole gives another formula, but either of thesc may be obtained of Squirc, who supplies cvery kind of staining and mounting material.

Cells for Mountiny.- The minnter forms of life should be mounted in thin cells, which may be readily made with Japanners' gold sizc, dammar or asphalte, and a Shadbolt or Walmsley's turntable. The glass slide being placed under the metal springs in such a manner that its two ends shall be equi-distant from the centre (a guide to the position is afforded by the circles traced out on the

Fig. 262.-Walmsley's Cell-making Tum-table.
brass), take a camel's hair pencil and dip it into the Japamer's gold-size, holding it firmly between the finger and thumb, and set the wheel in motion, when a perfect circle will be formed; put it aside to dry, or place it in the warm chamber to harden. To cut. cover-glasses place a shect of thin glass under the brass springs, and substitute for the pencil a cutting diamond. A cutting diamond is not only useful to the microscopist for the abore purpose, but also for writing the names of mounted objects on onc end of the slide.

It will be found convenient to make a number of such cells, and kecp a stock ready for use. There are many objects whose structure is very transparent. These should be momnted dry. Scales from the wings of butterflies and moths, of the podura and lepisma, and some of the diatomacere are of this class. All that is necessary in preparing objects for dry mounting is to take care that they are
frec from extraneous matter, and fix them permanently in the position in which their structure will show to the best advantage.

For mominting specimens of greater thickness it is desirablo to use deoper cells. It will then be found conveniont to make a second or a third applieation of the gold-size, allowing sufficient time between applications for the varnish to dry. Cells of a still deeper kind are made up by cementing rings of glass or netal to the glassslides with marine glue or Brunswick black. The latter will be renderod more durable by mixing in a small quantity of indiarubber varnish (made by dissolving small strips of eaontchouc in gas-tar). The process of mounting in glass-cells is similar to that employed in making varnish-cells, except that a somewhat largor quantity of cementing medium is required. Objects mounted in this way should be kept for a time in the horizontal position, and a little fresh rarnish must be applied if the cement shows a tendency to craek. In mounting objects in balsam, carc must be taken to have the specimen quite dry before transferring it to turpentinc. Objocts mounted in cells should become perfectly saturated with the mounting fluid before being finally comented down.

It is preferable to mount and preserve

Fig. 263.-Glass-cells for Mounting. specimens of animal tissnes in shallow eells, to avoid undue pressure on the proparation. Cells intended to contain preparations immersed in fluid must be made of a substance impervious to the fluid used, such as here represonted (Fig. 263). The surface of the fixed glasscircle should be slightly roughened before applying the cement.

Different modes of monnting may be employed with advantage; for instance, entomological specimens, as legs, wings, spiracles, tracher, ovipositors, stings, tongues, palates, corneæ, shonld be mounted in balsam; the trachea of the house-cricket, however, should be mounted dry. Sections of bone may cither be mounted dry or in a fluid. Other objects, as sections of wood and stones of fruit, cxhibit their structure best in Canada balsam.

In mounting entomological specimens, the first thing, of course, is the dissection of the insect. 'This is best accomplished by the aid of a dissecting microscope, a pair of small brass forceps, and finclypointed scissors ; tho parts to be prepared and mounted should first
lee earefully detached from the insect with the scissors, then immersed in a solution of eanstie alkali (liquor potasse) for a few days, to soften and dissolve out the fat and soft parts. The length of time necessary for their immersion ean only be determined by experienee, but, as a general rule, the objeets assume a eertain amount of transparency when they have been long enough in the alkali ; when this is ascertained, the object must be plaeed in a proper receptacle and put by to soak for two or three hours in soft or distilled water. It should then be plaeed botween two slips of glass, and gently pressed till the softer parts are removed. Should any adhere to the edge of the objeet, it will be neeessary to wash the speeimen earefully in water, a proeess that will be mueh assisted by the delieate touches of a eamel's-hair brush. Place the object now and then under the microscope to see that all extraneous matter is removed, and when this is aceomplished take the speeimen up

Fig. 264.-Spring Clip for Mounting. earefully with the eamel's-hair brush, or a lifter, and place it on a pieee of very smooth paper (thiek ivory note is the best for the purpose), arrange it earefully with the brush and a finely pointed needle, place a seeond pieee of paper over it, and press it flat between two slips of glass, and eompress it by a small spring clip (Fig. 264). A dozen elips may be had for a few penee. When thoroughly dry (whieh it will probably be in about twenty-four hours, if in a warm room), separate the glasses, and gently unfold the paper; then, with a little eareful manipulation, the objeet may be readily detaehed, and plaeed in a little spirit of turpentine, where it should be allowed to remain until rendered transparent and fit for mounting. The time during whieh it should remain in this liquid will depend on the strueture; some objeets, sueh as wings of flies, will be quiekly permeated, while hormy and dense objects require an immersion of a fortnight or eren longer. A pomatum pot with a concave bottom and well-fitting lid will answer admirably for eondueting the soaking process in; and it is well, in preparing several specimens at a time, to have two pots, one for large and medium, the other for very small objeets, otherwise the smatler will arthere to the larger.

In mounting objeets in fluid, the glass cover shonld come nearly, lut not quite, to the edge of the cell, a slight margin being left for the eement, which should projeet slightly over the edge of the cover, in order to secure it to the cell.

Meclice for Preserving Algce.-'The most useful preservative media for alge are ehrome-alum, formalin, and camphor water. The solution should consist of one per cent. of chrome-alum and one per eent. of formalin ; this will render the gelatinous sheath and matrix form clear, while it will retain the colour of the algæ in most cases. The Chlorophyeere do well in any of these media ; but other species, as Llva Lactuca, are rendered somewhat brittle. For such use formalin alone. The Phæophycer should be placed while fresh in the formalin; the larger forms are better fixed by placing them for an hour or two in chrome-alum solution. The Florider do well in any of the three solutions, but the more delicate species, Griffithsia, require a two per cent. formalin solution in sea-water ; the plant preserves its natural appearance in this medium.

To preserve and mount diatomacere in as nearly as possible a natural condition, they should lue first well washed in distilled water and mounted in a medium composed of one part of spirits of wine to seven parts of distilled water. The siliceous coverings of the chatoms, however, which show various beautiful forms under the higher powers of the microscope, require more eare in preparation. The guano, or infusorial earth containing them, should first lie washed several times in water till the water is colouless, allowing sufficient time for precipitation between cach washing. The deposit must then be put into a test tube and nitro-hydrochloric acid (equal parts of nitric and hydrochloric acids) added to it, when a violent effervescence will take place. When this has subsided, the whole should be sulbjected to heat, brought nearly to the boiling point for six or cight hours. The acid must now be carefully poured off, and the precipitate washed in a large quantity of wator, allowing some three or four hours between each washing, for the subsidence of some of the lighter forms. The sediment must be examined under the microseope with an inch object-glass, and the siliceous valves of the diatoms picked out with a course hair or bristle.

Dr. Rezner's Mechanieal Finger (Fig. 265) for selecting and arranging diatoms, adaptable to any microseope, is made to slip on
to the objective far enough to have a firm bearing, and so that the bristle point ean bo brought into focus when depressed to its limit. It is clamped in its place by a small thumb-screw. The bristle holder slides into its place, and is carcfully adjusted to the centre of the field. When using the finger, the bristle is first raised by means of the micrometer serew till so far within focus as to be nearly or quite invisible, then the objective is foenssed on to the slide, and the desired object sought for and brought into the centre of the field; the bristle point is then lowered by the screw until it reaches the object, which usually adheres to it at once, and can then be examined by rotating the bristle wire by means of the milled head.

Fig. 265.-Rezner's Mechanical Finger.
The medium used for mounting diatomaceæ is of considerable importance, inasmuch as their visibility is either diminished or much increased thereby. Professor Abbe, experimenting with the more minute test objects, diatoms, de., found monobromide of naphthaline gave increased definition to most of them. This liquid is colourless, somewhat of an oleaginous nature, and is soluble in alcohol. Its density is 1.555 , and refractive index $1 \cdot 6$. Its index of visibility is about twice that of Canada balsam.

Taking the refractive index of air as $1 \cdot 0$, and diatomaccous silex as 1.43 , the visibility may be expressed by the difference ± 3.

The following table may be constructed:-

the numerical aperture of the objectives and of the illuminating pencil. The effeet produced on diatoms is very remarkable, the markings on their siliceous frustules being visible under much lower powers.

So that the risibility of the diatom mounted in phosphorus as compared with balsam is as sixty-seven to eleven; in other words, the image is six times more visible. Mr. Stephenson's phosphorus medium is composed of a solution of solid or stiek phosphorous dissolved in bisulphide of earbon. Great eare is required in preparing the solution owing to the very inflammable nature of the materials. So small a quantity of the bisulphide of carbon is required to dissolve the phosphorus that the diatom may be said to be mounted in noarly pure phosphorus. Remarkable enough, this medium has the reverse effeet upon such test-objects as podura and lepisma seales. These lose their claracteristic markings.

For mounting minute objeets, earbolie acid solution will be found a useful medium-the purest erystals of carbolie aeid dissolved in just suffieient water to render them fluid. No more should be dissolved than may be wanted for the time being, as if left standing exposed to the light it changes colour. Small crustaccan foraminifera, the palates of moluses, after boiling a short time in liquid potash and well washing to remove all traces of alkali, may be preserved in earbolie acid solution. Should the specimens appear eloudy gently warm the slide over a spirit lamp.

Preserving and Killing Rotatoria with cilia in situ.-Mr. C. Rousselet's method of preserving and mounting the Rotatoria* has been attended with so much suceess that the old difficulty attendant upon the preservation of these varions beautiful forms of infusorial life has been practieally overeome. The proeess resorted to consists of four stages, namely, narootising, killing, fixing, and preserving. In dealing with rotifers hitherto, the difficulty has been that of suecessfully killing them with their rotating organs fully extended. It has been found needful to have recourse in the first instance to a narcotising agent, and one that acts slowly. The most snitable is a weak solution of the hydrochlorate of eocaine, a one per cent. solution, or even weaker. This was first proposed by Mr. Weber for keeping those active little bodics quict while under observation.

[^25]Mr. Rousselet carries this agent further ; he applied it to narcotise them prior to killing, and this it does most effectually. The rotifers are scen to sink to the bottom of the live-eell, and the cilia gradually to slacken in motion, and the time for killing has arrived. This is effected by Flemming's chromo-aceto-osmie acid. A rather weak solution must be employed-consisting of 1 per cent. solution of chromie acid, 15 parts ; 2 per cent. osmic acid, 4 parts ; glacial acetie aeid, 1 part-whieh is at the same time a killing and fixing medium. The word "fixing" must not be taken to imply simply fixing, as it includes rapidly killing and hardening and preventing further change in the tissues of the rotifers by subsequent treatment, as mounting. The animal, therefore, must remain quietly for a few minutes, and then taken out and washed in five or six ehanges of distilled water, and henee transferred to the preservative fluid. All this must be effected with great care. The best preserrative fluid is simply distilled water, rendered antiseptic by a traee of the fixing solution (about cight drops to an ounce of water) giving the slightest tinge of yellow to the solution. This slight tinge of colour is imparted to the rotifers, otherwise they remain transparent and unchanged, while the nerrous tissue throughout the body is brought out to perfection.

Some slight difference in treatment is required by certain species, as that of Asplanchna priodonta; after the application of the cocaine solution, whieh should be added slowly, that is, by letting a few drops trickle down the side of the live-trough; this, being heavier than water, sinks to the bottom, thus narcotising the rotifers, and assisting to kill them with the cilia fully expanded. They should be left quictly for fifteen minutes, then thoroughly washed with distilled water. On further experimenting, Mr. Rousselet found that a weaker solution of osmic acid alone, $\frac{1}{4}$ per cent., answers quite as well as, if not better than, Flemming's fluid ; even this must be allowed to aet for only a very short time-a mimute at most; the rotifers then remain white and transparent, excepting the ora, in which a fat-like substance, lecithene, is sccreted. If they become too much stained, they may be deeolourised by passing them throngl peroxide of liydrogen. For narcotising the following solution has been fomed most useful:-Take a 2 per cent. solution of cocainc hydrochlorate, 3 parts; methylated spirit of wood naphtha, 1 part ; and distilled
water; 6 parts. This must be added as before directed, drop by drop, watching the effect mpon the rotifers under the mieroscope.

All the rotatoria may be killed and preserved in the same way. For mounting, Mr. Ronsselct prefers a slightly hollowed-out glass eell, the advantage of which is that the rotifers are kept to the eentre, and cannot move to the edge. A little difficulty at first presents itself to exclude air-bubbles, but this, with a little care, can be overcome by plaeing a drop of a two or three per eent. solution of formalin, just sufficient to fill the eell. Then transfor the rotifers with a dipping pipette to the cell, and lower the cover-glass down very gently, removing any cxcess of fluid by blotting-paper. The best eement for the eover-glass is gold-size.

Method of Cementing. - After many years' expcrience, I have arrived at the conclusion that for eementing down the cover-glass there is nothing better than either gold size or gum dammar varnish. The latter, for some preparations, will be improved by the addition of a small proportion of indiarubber dissolved in naphtha. (See Appendix.)

Should glycerinc be preferred, carefully wash away any surplus quantity by gently syringing; then apply a ring of waterproof ecment round the cover-glass. An inexpensive one can be madc by dissolving ten grains of gum-ammoniac in an ounce of acetic acid, and adding to this solution two drachms of Cox's gelatine. This liquid flows easily from the brush and is waterproof, renderod more so if subsequently brushed orer with a solution of ten grains of biehromate of potash in an ounce of water. An espceial recommendation to this eement is its adhesivenoss to glass, cren should there be a little glycerine left behind on the cover. After the gelatine ring is thoronghly dry any kind of ecment may be employed.

A useful cement for fixing minute objects, diatoms, \&c., temporarily to thin glass eovers, before permanently mounting them in Canada balsam, is madc as follows:-Dissolve, withont heat, two or three grains of gum arabic in one ounce of distilled water, then add glacial acctie aeid, three minims, and the least traec of sugar. Filter carcfully through filter paper, and repeat this in the course of three or four weeks. This cement will be unaffected by the balsam.

Mounting Chara.-It is often found difficult to preserve and mount the frnit of chara, but this can be snecossfully accomplished
in glycerine jelly, by taking the following procautions. After cleaning the specimen place it in 92 per cent. of alcohol for several hours, then transfor it to a mixture of equal parts of spirit and glycerine for several hours longer, ponr off nearly all the mixture, and add pure glycerinc at intervals till the glycerine becomes concentrated. The specimen is then mounted in glycerine jelly in a cell just deep enough to take it without pressurc.

There are some objects much more difficult to prepare than others, and whieh tax the patienee of the beginner in a manner which ean hardly be imagined by any one who has never made the attempt. The structure of many creatures is so delicate as to require the very greatest care to prevent mutilation, and consequent spoliation, of the specimen. The beginner, therefore, must not be discouraged by a few failures in commencing, but should persevere in his attempts, and constant practice will soon teach him the best way of managing intricate and difficult objects. The room in which he operates should be free from dust, smoke, and intrusion, and everything used should be kept scrupulously clean, since a very small speck of dirt, whieh may be almost invisible to the naked eye, will assume unpleasant proportions under the microscope, and not only mar, but possibly spoil a finc and delicate preparation.

Few students on commencing to work with the mieroscope will fully realise the fact that under medium or high powers the natural appearance of almost all objects is changed by the refractive nature of the fluid medium in whieh they are immersed and which enters more or less into their composition. The remarkable changes effeeted by the law of diffusion, when alkaloid substances enter into their composition, show the necessity of taking every precaution in the employment of preservative fluids. Glyccrine affords an example of the ehemieal ehange induced, should the preparation have been passed through an alkaline solution.

Air Bubbles are a constant source of annoyance both in preparing and mounting. These may be removed from the specimen by gently warming the under part of the slide over a spirit lamp, or placing the slide in the warm chamber, when the bubbles will move towards the edge of the eover-ghass and nltimately disappear. The air-pump is preferred by many mieroseopists.

Collection of Objects.

Infusorial Liffe, with all its faseinations, was fully unveiled to naturalists by the eelebrated Elirenberg. It was he who termed it infusorial, because he first met with the morc interesting forms of minute life in infusions of hay and other vegetable substances. Since his day it is a well-known experienee of those who take up the mieroscope that the most intercsting objects to eommenee with are infusorial living creatures of suffieient dimensions to be easily understood and seen with moderatc magnifying powers. Morcover, infusoria are more readily found in almost any pool or running stream of water, either ncar the surfaec or clinging to the under surfaees of aquatic plants. At one time all the small shallow pools in the neighbourhood of London-Hampstead Heath, Clapham, Wandsworth, and other eommons-abounded in the most interesting forms of lifc, were famous hunting grounds for the marvellous volvox, the charming dismid and diatom, the wonderful budding and self-dividing hydra. A few hours' ramble furnished the microscopist with a bountiful supply of these and many other forms of life. Now all is changed ; our commons have bcen devoted to other purposes, and with the general levelling up all the little pools havc disappeared, and the mieroseopist has been warned off and driven further afield, or sceks the good offiees of a country friend for an oecasional pecp into pond life.*

A teaspoonful, howcver, judiciously taken from a well-chosen loeality will often be found to contain a variety of living forms, every one of which will descrve a eareful and patient study.

Of the mieroscopie organisms, the collcetion of whieh requires no other methods than those ordinarily pursued by the naturalist, most of them must be sought for in pools or rumning waters, basking in the sunshine, elinging to lcaves and rootlets of all aquatic plants; some freely moving about, others elinging to stones or pieecs of wood at the bottom. Dismids congregate in shallow waters or risc to the surface in a quict nook, while the diatomaeer arc secn eovering the bottom of clcar water, to whieh they give a yellowishbrown tinge of eolour.

[^26]Infusorial animal life, as vorticellæ, stentors, rotifers, and various polyzoa, eling, as also do hydra, in colonies to vallisneria, duck-weed, frogbit, or small branches dipping down under water; and if some of the water-weed is brought home the little creatures will live and thrive for several weeks. No waters, however, are so full of minute animal life as the sphagnum bog. A number of species of diatoms, as well as protozoids and the smaller molluses, will be found in all peat bogs. It is remarkable, too, that the same species, everywhere, are associated with this kind of moss. Lord Sidney Godolphin Osborn supplied his friends with moss growing in a damp part of the garden walk of his rectory; this always furnished the same species of rotifers. These proved to be most interesting objects to

Fig. 266.-Collecting Stick, Bottle, Hook, and Net.
my friends, and in an carly communication I described them as indestructille, since they will bear any amount of desiccation; nevertheless, they were revived when a drop of water was introduced into the glass-cell.

The Thames mud always furnishes a number of beautiful forms of triceratum. Lower down the river, as brackish water is reached, greater varieties of diatoms appear. But to seeure them the collector must be provided with a collecting stick. A comvenient form is furnished by Messis. Baker (Fig. 266). This consists of an ordinary walking-stick, together with a lengthening rod, a cutting hook to clear away weeds, ringed bottles with serew tops, and a net with a glass tube attached. Their uses are too obvious to need further deseription.

The silicoons skeletons of diatoms are met with in the fussil state.

Among the first discovered of the infusorial strata were the polishing slates of Bilin and Tripoli, the berg-mehl or momntain meal, the entire mass of which is composed of the siliceons skeletons of different species of diatoms. Richmond, Virginia, is rich in the same organisms, while the great mass of our ehalk cliffs are composed of foraminiferous shells, xanthidie, de. One remarkable fact in connection with fossil infusoria is that most of the forms are still found in the recent statc. The beautiful engine-turned discs, Coscinodisci, so abundant in the Riehmond earth, may be met with in our own seas, and in great profusion in the deposits of guano on the African and Ameriean coasts, and in the stomachs of the oyster, scallop, and other salt-water molluscous animals eommon to our shores.

A great number of infusorial earths may be mounted as dry objects, while others require careful washing and digesting in appropriate media. The finer portions of the sediments will be found to eontain the better and more porfeet silieeous shells.

Preparing and Mounting Apparatus.

Fig. 267.-Mounting Apparatus.
1.-Ross's instrument for cutting thin covering-glass for objects. This apparatus consists of a bent arm supporting the cutting portion of this apparatus, which consists of a vertical rod with a soft cork at one end. A brass ann at right angles carries the diamond parallel with and close to the main rod.
2.-Covering-glass measurer. To measure the thickness of covering-glass, place it between the brass plate and the stcel bearing; the long end of the lever will then indicate the thickness on the senle, to $\frac{1}{50}-\mathrm{th}$, $\frac{1}{100}$-th, or $\frac{1}{1000}$ - th inch.
3.-Brass table on folding legs, with lamp for nounting objects.
4.-Whirling table with eceentric adjustment for making cells and fimishing off slides.
5.-Air-pump with glass recciver, $3 \frac{1}{2}$. inclı brass plate for momnting objects and withdrawing air-bubbles.
6. -Improved table with knife for cutting soft sentions. This consists of an absolutely flat brass table, with a square holc to receive the wood, or other matter, on a movable screw, which adjusts the thickuess of the section.
7.-Snith's holder with spring and serew for adjusting pressure when monnting objects.
8.- Cutting diamonds for cell-making and cutting slips of glass.
9.-Writing diamonds for cutting thin covering-glass and naming olyjects.
10.-Page's wooden forceps, for holding glass slips or oljects when heated, during momnting.

PART II.

CHAPTER I.

Microscopic Forms of Life-Thallophytes-Pteridophyta, Phanerogamæ-Structure and Properties of the Cell.

The time has long since passed by since the value of the mieroscope as an instrument of scientifie rescareh might have bcen called in question. By its aid the foundation of myeology has been sccurcly laid, and eryptogamic botany in particular has, during the last quarter of a coutury, made surprising progress in the hands of thosc devoted to pursuits whieh confer bencfits upon mankind.

Little more than thirty jears ago practically nothing was known of the life history of a fungus, nothing of parasitism, of infectious discascs, or cven of fermentation. Our knowlcdge of the physiology of nutrition was in its infancy; cven the signifieance of starehes and sugars in the green plant was as jet not understood, while a number of the most important facts relating to plants and the physiology of animals werc unknown and undiseovercd. When we reflect on these matters, and remember that bactcria were regarded merely as currious animalculæ, that rusts and smuts were supposed to be emanations of discased states, and that spontancous gencration still survived anong us, some idea may be formed of the condition of cryptogamic botany and the lower forms of animal life some eight or ten years after my book on the microseope made its first appearance (1854).
ludced, long prior to this time, dating from that of evon the carliest workers with the microscope, it was known that the water of pools and ditehes, and especially infusions of plants and animals of all kinds, teem with living organisms, but it was not reeognised

[^27]definitely that vast numbers of these microscopic living being.s (and even actively moving ones) are plants, growing on and in the various solid and liquid matters examined, and as truly as visible and accepted plants grow on soil and in the air and water. J'erhaps the most important discovery in the history of eryptogamic botany was initiated here. The change, then, that has come over our knowledge of microscopic plant life during this last busy quarter of a century has been almost entirely due to the initiation and improvement, first in methods of growing them, and in the methods of "Microscopic Gerdening"; and sceondly, to the greater knowledge gained in the use of the mieroscope.
"If we look at the great groups of plants from a broad point of view, it is remarkable that the fungi and the phanerogams occupy attention on quite other grounds than do the alga, mosses, and ferns. Algæ are especially a physiologist's group, employed in questions on mutrition, reproduction, and cell division and growth; the Bryophyta and Pteridophyta are, ou the other hand, the domain of the morphologist. Fungi and Phanerogams, while equally or eren more employed by specialists in morphology and physiology, appeal widely to general interest on the ground of utility.
"It is very significant that a group like the fungi should hare attracted so much scientificattention, and aroused so gencral an interest at the same time. But the fact that fungi affect our lives directly has been driven home ; and whether as poisons or foods, destructive moulds or fermentation agents, parasitic mildews or discase germs, they occupy more interest than all other eryptogams put together, the flowering plants alone rivalling them in this respect. A marked feature of the period in which we live will be the great advances made in our knowledge of the uses of plants, for, of course, this development of economic botany has gone hand in hand with the progress of geological botany, the extonsion of our planting, and the useful applications of botany to the processes of home industrics." "*

The intimate organic structure of the vegetable world is seen to consist of a variety of different materials indeterminable by unassisted vision, and for the most part requiring high magnification for their

[^28]discrimination. Chemical analysis had, however, shown that vegetables are composed of a few simple substanees, water, carbonic acid gas, oxygen, nitric acid, and a small portion of inorganic salts. Out of these simple elements the whole of the immense variety of substances produced by the vegetable kingdom are constructed. No part of the plant eontains fewer than three of these unversally distributed elements, hence the groater uniformity in their chemical constituents. It will be seen, then, that the methods of plant chemistry are of supreme interest both to the chemist and the physiologist, or biologist. Plants, while they borrow matcrials from the inorganic, and powers from the physical world, whereby they are cnabled to pass through the several stages of germination, growth, and reproduetion, eonld not aceomplish these transformations without the all-important aid of light and heat, the eombined functions of whieh are indispensable to the perfeet development of the vegetable world.

Light, then, enables plants to deeomposc, change into living matter, and consolidate, the inorganie elements of earbonie aeid gas, water, and ammonia, whieh are absorbed by the leaves and roots from the atmosphere and earth; the quantity of carbon eonsolidated being exaetly in proportion to the intensity of the light. Nevertheless, light in its chemical eharaeter is a deoxidising agent, by whieh the numerous neutral compounds common to vegetables are formed. It is the principal agent in preparing the food of plants, and it is during the chemieal changes spoken of that the specific heat of plants is slowly evolved, which, though generally feeble, is sometimes very sensibly evolved, especially so when flowers and fruits are forming, on aceount of the increase of eliemical energy at this period.

The action of heat is measurable throughout the whole eourse of vegetable life, although its manifestations take on various formsthose suited to the period and circumstances of growth. Upon the heat generated depends the formation of protein and nitrogenous substances, which abound more directly in the seed buds, the points of the roots, and in all those organs of plants which are in the greatest state of activity. The whole chemistry of plant life, in fact, is manfest in this prodnetion of energy for drawing material from its surroundings; therefore the orgmising power of plants bears a direct ratio to the amome of light and heat aeting npon them.

The living medium, then, which possesses the marvellous property of being primarily aroused into life and energy, and which either forms the whole or the greater portion of every plant, is in its earliest and simplest form nothing more than a microseopic cell, eonsisting of one or two colourless particles of matter, in elosest contact, and wholly immersed in a transparent substanee somewhat resembling allumen (white of eg(g), termed protoplasm, but differing essentially in its character and properties. This nearly eolourless organisable matter is the lifeblood of the cell. It is suffieiently viseid to maintain its globular form, and under high powers is scen to have a slightly eonsolidated film enelosing semi-transparent partieles, together with vacuoles whieh are of a highly refractive nature. These small bodies are termed nuclei, and they appear to be furnished with an extremely delieate enveloping film. In a short time the nuelei inerease in number and split up the parent body. The protoplasmie mass, however, is mudoubtedly the true formative material, and is rightly regarded as "the physieal basis of life" of both the vegetable and animal kingdoms.

There are, however, eertain members of the regetable kingdom whieh somewhat resemble animals in their dependenee upon reeeiving organie eompounds already formed for them, being themselves unable to effect the fixation of the earbon needed to effeet the first stage in their after chemieal transformations. Sueh is the ease with a large elass of flowering plants, among Phanerogams, and the leafless parasites whieh draw their support chiefly from the tissues of their hosts. It is likewise the ease with regard to the whole group of fungi ; the lower eryptogams, which derive the greater portion of their nutritive materials from organie matter undergoing some form of histolysis; while others belonging to this group have the power of originating decomposition by a fermentative (zymotic) aetion peculiarly their own. There are many other protophytes whieh live by absorption, and whieh appear to take in no solid matter, but draw nourishment from the atmosphere or the water in whieh they exist.

With regard to motion, this was at one time eonsidered the distinetive attribute of animal life, but many protophytes possess a spontaneity of power and motion, while others are furnished with eurious motile organs termed cilia, or whip-like appendages, flagella,
by which their bodies are propelled with eonsiderable foree through the water in which they live.

Heneeforth this protoplasmic snbstanee was destined to take an important position in the physiological world. It is, then, desirable to enter somewhat more fully into the life history of so remarkable a body. It has a limiting membrane, composed of a substance somewhat allied to stareh, termed cellulose, one of the group of compounds known as carbo-hydrates. The mode of formation and growth of this eell wall is not yet definitely determined; nevertheless, it is the universal framework or skeleton of the regetable world, although it appears to play no special part in their vital funetions. It merely serves the purpose of a protecting membrane to the globular body called the " mrimordial cell," which permanently constitutes the living prineiple upon which the whole fundamental phenomena of growth and reproduction depend.

Sometimes this protoplasmic material is seen to constitnte the whole plant; and so with regard to the simplest known forms of animal life-the amæba, for cxample. That so simple and minute an organism should be capable of independent motion is indeed smprising. Dujardin, a French physiologist, termed this animated matter surcode. On a closer study of the numerous forms of animal life it was found that all were alike composed of this sareode substance, some apparently not having a cell wall. The same seemed to hold good of eertain higher forms of eells, the colourless blood corpuseles for instance, which under high powers of the microscope are seen to change their shape, moving about by the streaming out of this sarcode. At length the truth dawned on histologists that the cell contents, rather than the elosing wall, must be the essential structure. On further investigation it became apparent that a far closer similarity existed between vegetables and animals than was before supposed. Ultimately it was made elear that the vegetable protoplasm and the animal sarcode were one and the same strueture. Max Schultz found this to be the ease, and to all intents and purposes they are identical.

We have now to retrace our steps and look somewhat more closely into the diseovery of that important body, the cell-mucleus. It was an English botanist, Dr. Robert Brown, who, in 1833, during his microseopical studies of the epidermis of orchids, discovered in
their cells "an opaque spot," to which soon afterwards he gave the name of mucleus. Schleiden and Schwann's later researches led then to the conclusion that the mucleus is the most characteristic formative element in all vegetable and animal tissues in the incipient phase of existence. It then began to be tanght that there is one universal principle of development for the elementary parts of all organisms, however different, and that is the formation of cells. Thus was enunciated a doctrine which was for all praetical purposes absolutely new, and which opened out a widc field of further investigation for the physiologist, and led up to a fuller knowledge of the cell contents. In faet, it became a question as to whether the cell eontents rather than the enclosing wall should not be eonsidered the basis of life, since the eell at this time had by no means lost its importance, although it no longer signified the minute cavity it did when originally diseovered by Schwam. It now implied, as Sehultz defined it, "a small mass of viseid matter, protoplasm, endowed with the attributes of life." The nucleus was once more restored to its orginal importance, and with even greater significance. In plaee of being a structure generated de novo from non-cellular substance, and disappearing as soon as its function of eell formation is aceomplished, the nueleus is now known as the central permanent feature of every cell, and indestructible while the eell lives, and the parent, by division of its substance, of other generations of nuclei and eells. The word cell has at the same time received its final definition as "a small mass of protoplasm supplied with a nuclens." In short, all the activities of plant and ammal life are really the produet of energy liberated solely through histolysis, or destruetive proeesses, amomnting to the combustion that takes place in the ultimate eells of the organisms.

But there are other points of especial interest involved in the question of cell formation beside those already mentioned.

The cell and its contents eollectively are termed the endoplasm, or when eoloured, as in alge, endochrome. With regard to the outer layer of the cell and its growth nothing satisfactory has been clearly determined and finally accepted.

The eell as a whole is a protoplasmic mass, and not an emulsion, as some observers would hare us suppose. It is, in fact, a retieulated tissue of the most delicate structure, made up of eanalieulate spiral
fibrils with hyaline walls capable of expansion and contraction. 'These fibrils are probably composed of still fincr spirals. The visible gramlated portion of the protoplasm, the only part that takes a stain under ordinary circumstances, is simply the contents of these canals. It is the chromatin of Flemming, and is capable of motion within the canals. The nucleus, then, is probably nothing more than a granule of the extra-cellular net, and is formed by the junction of the several bands of wall-threads which traverse it in different directions. The cell wall of plants possesses the same structure as protoplasm, and is probably protoplasm impregnated by cellulose.

It is this portion of the protoplasmic mass that is now recognised under the term octoplasm, or primordial utricle, and is of so fine and delicate a nature that it is only bronght into view when separated from the cell wall either by further developmental changes, or by reagents and certain stains or dyes. It was, in fact, discovered to be a slightly condensed portion of the protoplasmic layer corresponding to the octosare of the lower forms of animal life. The octoplasm and cell wall can only be distinguished from each other by chemical tests. Both nucleus and nuclcoli are only rendered visible in the same way, that is, by staining for several hours in a carmine solution, and washing in a weak acetic acid solution.

With the enlargement of the cell by the imbibition of water, clcar spaces, termed vacuoles, are seen to occupy a small portion of the cell, while the nucleus and meleoli lie close to the parictal layer.

The interesting phenomenon of cyclosis, to which I shall hare occasion to refcr further on, is now believed to be due to the contractility of certain wall-threads stretching from the nuclens to the ontermost layers of the cell. An intimate relationship is thereby established between the nucleus, the nucleolus, and the parietal laycr. This much has been made clear by the more scientific methods of investigation pursued in the use of the microscope. Nevertheless a large and important class of eclls, forming a kind of borderland between the regetable and animal kingdoms, still remains to be dealt with, in which the cell contents are only imperfectly differentiated, while numerons other mịcellular organisms, owing to their extrẹne minuuteness,
tenuity, and want of all colom; aro apparently devoid of any nuclens, and when present can only be differentiated by a resort to a specially condncted method of preparation and staining. There is, howevor, a remarkable featire in connection with many miero-organisms - that certain of these protophytes possess motive organs, cilia or flagella, bodies at one time supposed to be characteristic of, and belonging to, the protozon.

This being the case, the methods of plant chomistry are of supreme interest, the moro so because physiologists are in a position to isolate a single bactorial oell, grow it in certain modia, and thms devote special attention to it, and kecp it for some time imdor observation. In this way it has boeome possible to further grasp facts in connection with coll nutrition and the nature of its waste products. Wo have, then, arrived at a stage when the history of the chemical ehangos brought about by bacteria can be more definitely determined, as wo have here to do with the vegetable cell in its simplest form. The chemical work performed by these microorganisms has as yet oceupied only a few years; nevertheless, the results havo been of the most remarkable and encouraging eharacter.

At an earlier period an interesting discovery in connection with the pathogenic action of these bodies was, by the labours of Schöenlein, Robin, and others, brought to the notice of the medieal profession, viz., that certain diseases affecting the human body were due to vegetable parasites. In 1856 an opportunity offered itself for a thorough investigation, and the microseopical part of the work fell into my hands, with the result that I was able to add considerably to Schöenlein's list of parasitic skin diseases. My observations were in the first instance communieated to the medical journals. But the generalisation arrived at was that "If there be any execptions to the law that parasites select for their sustenance the subjects of debility and deeay, such exeeptions are rarely to be found among the vegetations belonging to fungi, which invariably derive mutrition from matter in a state of lowered vitality, passing into degencration, or wherein dceomposition has already taken place to a certain extent. . . . It scarcely admits of a doubt that all diseases observed of late years among plants have been due to parasites of the same class favoured by want of vigom of growth and atmospheric con-
ditions, and that the canse of the various murrains of which so much has been heard is also due to similar causes." *

Herein, then, is to be found the solution of a difficulty that so long surrounded the question, but which subsequently cuminated in the specialisation and seientific development of bacteriology, due to the unceasing labours of Pasteur, whose solid genius enabled him to orercome the prejudices of those who were at work on other lines, and who had no conecption of the functions that parasitic organisms fulfil in nature.

Going back to my carlier experimental researches to determine the part taken by saceharomyectes and saprophytes in fermentation, I find, from correspondence in my possession, that in 1859 I demonstrated to the satisfaction of Dr. Bell, F.R.S., the then head of the chemical laboratory of Somerset House, that a very small portion of putrefactive matter taken from an animal body, a parasitic fungus (Achorion Schöenleinit), a mould (Aspergillus or Penicillium), and a yeast (Torula cerevisice) would in a short time, and indifferently, set up a ferment in sweet-wort and transform its saceharinc elements into alcohol, differing only in degrec (quantitative), and not in kind or quality. This, then, was the first step in the direction towards proving symbiotic action between these several parasitic organisms. The only apparent difference observed during the fermentative processes was that putrefactive (saprophytic) action commeneed at a somewhat earlier stage, and that the pereentage of alcohol was also somewhat less. \dagger

In 1856 , also, the ærobic bacteria attracted my attention, and, together with the late Rev. Lord Sidney Godolphin Osborne, I exposed plates of glass (mieroscopical slides), covered with glycerine and grape sugar, in every conceivable place where we thought it possible to arrest micro-organisms. The result is known, viz., that fungoid bodies (moulds and bacterial) were taken in great numbers, and varying with the scasons. The air of the hospital and sick-room likewise engaged attention, each of which proved especially rich in parasitic bodies. During the eholera visitation of 1858 the air was rich in corobic and ancrobic bacteria, while a blue mist which

[^29]prevailed throughout the epidemic yielded a far greater number than at any former period (represented in Plate I., No. 13). This blue mist attracted the especial attention of meteorologists. At a somewhat later period a more remarkable fungoid discase, the fungus font of India, mycetoma, came under my observation, a detailed description of which I contributed to the medical journals, and also, with further details, to the "Monthly Microscopical Journal" of 1871. Interlacing myeclia, ending in hyphes, in this destrnctive form of parasitic discase were seen to pervade the whole of the tissues of the foot, the bony structures being involved, and it was only possible to stay the action of the parasite by ampritation.

So far, then, the study of parasitic organisms had at an carly period shared largely in my microseopical work, extending over several years, and with the result that these micro-organisms were found to exhibit on occasions great diversity of character, and that different members of the bacteria in particular flomrish under great diversity of action, and often under entirely opposite conditions; that they feed upon wholly different materials, and perform an immense variety of chemical work in the media in which they live.

The study of the chemistry (chemotaxis) of bacteria has, however, greatly enlarged our conception of the chemical value and power of the vegetable cell, while it is obvious that no more appropriate or remunerative field of study could engage the attention of the microscopist, as well as the chemist, than that of bacterial life, and which is so well calculated to enlarge our views of created organisms, whether belonging to the vegctable or animal kingdom.

Pathogenic Fungi and Moulds.

It is searecly necessary to go back to the history of the parasitic fungi to which diseases of rarious kinds were carly attributable. The rude microscopes of two and a half centuries ago revealed the simple fact that all decomposable substances swarmed with countless multitudes of organisms, invisible to ordinary vision. Lenwenhoek, the father of microseopy, and whose rescarches were generally known and accepted in 1675, tells of his diseorery of extremely minute organisms in rain-water, in vegetable infusions, in saliva, and in scrapings from the tectlı; further; he differentiated these living

PLATE 1N.

TYPICAL FORMS OF B.ACTERIA, SCHIZOMYCETES, OR HISSION-FUNGI.
-
organisms by their size and form, and illustrated them by means of woodents ; and there can be no donbt that his figures are intended to represent leptotlirix filaments, vibrios, and spirilla. In other of his writings attempts are made to give an idea of the size of these "animaleules"; he deseribed them as a thousand times smatler than a arain of sund. From his investigations a belief spring up that malaria was produced by "animaleules," and that the plague which risited 'Tonlon and Marscilles in 1721 arose from a similar cause. Somewhat later on the natural history of miero-organisms was more diligently studied, and with inereasing interest. Mïller, in 1786, pointed out that they had been too much given to oceupy themselves in finding new organisms, he therefore devoted himself to the study of their forms and biological characters, and it was on such data he based a classification. Thus the seientific knowledge gained of these minute bodies was considerably advanced, and the subject now entered upon a new phase : the origin of micro-organisms. It further resolved itsclf into two rival theorics-spontancous generation, and development from pre-existing germs-the discussion over which lasted more than a century. Indeed, it only ended in 1871 , when the originator of the Abiogenesis theory withdrew from the contest, and the more scientific investigations of Pasteur (1861) found general acepptance. This indefatigable worker had been investigating. fermentation, and studying the so-ealled discases of wines and a contagions disease which was committing ravages among silkworms. Pasteur in time was able to confirm the belief that the "muscadine disease" of silkworms was due to the presence of micro-organisms, discernible only by the mieroscope. The oval, shining bodies in the moth, worm, and eggs had been previously observed and deseribed by Nägeli and others, but it was reserved for Pasteur to show that when a silkworm whose body contained these organisms was ponnded up in a mortar with water, and painted over the leaves of the tree upon which healthy worms were fed, all took the disease ind died.

As the contagions particles were tramsmitted to the eggs, the method adopted for preventing the spread of the disease was as follows :-Each female moth was kept separate from the others, and allowed to deposit her egrgs, and after death her body was crushed up in a mortar as before, and a drop of the fluid examined under the microscope. When any trace of muscadine was found present, the
whole of the egrgs and body were burnt. In this way the discase was combated, and ultimately stamped out.

Pasteur also pointed out that one form or cause of disease must not be confounded with another. For example, muscadinc, a true fungus (Botrytis bassiana), should not be confounded with another discase known to attack silkworms, termed pebrin, this being caused by a bacterium, and, according to the more recent researches of Balbiani, by a Psorospermia. Botrytis is a true mould, belonging to the Oomycetes, and allied to the potato fungus, Peronospora. It is propagated by spores, which, falling on a silkworm, grerminate and penctrate its body. A mycelium is then developed, which spreads throughout the body. Hyphr appear through the skin, and bear white chalky-looking spores; these become detached, and float in the air as an impalpable dust-like smoke. Damp further develops the fungus.
lnsects suffer much from the ravages of fungi. The housc-fly sticking to the window-panc is seen to be surrounded by the mycelia of Penicillium racemosum (Sporendonema musce, or Saprolegnia ferce). In other cases Cordiceps attacks certain caterpillars belonging to the genera Cossus and Hepialus when they are buried in the sand and before their metamorphosis into chrysalides; they are killed by the rapid development of hyphæ and mycelinm in their tissues.

Spheria miletaris, a parasite of Bombyx pilyocarpa, the caterpillar of which is found on pine-trces, is one of the few fungi which may be regarded as bencficial to man, since it aids in the destruction of multitudes of thesc caterpillars, which otherwise would devour the young shoots and pine needles. Giard specialises other parasites of insects, which he terms Entomophoreæ Others, E. rimosa, attaek grasshoppers and the diptera, enveloping them in a dense coating of mycelium and spores, whieh specdily kills the victim.

The study, then, of the life-history of germs, microbes, microorganisms, or bacteria (as they are indifferently termed), opened up a new science, that of Bacteriology. By the more recent adrances in this science we are enabled to understand the very important part these minute organisms fill in the great scheme of Nature, for almost cxclusively by their agency the soil is supplied with the requisite mutritive material for plant life. And, as ahready pointed out, wherever organic matter is present-that is, the dead and useless
substanees whielı are the refuse of life-suelı material is promptly seized upon by micro-organisms, by means of which histolysis is rapidly aecomplished.

Bateria require a power of from 600 to 1,000 diameters or more for the determination of the species to whieh they belong. The number of speeies lias been so mueh inereased of late that a bulky volume is found to be insufficient for their enumeration. I am, however, by the courtesy of Professor Crookshank, enabled to present my readers with the typical forms of thirty-ninc species of Bacteria, Sehizomycetes, or fission-fungi, a seleetion, it will be seen, ehiefly taken from among pathogenie organisms-those believed to originate disease. But many of the supposed Saprophytic forms often described as originating disease are merely aecidental assoeiates, that is, living in companiouship for a time.

Size.-In ordinary terms of measurement, baeteria are on aul average from $\frac{1}{25000}$ th to about $\frac{1}{5000}$ th of an inel long. These measurements do not convey a definite impression to the mind. It is calculated that a thousand million of them eould be eontained in a space of $\frac{1}{25}$ th of an inel. The best impression of the size of the bacteria is, perhaps, obtained when it is stated that a $\frac{1}{25}$-ineh immersion objective gives a magnifieation of nearly 2,200 diameters, and that under this power the baeteria appear to be about the size of very small print. The standard of measurement aeeepted by baeteriologists is the miero-millimeter. One millimeter is equal to about $\frac{1}{25000}$ th of an English inch. The number of mierococei in a milligramme of a culture of Staphylococcus pyogenes aurens has beeu estimated by Bujwid by counting at eight thousand millions. Not only do various species differ in dimensions, but eonsiderable differenees may be noted in a pure culture of the same species. On the other liand, there are numerous species which so closely resemble each other in size and shape that they cannot be differentiated by mieroseopie examination alone, and we have to look to other charaeteristies, as colour, growth in various culture media, pathogenie power, eliemieal products, \&e., in order to decide the question of identity.

Remoduction.-The reproduction of bacteria takes place for the most part by fission and by spore formation. Fission is a process of splitting up or division, whereby an organism divides into two or more parts, each of which lives and divides in its turn. If
certain organisms are watched under the microscope, a coccus or bacillus will be scen to elongate and at the same time become narrower, until its two halves become free, the two individual organisms again dividing and subdividing in their tum. This kind of reproduction is more readily seen in a higher class of unicellular organisms, the desmids. If, however, the new organisms do not break away from cach other, but remain connected in groups or clusters, they are termed Staphylococei ; if they remain comected in the form of a chain, or like a string of beads, they are termed Streptococei. If the division takes place in one plane, Diplococci are formed ; if in two directions Tetracocci, or Tablet-cocci, are formed. On account of this multiplication by fission, the generic name of Sehizomyeetes, or fission-fungi, has been given to bateria.

Spores.-A second method by which bateteria propagate is by spores. These bodies are distinguished by their remarkable power of resistance to the influence of temperature and the action of chemical reagents. Some of them will resist their immersion in strong aeid solutions for many hours; also freezing and rery high temperatures. Spore formation may take place in two ways: firstly, by "endogenous spores" (internal spores) ; secondly, by "arthrospores."

Endoyenous Spores. - When the formation of the spores takes place in the mother-cell, the protoplasm is seen to eontract, giving rise to one or more highly refractive bodies, which are the spores. The enelosing membrane of the organism then breaks away, leaving the spores free.

Artheospores. - When the spore is not formed in the parent bacillus, but when entire eells (owing to lack of farourable conditions of growth) become converted into spores, the formation is known as "arthrogenous," the single individual being ealled an arthrospore. When the conditions are again farourable, spores germinate, giving rise to new bacilli. The germinating spore becomes elongated, and loses its bright appearance, the outer membrane becomes ruptured, and the young bacillus is set free. Certain eonditions, such as the presence of oxygen in the case of the anthrax bacillus, give rise to the formation of spores; while various kinds of bacteria sceure continuous existence by developing spores when there is lack of proper food material.

With referenee to the incredible rapidity with which the bacteria. multiply under conditions favonrable to the growth and development, Cohn writes as follows:-"Let us assume that a mierobe divides into two within an hour, then agan into eight in the third hour, and so on. The number of mierobes thus produeed in twenty-four hours would exceed sixteen and a half millions; in two days they would inerease to forty-seven trillions ; and in a week the number expressing them would be made up of fifty-one figures. At the end of twentyfour hours the mierobes descended from a single individual would occupy $\frac{1}{40}$ th of a hollow cube, with edges $\frac{1}{25}$ th of an ineh long, but at the end of the following day would fill a space of twenty-seven enbic inehes, and in less than five days their volume would equal that of the entire ocean."

Again, Cohn estimated that a single baeillus weighs about $0 \cdot 000,000,000,024,243,672$ of a grain; forty thousand millions, 1 grain ; 289 billions, 1 pound. After twenty-four hours the deseendants from a single baeillus would weigh $\frac{1}{2666}$ th of a grain ; after two days, over a pound ; after three days, sixteen and a half million pounds, or 7,366 tons. It is quite unneceessary to state that these figures are purely theoretical, and could only be realised if there were no impediment to such rapid inerease.

Fortunately, however, various cheeks, such as laek of food and unfavourable pliysical conditions, intervene to prevent ummanageable multiplieation of these bodies.

These figures show, however, what a tremendous vital aetivity miero-organisms do possess, and it will be seen later at what great speed they inerease in water, milk, broth, and other suitable media.

The following baeilli, among others, have numerous flagella distributed over the whole of the organism: the bacillus of blue milk (Bacillus cyanoyenus) ; the baeillus of malignant wdema; the hay bacilhus (Bacillus subtilis); Proteus vulgaris, de.

The following have only one or two flagella at the poles: the Bacillus pyocyaners, the Spirillum finkleri, the Spirillum cholerce Asiutica, de.

[^30]The Spipillum undala, spirillum rubrum, Spivillum concentricum, and Sarcince, pocket-cocci, liave several flagella.

Nicrococcus ugitis lave also several flagella; these possibly arise from one point. As I have already pointed out, the classification of the bacteria is one of great difficulty, since new kinds are being constantly discovered, and at present any attempt made in this direction can only be considered as quite of a provisional nature.

The difficulties which stand in the way may be surmised from the fact that Sarcince, pocket-cocci, wore originally believed to be a single species, described by me, under the name of Sarcinu ventriculi, in the fourth edition of my book, "as remarkable bodies invoading the human and animal stomach, and seriously interfering with its functions."

The original woodeut of these curious parasites is reproduced in Fig. 268, also in Plate IX., No. 7, and which evidently belong to

Fig. 268.-Sarcine. a different species, numbering thirty-nine altogether: Quite recently Mr. G. H. Broadbent, M.R.C.S., Manchoster, sent me a supply of these interesting bodies lately discorered by him in an infusion of cow manure. On cxamining a drop with a power of 1500 diameters they were discovered moving orer the field of the microscope with a gyrating motion by the aid of flagella projecting from each corner of the pocket. After some days, haring attained their full growth of four, eight or sixteen in a pocket, they break up, and recommence the formative process. Sarcinæ are certainly pathogenic in their naturc. Cocci in groups, or asso-cocei, are simi larly associated. These several forms of spiro-bacteria are enclosed in a transparent cell-wall, and are sometimes described as zooglæa.

Of bacteria the most characteristic groups are bacillus, bacterium, and a species of clostridium, a bottle-shaped bacillus. It is, howerer, difficult to draw a sharp line between so-called species.

Spiro-bacteria, or spirilla, possess short or long filaments, rigid or flexible, and their movements are accordingly rotatory, or in the long axis of the filaments. These bodies are again divided into comma bacilli, or vibrios-a name invented by the older microscopists
who first deseribed them-some species of whieh have a flagellate appendage, to which their movements are due.

Anthrax, Splenic Fever, has been long known to be prevalent among cattle at certain seasons of the year, and is believed to originato from peculiar conditions of elimate and soil. This view of splenic fever on microseopical examination proved an ontire fallacy. Bollinger in 1872 diseovered that the blood of the affected animal was still virnlent after death, owing to the presence of the spores of the bacillus, and that the soil also beeame infected and impregiated by the disease germs wherever the fever first broke out. In 1877 Dr. Koch made a more careful investigation into the source of the disease, and was able to give a complete demonstration of the lifehistory of the splenic fever bacillus, and to offer definite proofs of its pathogenic properties. He pointed out that the rods grew in the blood and tissnes by lengthening and by eross division. Further, that they not only grew into long leptothrix filaments but they procluced enormous numbers of seeds or spores. Ho watched the fusion of the rods to the formation of spores and the sprouting of fresh rods. He furthermore inoculated a mouse, watched the effect through several generations, and fully demonstrated that in the blood and swollen spleen of the animal the same rods were always present. Pasteur and Paul Bret pursued the same course of investigations, which were always followed with precisely similar results. It was, however, principally due to the researches of Koch that the doctrine of contagium vivum was placed on a scientific basis.

Subsequently Koch formulated methods of cultivation, and dietated the microscopical apparatus needful. Furthermore, he furnished postulates for proving beyond doubt the existenee of specific pathogenic miero-organisms.
"The chain of evidence regarded by Dr. Koch as essential for proving' the existence of a pathogenie organism is as follows :-1. The microorganism must be found in the blood, lymph, or diseascd tissue of man or animal suffering from, or dead of the disease. 2. The micro-organism must be isolated from the blood or tissue, and cultivated in suitable media-i.e., outside the animal body. These pure cultivations must be carried on through sucesssive generations of the organism. 3. Pure cultivation thms obtained must, when introduced into the body of
a healthy animal, produce the disease in question. 4. In the inoeulated animal the same micro-organism must again be found. The ehain of ovidence will bo still more eomplete if, from artificial eulture, a chemieal substance is obtained eapable of produeing the disease quite independently of the living organism. It is not enough to merely detect, or even artificially eultivate, a bacterium associated with disease. An endeavour must be made to establish the exaet relationship of the baeteria to disease proeesses. In many

Fig. 269.-Micro-Photograph ot Typhoid Fever Bacteria. Magnified $1000 \times$. Taken by Leitz's oil immersion $\frac{1}{12}$-inch ocular No. 4, and sunlight exposure of one minute.
instanees discase bacteria regarded as the aetual contagia have been found, on a further searehing inquiry, to be entirely misleading. It is almost needless to remind the enthusiast that the aetual eontagion of the disease must be fully demonstrated."

Typhoid Bacillus (Fig. 269).-Rods 1 to 3μ in length, and $\cdot 5$ to $\cdot 8 \mu$ in breadth, and threads. Spore-formation has not been observed, but the protoplasm may be broken up, produeing appearanees which may be mistaken for spores. Aetively motile, provided, some with a single and others with very numerous flagella, whieh are from three to five times as long as the baeillus itself. They stain readily in aqueous solutions of aniline dyes ; and grow rapidly at a temperature
of about 60° Fahr. Th plate cultivations minute colonies are visible in thirty-six to forty-eight hours ; they are circular or oval, with an irregular margin. On agar they form it whitish transparant layer, and they flourish in milk.

The Plague (Pestis Bacillus).-The Bombay plague of 1897-98 will ever be remembered as one of the most appalling visitations ever knowu. The number of deaths will never be aceurately determined,

Fig. 270.-Plague Bacillus, Bombay, 1897. Magnified $1200 \times$.
as the native population, among whom the disease ehiefly prevailed and became so fatal, concealed their dead or carried them away by night. The outbreak from the first proved to be most infections, its incubation lasting from a few hours to a week only. It prevailed in all the over-erowded mative quarters of the city. The rats and miee that infested the dwellings of the poor were foumd to be equally susceptible with human beings, and these vermin also died by hundreds. Those that survived left their holes and mado off, in this way
holping to spread tho infective virus. On examining the bodies of dead rats, they were found to have swollen legs, the blood being filled by bacilli and eurious monads, with whip-like appendages. The bacillus of plaguc was diseovered by Kitasato in 1894 ; it is characterised by short rods with romuled ends, and a clear spatec in the middle. The bacilli stain readily with aniline dyes, and when eultivated on agar, whitc transparent eolonies are formed which prosent an iridcseent appearanee when examined by refleeted light. In addition to the bubonic swellings, the neighbouring lymphatic glands were also swollen and blocked by bacilli.

Fig. 271.-Monads in Rat's Bluod, 1, $200 \times$. (Crookshank.)
a. Monal threading its way among the blood-corpuscles; b, Another with pendulum movement attached to a corpuscle; c. Angular forms; d. Eucysted forms; c and f. The same scen edgeways.

My illustration (Fig. 270) is from a miero-photograph taken in 1897, when the death rate stood very high. The general distribution of the bacilli, together with phagoeytes and the contents of swollen lymphatic glands, magnified $1,200 \times$, is from a preparation made in hospital. The monads from the rat's blood, $1200 \times$, scen threading their way among the blood eorpuscles of a rat, and represented in Fig. 271, are somewhat larger than those found in the Bombay rats, but the flagella in the latter were quite as marked, while the eneysted forms were wholly absent and the blood eorpuscles less crenated. The white bodies (Fig. 270) were in some preparations, together with the lymphatic bodies, more numerous and more swollen.

With regard to the conditions of life of the baeteria, they may be divided broadly into two elasses. When the organisms draw
their nourishment from some living body or "host," they are known as "parasites." These are further termed "obligate" parasites if they exelnsively live on their "host." If the baeteria draw their nourishment from dead organie matter, they are called "saprophytes." These are also divided into "obligate" and "faeultative" saprophytes. Thus it will be apparent that a parasite under eertain cireumstanees may readily become a saprophyte.

Some of the more important saprophytes are those organisms whieh play an important and useful part in our every-day life, sueh as, for instanee, in the phenomena associated with fermentation, and putrefaetion agents whieh transform dead and decomposing organic matter into their simpler elements, thas completing the great life cyele, and rendering the dead and effete matter again ready for the vital proeesses.

Among other life manifestations of eertain baeteria may be mentioned those whieh have the property of generating eolouring matter, though not ehlorophyll. The baeteria themselves are colourless and transparent, and the pigment is merely formed as a produet of their metabolism, espeeially under the influenee of light. Many of the bacteria give rise to various gases and odours, particularly the anærobie organisms, whieh originate those foul putrefactive gases (ammonia, sulphuretted hydrogen, de.). The blood-rain, Micrococcus prodigiosus, gives off an odour resembling trimethylamin. Miero-organisms have the property of produeing various ehanges in the nedium on whieh they are grown. In many eases albuminous bodies are peptonized and gelatine is liquefied. Many baeteria have the faeulty of resolving organic bodies into their simplest elements; others, again, have the property of converting ammonia into nitric and nitrous acid. Certain mierobes have the property of beeoming phosphoreseent in the dark. These phosphoreseent baeteria are often seen on deeaying plants and wood; sometimes in tropieal climates the sea beeomes luminous owing to the presenee of eountless numbers of these organisms. Again, they are frequently seen on the surfaee of dead fish, partieularly mackerel, which often beeome so bright as to strongly illnminate the cupboard in which they lie.

The particular class of fungi that produee discase in man and the higher animals aro generally known as "pathogenie." These pathogenic organisms may exert their pernicious power in several ways.

They may be injurious on account of their abstracting nourishment from the blood or tissues, or for the purely mechanical reason of their stopping up the minute capillaries and blood-vessels by their excessive multiplication. But the poisonous action of most of the pathogenic baeteria is due to the chemieal products secreted by the organisms, and it is to the circulation and absorption within the body of these poisons that the disturbanees of the animal systcm, which characterise disease, decay, and dissolution of cerery organism, must be traced.

Parasitic Diseases of Plants.

The subject of fungoid diseases and fungus epidemics are of worldwide interest, if only because of the annual losses to agrieulturists from parasitic diseases of plants, amounting to millions of ponnds sterling. The history of wheat-rust, and that of oats and rye, each equally suseeptible to the ravages of the same Rufus, can be traced back to Genesis. A deseription of it was given in 1805 by Sir Joseph Banks. He suggested that the germs enterer the stomata, and he warned farmers against the use of rusted litter, and made important experiments on the sowing of rusted wheat-grains. A great discussion on the barberry question followed, Fries partionlarly insisting on the differenee between Dicidium berberidis and Puccinia graminis. Tulasne confirmed the statement made by Henslow that the uredo and puceinia stages belong to the same fungus, and are not imixed speeies. De Bary's investigations in 1860-64 proved that the sporidia of some Urcdiniere (e.g., Coleosporium) will not infect the plant which bears the spores, and that the reidia of certain other forms are stages in the life-history of speeies of Uromyces and Pueeinia. Furthermore, De Bary in 1864 attacked the question of wheat rust, and by means of numerous sowings of the tclentospores on barberry proved that they bring about the infection.

This led to the diseovery of the phenomenon of Heteracism (colonisation), introdueing a new idea, and clearing up many difficulties. In 1890 the rust question entered on a new phase: it was taken up by men of scionce all over the world, and active inquiries were set on foot. The result has been the confirmation of De Bary's results, but with the further discovery that our four common cereals are
attacked by no less than ten different forms of rust belonging to five separate species or "form species," and with several pliysiological varieties, capable of turning the table upon the barberry by infecting it. Some of these are found to be strictly confined to one or other of the four common ecreals, infecting two or more of them, while others can infect various kinds of our common wild grasses.

The fact is, that what has usually gone by the name of Puccinia graminis is an aggregate of several species, and that varietal forms of this exist so especially adapted to the host, that, although no morphical differences can be detected between them, they cannot be transferred from one cercal to another, pointing to physiological variations of a kind met with among bacteria and yeasts, but hitherto unsuspected in these higher parasitic fungi. It now appears we must be prepared for similar specialisation of varietal forms among Ustilaginer as well as among Uredincæ.

Moreover, it has been found that different sorts of wheat, oats, barley, and rye are susecptible to their particular rusts in different degrees, at the bottom

Fig. 272. - Puccinia, displaying uredospores and telentospores.
a. Aregma speciosum; b. Xenodochus parcudoxus; c. P. Amorphes; d. Triplucemiume dubens; e. Younger spores ; $f . P$. lateripes; magnified 450 diameters. of which, it is suggested, there must be some complex physiological causes. De Bary gave proof, in 1886, that Peziza (Plate I., Nos. $1,4,5,6$) succeeds in becoming parasitic only after saprophytic culture to a strong myeclium, and that its form is altered therebyprobably by the exeretion of a poison. Professor Marshall Ward showed that similar results took place in the ease of the lily disease. Reinhardt, in 1892, showed that the apical growth of a peziza is disturbed and interrupted if the culture solution is employed eoncentrated ; and Büsgen, in 1893, showed that Botrytis cinerea exeretes
poison at the tips of the hyphe, thus eonfirming Professor Ward's results with the lily disease in 1888, and of later years, that a similar exeretion oeeurs in rust-fungus. He further found that the water eontents of the infected plant exercises an influenee, as in the case of Botrytis attaeking chrysanthemums and other plants in the autumn, and that eold inereases the germinating eapacity of the spores.

Pfeiffer, in his work on "Chemotaxis," shows that baeteria will eongregate in the neighbourhood of an algal cell evolving oxygen. He also found that many motile antherozoids, zoospores, baeteria, \&e., when free to move in a liquid, are attraeted towards a point whenee a given ehemieal substanee is diffusing. He was eoneerning himself less with the evolution of oxygen or movements of bateria than with a fundamental question of stimmlation to movement in general. He found the attraetive power of different ehemieal substanees vary with the organism, and that various other bodies beside oxygen attraet baeteria-peptone, dextrose, potassium salts, de.; that swarm spores of the fungus Saprolegnia are powerfully attraeted towards the museles of a fly's leg plaeed in the water in which they are swimming about; also, that in many eases where the hyphre of fungi suddenly and sharply bend out of their original eourse to enter the body of a plant or animal, the eause of the bending lies in a powerful ehemotropie aetion, due to the attraction of some substanee eseaping from the body. Professor Ward has seen zonspores of a Pythium suddenly dart out on to the eut surfaee of a beanstem, and there fix themselves.

This will be better understood by referring to the eourse pursued by these bodies generally. When the spore of a parasitie fungus settles on a plant, it frequently behaves as follows :-The spore germinates and forms a slender tube of delieate consisteney, blunt at the end, and containing eolourless protoplasm, as shown, highly magnified in Fig. 272, and in Figs. 273 and 274 mueh less magnified. De Bary long ago showed that sueh a tube-the germinal-hyphaonly grows for a short time along the surface of the organ, and its tip soon bends down and enters tho plant, either through one of the stomata or by boring its way direetly through the cell-walls. Professor Ward says these phenomena suggested to himself that the end of the tube is attrated in some way, and by some foree whieh
brings its tip out of the previous direction, and De Bary has suggested that this attraction is due to some chemical substance exereted by the host plant. It is remarkable with what case the tube penetrates the cell-walls, and which Ward belicves to be due to the solvent action of an enzyme, capable of dissolving cellulose.
"Miyoshi carried these observations a step further when, in 1894, he showed that if a leaf is injected with a substance such as ammonium-chloride, dextrine, or canc-sugar (all substances capable of excrting chemotropic attraction on fungus-hyphæ), and spores of a fungus which is not parasitic are then sown on it, the hypher of the fungus penctrate the stomata and behave exactly as if the fungus were a true parasite.
"So surprising a result lets in a flood of light on many known cases of fungi, which are, as a rulc, non-parasitic, becoming so, in fact, only when the host plant is in an abnormal condition, e.g., the entry of species of Botrytis into living tissues when the weather is cold and damp and the light dull ; the entry of Mucor into various fruits, tomatocs, apples, pears, de., when the hyphæ meet with a slight erack or wound, through which the juiecs are exposed. It is exceedingly probable that the rapid infection of potato leaves in damp weather in July is traceable not morely to the favouring cffect of the moisture on the fungus, but that the state of supersaturation of the cell-walls of the potato leaf-the tissues of which are now unduly filled with water and dissolved sugars, de., owing to the dull light and diminished trauspiration-is the primary factor which determincs the casy victory of the parasite, and, as Professor Ward suggested some time ago, that the suppressed life of Ustilaginere in the stems of grasses is dure to the want of particular carbohydrates in the vegetative tissucs, but which are present in the grain. A ycar later Miyoshi carried proof to demonstration, and showed that a fungus-hypha is actually so attracted by substanecs on the other side of a membrane, and that its tip pierces the latter ; for the hyphæ were made to grow through films of artificial cellulose, of collodion, of cellulose impregnated with paraftin, of parchmont paper, and even the chitinous coat of an insect, simply by placing the intact films on gelatine impregnated with the attracting substance, and laying the spores on the opposite side of the mombrane.
"Now this is obvionsly a point of the highest importance in the theory of parasitism and parasitic diseases, because it suggests at once that in the varying conditions of the cells, the contents of which are scparated only by membranous walls from the fungus-hyphre, whose cntrance means ruin and destruction, there may be found circumstances which sometimes favour and sometimes disfavour the entrance of the hyphæ; and it is, at least, a remarkable fact that some of the substances which experiments prove to be highly attractive to such hypho-e.g., sugars, the sap of plums, phosphates, nitrates, \&c.-are just the substances found in plants; and the discovery that the action dcpends upon the nature of the substance as well as on the kind of fungus, and is affected by its concentration, the temperature, and other circumstances, only confirms us in this idea."

Moreover, there is onc other fact which it is important to notice, viz., that there are substances which repcl instead of attract the hyphre. Is it not, then, asks Professor Ward, natural to concludic that the differences in behaviour of different parasites towards diffcrent host-plants, and towards the same host-plant under different conditions, probably depend on the chemotropic irritability of the hypliæ towards the substance formed in the cells on the other side of the membranous cell-walls? And when, as often happens, the effusion of substances, such as the cells contain, to the exterior is facilitated by over-distension and super-saturation, or by actual wounds, we cannot be surprised at the consequences when a fungus, hitherto nuable to enter the plant, suddenly does so. To this proposition my answer is cmphatically in the affirmative, since in my investigations into the "fungus-foot diseasc" ("Jrycetoma"), 1871, of India, the entry of the fungus was in almost every casc shown to be through an abrasion of the skin or a direct open wound ; the majority of the cases reported were among the agricultural classes. When, then, as often happens, the cffusion of substances, such as the cells contain, to the exterior is facilitated by over-distension and super-saturation, or by actnal wounds, we camot be surprised at the consequences when a fungus, hitherto unable to enter the plant, suddenly does so. Nevertheless, it must be admitted that the knowledge gained of parasites does not satisfactorily account for epidemic visitations over large areas.

Habitat of Fungi and Moulds.

Fig. 273. - Fnngi and Moulds.
Description of Figures.-a. Fungi Spores, taken in a sick clamber ; b. Aspergillus gleucus; c. Yeast, recent state ; d. Exhaustel yeast, budding ; c. Penicillium spores more highly magnified; g. Acrobic spores and mould mycelium; h. Aspergillus spore, grown on melon.

Habitat, Specialised Forms of Parasites.

Habitat.-The labitat of vegetable parasitic fungi is extremely variable. Fungi are found everywhere, living and flourishing on all the families of the vegetable and animal kingdoms. They attack our houscs, foods, clothes, utensils of every kind, wall papers and books, the paste of which, to my astonishment, affords a sufficient supply of nourishment. Mcmbers of the parasitie tribe of bacteria, by a combined effort of countless myriads, have given rise to a sense of supernatural agency. Bacillus piorligiosus, described also as Palmella mirifica and Zoogalactinu imetropia, from its attacking milk and other alimentary substances, the spores of which are often of a deep red colour, have been found to cover whole tracts of country in a single night with what is called a "gory dew," changing in daylight to a decp green colour. 'This was at one time regarded with superstitious awe as a miracle, as it has been known to attack bread and even the sacred wafer, and which in medireval ages was described as the "bleedinghost." This parasitic plant belongs to anerobic bacterin, and is only developed in the dark. The nitrogen required for mutrition
must be derived from the air. An algal form gives rise to the red scum seen in ponds and reservoirs in the autumm. The discharge from wounds is eoloured blue by Bacterium pyocyanine. 'There are many other forms, some of which have an orange colom, and the genus is recognised as "chromogenic microbes."

A eryptogan belonging to ancrobie bacteria, described as Protococcus invulis, on being set aside in a bottle, and a little rain water

Fig. 274. - Fungi and Moulds.
Deseription of Figures.- d. Puccinia graminis on wheat ; c. Polyeystis spore of rye-smut ; f. Alder fungus spores, Microspheria ponicellula; g. Dactylium roseum, rose-coloured mould; h. Verticillium distans, whorled mould found on herbaceous plants; i. Botrytis, vine and lily fungus; j, j^{\prime}. Peronospora infcstars, 10 tato fungus; li. P. gangliformis, mould of herbaeeons plants; l. Virious Penicillium and other spores taken in a beau-field. added, was seen to set up spontancous fermentation, and in a very short time cxhibited remarkable activity. The colour of the infusion ehanged, it assumed a delieate pink hue in direct light, whieh deepened to a red in reflected light. The fluid contents were now observed to be diehoric, and the spectroseopic apparance subsequently presented was one of much interest. The speetrum was a wellmarked one, and might be taken to determine the presenee of a nitrogenous element or of glucose.

Among all the various plants known to suffer from the attaeks of parasites, the vine has been the greatest sufferer. 'The oïdium, or Erysiphe Tuckeri, so called from the name of the discoverer hy whom it was first deseribed, has been longest known to the vine grower. This really belongs to the group Aseomyeetes, and appears to have been brought from America in 18.55 , whence it was passed on to Franee, where it soon threatened to entirely destroy the vineyards. This was followed by another parasite, belonging in this instance
to the animal kingdom, Phylloxerce vastatrix. 'This oïdium appears on the grape in the form of greyish filaments, terminating in an enlarged head, which contains an agglomeration of spores, not free or in a eliaplet, as in Aspergillus (Fig. 273). These spores when ripe burst from the capsule as fine dust, and are diffused by the air in all directions, thus spreading the disease far and away. Another of the parasitic moulds, Peronospora viticola, is a kind of mildew, differing from oïdium. The hyphæ penetrate more deeply than that of oidium. On the upper surface of the leaf brown patehes appear ; these branch out and ramify as seen in the potatofungins, P. infesturts (Fig. 274). The parasite destroys the tissue of the leaf, and it withers and dies. There are other wellknown parasites, the black-rot, Phomauvicola, belonging to the Ascomycetes. This appears in early shoots in the form

Fig. 275.-Fungi, Moulds.
a. Clustered Spores, Gonatubotrys simplex ; b. Spore of Paccimia coronatu, the mildew of grapes; c. Barley smut; d. Puccinia allhsea; e. Penicillium glaucum; m. Irodes farince, found in damaged flour together with smut.
of round black spots, and gradually spreads over leaves and young fruit. This same rot, one year, devastated the American vineyards.

Cereals, wheats and grasses, suffer from other well-known forms of microscopic fungi termed musts and smuts, which cover the blades or infect the full ear of the fruit. The name given indieates their colour, and these belong, for the most part, to the genus Uredo and the fimily of the Basidiomyeetes. They have no endogenous spores but as many as four forms of exogenous. This is also the ease with wheat and barley, whereby they are distinguished as Uredo or Pucciria graminis (see Figs. 273 and 274, and Plate I., Nos. 19 and 22,

Acidium berberidis). For a long time it was believed that Uredo linearis and Puccinia graminis were so many distinet species, but it is now known that there are only three suceessive phases of the developmental stages of a single species-that, as a matter of faet, puecinia presents the phenomenon of alternation of generations, that is, that the eomplete development of the fungus is only effeeted by its transference from one plant to another. Other uredines, Ustilago and Tilletia smuts, are more ipt to affect the

Fig. 276.-Fungi, Moulds.

> M. Spores of Tilletia caries; q. Spores of Till:tiat caries, when germinating, produce a fuetid oliveeoloured spore in cercal grains; r. Telentospores of Puccinia graninis, s. Crystopus candidus, spores growing in elhains; t. Petronospora infestans, nildew of turnips, \&c. ; u. A transverse seetion of ergot of rye, showing. spores in masses ; v. Claviccps purpure, associated with ergoted rye. ears of wheat, rye, and other grasses than puecinia. Bread made from wheat affected by smut has an acrid and bitter taste, while that made from rye flour often produces a serious form of disease. The propagation of either, then, should be stopped as quickly as possible by destroying all barberry bushes growing near or within the vieinity of eorn fields, and by other means. The ergot of rye is due to distinet speeies of fungi having endogenous spores enelosed in a sae or ascus, hence the name of the family, Aseomyectes or Tuberacea, which are reprodueed by the spores eontained in these asei. Truffles belong to this family. But other members of the same family have several forms of spores, and these again present us with the phenomenon of alternation of generations.

Ergot of rye is used in medieine, but if not used with eare it will produce a dangerous disease. This parasitie fungi eonsists of minute mieroseopie masses of spores, whieh cover the young flower of the
ryu with a white flocculent mass, formerly termed sphacelium. The nyeclium formed spreads over the ear of corm in thick felt-like masses, termed selerotis. The sphacelimm changes its form in the following spring. Other changes are brought about, and it secms to pass through a cycle of altemations of generations.

Bread made from rye so infested is known to produce grave consequences, soon to become fatal if not detected in time. The discase is termed ergotism, and gangrene of the extromities takes place among people of the north of France and Russia, who consume bread made from rye flour. Ergot of maize will also cause similar diseases. Fowls and other animals fed upon this ccreal become in a short time poisoned, and the cause of death is not rightly suspected. There is another fungus belonging to the same group of Ascomycetes, known as Eurotium repens, which appears upon leather when left in a damp place, and also upon regetable or animal substances if badly prescrved, and gradually destroys it. This mould is of a darkish green colour.

The minute spores display themselves as rows of beads when fully ripe on the erect myeelium. Aspergillus glaucus represents the white exogenous spores of the sphacelium of the ergot of ryo; and those subsequently produced in the yellow balls correspond with the asei developed in selerotis, the endogenous species. Many of the parasitic specics belonging to the gencra Erysiphe, Sphaeria, Sordaria, Penicillium, \&c., have a similar mode of propagation, and affect a large number of plants.

Parasitic Fungi of Men and Animals.

In the microscopical cxaminations especially given to the elucidation of parasitic diseases of the skin, previously referred to, I discovered more varieties of spores and filaments of certain eryptogamic plants associated with a larger number of specific forms of fungi than any previous observer. I did not, however, feel justified in coneluding, with Küchenmeister, Sch@enlein, and Robin, that these fungoid growths were the primary cause of the diseases referred to. Indecd, the foremost dermatologists of the period utterly refused to entertain the specific germ theory of the German investigators. Nevertheless, I contended, "the universality of their
distribution is in itself a faet of very considerable importance, and one pointing to the belicf that they are scavengers ever ready to fasten on decaying matter, and, on finding a suitable soil, spread out their invisible filaments in every dircetion in so persistent a manner as to arrest growth and overwhelm the plant in destruction." *

Special forms of fungi are given in Plate I., Nos. 10-14, and those of the ascomycetes in Nos. 17-21.

Oiclium allicans affects both animals and plants. It often attacks the mucous membrane of the mouths of young children. The spores become clongated and eonverted

Fig. 277.--Healthy fresh Yeast, from a large Brewery, in an active stage of formation, $\times 400$. into hyphr, and ramify about in all directions, producing a troublesome form of discase. This parasitie fungus is better known under another name, Saccharomyces mycoderma. Oïdium resemble algre in their mode of lifc, as they are mostly found in a liquid media. The structure of all ferments is very simple: eaeh plant is eomposed of a single ccll, either of a spherical, elliptical, or cylindrical form, varying in sizc, and filled with protoplasmic and nucleated matter. This grows, and is seen to bud out and divide into two or more parts, all resembling the mother eell.

Fig. 277 represents the healthy cclls of ycast, Saccharomyces cerevisice, freshly taken from a brewcr's vat, and in an actire stage of growth. The mode of multiplication continues as long as the plant remains in a liquid favomrable to its nutrition.

The changes from one stage to another are rapid, as will be noticed on reference to the eonsecutive formative processes the cells arc known to pass through, Fig. 278 (1859).

If the development of the plant is arrested by want of a saccharine or nitrogenous substance, and the liquid dries up, the

[^31] Cox.
protoplasm contained in the cell contracts, and the spores, or endogenous reproductive organs, of the plant will remain in a state of rest, become perfectly dry, and yet retain life. They are not easily killed, cen when subjected to a very high or low temperature, they do not lose the power of germination when favourable coinditions present themselves, and at once take on a new birth.

There are, however, many other ferments besides that of beeryeasts, such as alcoholic and wine ferments, the commonest of which, according to Pasteur, is Saccharomyces ellipsoideus.

Fig. 278. -Development of Yeast Cells.

1. When first taken; 2. One hour after introducing a few cells into sweetwort ; 3. Three hours after ; 4. Eight lours ; 5. Forty-eight hours, when the cells become elongated.

But yeast-fungi and mould-fungi, like bacteria or fission-fungi, are microorganisms, belonging to two specific orders, the Saccharomyectes and the Hyphomycetes, which are intimately related to each other, but quite distinct from bacteria. Their germs occur widely distributed in air, soil, and water: Many species are of hygienic, while others are of pathological interest and importance in being either accidentally associated with, or the cause of, disease processes, while others are fermentation of very essential service in various industrial processes. The making of beers, wines, and spirits, as we understand them,
constitutes but a small part of the provinee of fermentation. The life aetivities of ferments open out a study of vast importance to mankind, and while they have only been regarded in their worst aspeet-that of a bane-they are, nevertheless, a boon to mankind. The first clear view we obtained of this was that of Reess, who in

Fig. 279.--Saccharomyces and Moulds.

1. Seetion from a tomato, showing spores growing from cuticle ; 2. Portion detaehed to show budding-out process ; 3. Lateral view of spore sac with oo-pores issuing forth; 4. Apiculated ferment spores; 6 and 7. Mycoderma cervisice in different stages of growth, as seen on winc bottles; 8 and 9. Torule diabetice, torule and fission spores.

1870 showed there were several species or forms of the yeast-fungus. Hansen followed up this discovery in 18S3, and, taking adrantage of the strict methods of culture introduced by bacteriologists, found that by cultivating yeast on a solid media from a single spore it was quite possible to obtain constant types of pure yeasts, eaeh
possessing its own peculiar properties. One consequence of Hansen's labours was that it now became possible for every brewer to work with a yeast of uniform type instead of with haphazard mixtures, in which serious discase forms might predominate and injure the beer. Among other things made clear was that a true yeast may have a mycelial stage of development. Furthermore, there is the influence cxercised by the mueleus of the yeast cell. Many other points of interest arose out of these investigations; one was, that many higher fungi can assume a yeast-like stage of development if submerged in fluids, as, for instanec, various speeies of Mucor, Ustilago, Exoascus, and numerous otlers. Ascomycetes, and Basidiomyeetes as well, are known to form budding eells, and it was thought that the yeasts of alcoholie fermentation are merely reduced forms of these higher fungi, which have become habituated to the budding condition-a eonelusion supported by Hansen's discovery that a true Saeeharomyces can develop a feeble, but a true, mycclium.
"This view has been entirely eonfirmed by an inquiry into the mode of brewing sake by the Japanese, by the aid of the Aspergillus fungus. Further researches established the fact that other forms of fungi, e.g., those on the surfaee of fruits, developed endogenous spores, which eause alcoholic fermentation. More reeently, and by further experimental inquiry: partly by pure eultures of separate forms, and partly by well-devised cultures on ripening fruits still attaehed to the plant but imprisoned in sterilised glass vessels, it has been found that yeast and moulds are separate forms, not genetically connected, but merely assoeiated in nature, as are so many other forms of yeasts, bacteria, and moulds. Further, Hansen has discovered that several yeasts furnish quite distinct races or varieties in different breweries in various parts of the world, so that we eannot avoid the conelusion that their raee eharaeteristics have been impressed on the cells by the continued action of the conditions of culture to which they have so long been exposed-they are, in fact, domesticated races."

The environments of yeasts are peculiar. Sauer found that a given varicty of yeast, whose activity is normally inhibited when the alcohol attains a certain degrec of concentration in the liquid, can be induced to go on fermenting until a higher degree is attained by the addition of a certain lactic acid bacterium. The latter, indeed,
appears to prepare the way for the yeast. It has been shown, also, that damage may be done to beers and wines by allowing plant germs to gain access with the yeast ; there are, too, several forms of yeast that are inimieal to the action of the required fermentation. Other researches show that associated yeasts may ferment better than any single yeast, and such symbiotic action of two yeasts of high fermenting power has given better results than either alone. English ginger-beer furnishes a curious symbiotic association of two organisms-a true yeast and a true bacterium-so closely united that the yeast cells beeome imprisoned in the gelatinous meshes of the bacterium ; and it is a curious fact that this symbiotic union of yeast and bacterium ferments is far more energetie than either when used alone, and the product is different, large quantities of lactie and earbonie aeids being formed, and little or no alcohol.

Many years ago I gave an account of similar eurious symbiotie results obtained by introducing into a wort-infusion a small proportion of German yeast, an artificial product composed of honey, malt, and a ecrtain proportion of spontaneously-fermented wheat flomr. This, to my astonishment, produced ten per eent. more alcohol than any of its congeners, and did not so soon exhaust itself as brewer's yeast.*

In the hephir used in Europe for fermenting milk, another symbiotic association of yeast and a bacterium, it is seen that in this process no less than four distinct organisms are concerned. I have ahready instanced the fermentation of rice to produce saké, which is first aeted upon by an Aspergillus that converts the starch into sugar and an associated yeast, and this is also shown to be a distinct fungus, symbiotically assoeiated in the conversion. "Starting, then, from the fact that the constitution of the medium profoundly affeets the physiological action of the fungus, there can be nothing surprising in the discovery that the fungus is more active in a medium whieh has been favourably altered by an associated organism, whether the latter aids the fungus by directly altering the medium, or by ridding it of products of excretion, or by adding gaseous or other body. It is not difficult to see, then, that natural selection will aid in the perpetuation of the symbiosis, and in cases

[^32]like that of the ginger-beer plant it is extremely difficult to get the two organisms apart, a difficulty similar to that in the case of the soredia of lichens."

Buchner discovered that by means of extreme pressure a something can be extracted from yeast which at once decomposes sugar into alcohol and carbon-dioxide. This something is regarded as a kind of incomplete protoplasm-a body, as we have already scen, composed of proteid-and in a structural condition somewhere between that of true soluble enzymes like invertin and a complete living protoplasm. This reminds me of an older experiment of mine, the immediate conversion of cane-sugar into grape-sugar. If we take two parts of white sugar and rub it up in a mortar with one part of a perfcetly dry solid, the German yeast bcfore spoken of, it is immediately transformed as if by magic into a flowing liquid mass-a syrup. This process of forming "invert sugar" can be watched under the microscope; the liberation of carbonic acid gas in large bubbles is seen to go on simultaneously with the assimilation of the dextrose, and the breaking up of the crystals of sugar ; the cell at the same time increasing in size as well as in refractive power ; a curious state of activity appears to be going on in the small mass, which is very interesting to watch throughout.

However, the cnzymes of Buchner are probably bits off the protoplasm, as it werc, and so the essentials of the theory of fermentation remain, the immediate agent being not that of protoplasm itself, but of something made by or broken off from it. Enzymes, or similar bodies, are known to be very common in plants, and the snspicion that fungi do much work with their aid is abundantly confirmed. It secms, indeed, that there arc a whole series of these bodies which have the power of carrying over oxygen to other bodics, and so bringing about oxidations of a peculiar character. These curious enzymes were first obscrved owing to studies on the changes which winc and plant juice undergo when exposed to the action of the oxygen of the air.

The browning of cut apples is known to be due to the action of an oxydase, that is, an oxygen carrying ferment, and the same is claimed for the deep colouring of ecrtain lacs obtained from the juice of plants, such as Anacardiacete, which are palo and transparent when fresh drawn, bnt which gradually darken in colour on exposure
to the air. Oxydases have been isolated from beets, dahlia, potatotubers, and several other plants. This fact explains a phenomenon known to botanists, and partly explained by Schönbein as fur back as 1868 , that if certain fungi (e.g., Boletus beridies) are broken or bruised, the yellow or white flesh at once turns blue ; this action is now traced to the presence in the cell sap of an oxydase.

It is the diastatic activity of Aspergillus which is utilised in the making of sake from rice, and in the preparation of soy from the soja bean in Japan. Katz has recently tested the diastatic activity of Aspergillus, of Penicillium, and of Butterium megutherium, in the prescnce of large and small quantities of sugar, and found all are able to produce not only diastase, but also other enzymes ; as the sugar accumulates the diastase formed diminishes, whereas the accumulation of other carbo-hydrates produces no such effect. Harting's investigation on the destruction of timber by fungi derives new interest from the discovery of an cmulsion-like enzyme in many such wood-destroying forms, which splits up glucosides, amygdalin, and other substances into sugar, and that hyphre feed on other carbohydrates. The fact, also, that Aspergillus can form inverts of the sucrasc and maltase types, as well as emulsin, inulate, and diastase, according to circumstances of nutrition, will explain why this fungus can grow on almost any organic substance it may happen to alight upon. The secretion of special enzymes by fungi has a further interest just now, for recent investigations promise to bring us much nearer to an understanding of the phenomena of parasitism than it was possible when I was at work upon them some forty or fifty years ago.

It was De Bary who impelled botanists to abandon older methods, and he who laid the foundation of modern mycology. Later on he pointed out that when the infecting germinal tube of a fungus enters a plant-cell, two phenomena must be taken into account, the penctration of the cell-walls and-tissues, and the attraction which causes the tips of the growing hypha to face and penetrate these obstacles, instead of gliding over them in the lines of apparent least resistance. The further development of these two factors shows that in the successful attack of a parasitic plant on its victim or host these fungi ean excrete cellulose-dissolving enzymes, and that they have the power of destroying lignine. Kopf has also furnished
examples of fungi whieh ean cousume fats. There is, however, onc other conncetion in whieh these observations on enzymes in the plant-ecll promise to be of considerable importanee, viz., the remarkable action of eertain rays of the solar light on baetcria. It has been known for some time past that if bacteria in a mutrient liquid are cxposed to sunlight they quiekly die. The further researches of Professor Marshall Ward and other workers in the same direction have brought out the faet that it is really the light rays, and not high temperatures, that it is especially the blue-violet and ultia-violet rays, which exert the most cffeetive bacterieidal aetion. This proof depended upon the production of actual photographs in bacteria of the speetrum itself. Apart from this, the Professor demonstrated that just sueh spores as those of anthrax, at the same time pathogenic and highly resistant to heat, succumb soonest to the action of these eold light-rays, and that under eonditions which preclude their being poisoned by a liquid bath. It is in all probability the action of thesc rays of light upon the enzymes, which abound in the bacterial cells, that bring about their dcath.

The sun, then, is seen to be our most powerful scavenger, and this apparently reeeives confirmation in eonneetion with Martinaud's observations, that the ycasts necessary for wine-making are defieient in numbers and power on grapes exposed to intense light, and to this is duc that better results are obtained in central Franee as contrasted with those in the south. "When we refleet, then, that the nature of parasitic fungi, the aetual demonstration of infeetion by a fungus spore, the transmission of germs by water and air, the meaning and significance of polymorphism, heteræcism, symbiosis, had already been rendered clear in the case of fungi, and that it was by these studies in fermentation, and in the life-history of the fungus Saccharomyees, that the way was prepared for the retiology of baeterial diseases in animals, there should be no doubt as to the mutual bearings of these matters."

Industrial uses of Fungi and Saccharomycetes.

There are many industrial proeesses which are more or less depondent for success on baetcrial fermentations. The subject is young, but the results already obtained are seen to be of immense
importance from a scientifie point of view, and to open up vistas of pratieal applieation already being taken advantage of in commerce, while problems are continually being raised by the forester, the agriculturist, the gardener, the dairyman, the brewer, dyer, tamer, and with regard to various industries, whieh will eventually confer great advantages in their economic applieation.

The remarkable diseovery made by Alvarez of the bacillus, which converts a sterilised decoetion of the indigo plant into indigo sugar and indigo white, the latter then oxidising to form the valuable blue dye, whereas the sterile decoction itself, even in presence of oxygen, forms no indigo, plainly proves how these minute organisms may be turned to a grood account. There are, however, important points to be determined as to the aetion of the fermentation brought about by these enzymes, and the appearance of certain mysterious diseases in the indigo vats. Again, certain stages in the preparation of tea and tobacco leaves are found to depend upon very carefully regulated fermentations, which must be stopped at the right moment, or the product will be spoilt. Regarding the possible rôle of bacteria, the West Indian tobacco has a special bacterium, which has been isolated and found to play a very important part in its flavour. Every botanist knows that flax and hemp are the best fibres of Linum and Camabis respectively, separated by steeping in water until the middle lamella is destroyed and the fibres isolated; but it is not so well known that not every water is suitable for this "retting" or steeping process; and for a long time this was as much a mystery as why some water's are so mueh better than others for brewing. Quite reeently Fribes has sueceeded in isolating the bacillus upon which the dissolution of the middle lamella depends. This investigation brought out other interesting details as to the reaction produced by living micro-organisms, and which ean be utilised in deciding questions of plant chenistry too subtile for testing with ordinary reagents. One other important faet comected with these researches is that botanists have now discarded the riew that the middle lamella of the plants referred to is eomposed of eellulose, and know that it consists of peetin compounds. Fribes' anerobie bacillus is found to dissolve and destroy pectins and peetinates, but does not touch cellulose or gum. It is well known that the steeping of skins in water in preparation for taming involves baeterial
action, owing to which the hair and epidermal coverings are removed, but it also appears that in the process of swelling the limed skins, the gases evolved in the substance of the tissues, and the evolution of which causes the swelling and loosens the fibre so that the tauning solutions may penetrate, are due to a particular fermentation caused by a bacterium, which, according to some investigators, is identical with a lactic ferment introdueed by the pine bark, and which is responsible for the advantageous acidification of the tanning solutions.

Hay is made in different ways, and in those where a "spontaneous" heating process is resorted to the fermentation is no doubt dependent upon the presence of thermogenic bacteria. But probably no other subject has attained to so much importance as the bacteriology of the dairy: the study of the bacteria found in milk, butter, and cheese in their various forms.

Of milk, especially, much has been written and said as a discasc-transmitting medium, and with cevery good reason, and, if the statement of a Continental authority may be accepted that each time we eat a slice of bread and butter we devour a number of bacteria equal to the population of Europe, we have sure grounds for seeking for further information as to what these bacteria are and what they are doing. And similarly so with checse, which teems with millions of these minute organisms.
"Some few years ago it was found that the peculiar aroma of butter was duc to a bacterium. There are two species of bacteria, one of which develops an exquisite flavour and aroma, but the butter keeps badly, while the other develops less aroma, but the butter keeps better. In America, however; they have isolated and distributed pure cultures of a particular butter bacillus which develops the famous 'Junc' flavour, hitherto only met with in the butter made in a certain district during a short season of the year. This finc-flavoured butter is now constantly manufactured in a hundred American dairies; and the manufacture of pure butter with a constant flavour has become a matter of eertainty.
"Properly considered, the manufacture of cheese is a form of 'microscopic gardening' even more complex and more horticultural in nature than the brewing of beer. From the first moment, when the cheescmaker guards and cools his milk, till his stock is ready
ho is doing his best to keep down the growth of micro-organisms rushing about to take possession of his milk. He therefore coagulates it with remnet--an enzyme of animals, but also, as we have secn, common in plants-and the curd thus prepared is simply treated as a medium, on which he grows certain fungi and bacteria, with evcry needed precantion for favouring their development, and protecting them against the inroads of other pests and against unsuitable temperature, moisture, and access of light. Having succeeded in growing the right kind of plants on his curd, his art then demands that he shall stop their growth at the critical moment, and his cheese is ready for market.
"Furthermore, the particular flavour and peculiar odours of cheeses, as Camembert, Stilton, and Roquefort, have to be obtained, and this is secured, for instance, by cultivating a certain fungus, Penicillium, on bread, and purposely adding it to Roquefort. This is found to destroy the lactic and other acids, and so enables certain bacteria in the cheese to set to work and further change the medium; whereas in another kind of cheese the object is to prevent this fungus paving the way for these bacteria. Another kind of bacillus has been discovered which gives a peculiar clover aroma to certain cheeses.
"It is thought that more definite results will be obtained by the investigation of the manufacture of the vegetable cheeses of China and Japan, which are made by cxposing the beans of the leguminous plant, Glycine-termed soja-beans-to bacterial fermentations in warm cellars with or without certain monld-fungi. Several kinds of bean-chcescs are made in this way, known by special names. They all depend upon the peculiar decompositions of the tissues of the cotyledons of the soja-beans, which contain 35 to 40 per cent. of proteids and quantities of fatty matter. The softened beans are first rendered mouldy, and the interpenetrating hyphre render the contents accossible to certain bacteria, which peptonise and otherwise alter them. There is the further question of the manufacture of vinegar by fermentation, of the preparation of soy from a brine catract of mouldy and fermented soja-bcans, of bread-making, and other equally interesting manufactures."

Results of De Bary's Investigations in Parasitism.

"When the idea of parasitism was rendered definite by the fundamental distinetion drawn by De Bary between a parasite and a saprophyte, it soon became evident that some further distinction must be made between obligate fucultative parasites and saproplyytes respectively. De Bary, when he proposed these terms for adoption, was elcarly alive to the existence of transitions which we now know to be numerous and so gradual in character that we can no longer define any such physiological groups. Twenty years ago penicillium and mucor would have been regarded as saproplyytes of the most obligate type, but we now know that under certain circumstances these fungi can become parasites, and the borderland between facultative parasites and saprophytes on the one hand, and between the former and true parasites on the other, can no longer be recognised."

In 1866 the germ of an idea was sown which has taken root and extended. De Bary pointed out that in the case of lichens we have either a fungus parasite on an algre, or else certain organisms hitherto accepted as algæ are merely incomplete forms.
"In 1879 the same observer definitely launched the new hypothesis of symbiosis. The word itself is due to Frank, who, in a valuable paper on the biology of the thallus of certain liehens, very clearly set forth the existence of various stages of life in common among all the lower forms of plants. The details of these matters are now principally of historieal interest. We now know that lichens are dual organisms, composed of various alga, symbiotic with Ascomycetes, with Basidiomycetes, and, as Massee has shown, even with Gastromyeetes. The soil contains also bacterio-lichens. Hence arose a new biological idea-that a fungus may be in such nicely-balanced relationship with the host from which it derives its sustenance, that it may be attended with newly equal advantage to botlı.
"In the humus of forests we find the roots of becches and other Cupulifere (willows, pines, and so forth) clothed with a dense mantle of hyphec, and swollen into flcshlike masses of mycorhiza. In similar soils, and in moorlands, which abound in the slowly decom posing root-fibres and other vegetable remains so characteristic of
these soils, the roots of orchids, heaths, gentians, de., are similarly provided with fungi, the hyphre of whieh penetrate further into the tissnes, and even send haustoria into the living cells, but without injuring them. As observations multiplied it beeane elear that the myeorhiza, or fungus-root, was not to be dismissed as a mere case of roots affected by parasites, but that a symbiotie union, comparable to that of the liehens, exists, and we must assume that both tree and fungus derive benefit from the eomeetion.

Fig. 280.-Fine Section through Truffle.
a. Asci filled with spores; b. Mycelia, $\times 250$.
"Frank stated, as the result of his experimental researeh, that seedling forest-trees eannot be grown in sterilised soil, where their ronts are prevented from forming mycorhiza; and he eonelnded that the fungus conveys organie materials to the roots, whieh it obtains by breaking down the leaf-mould and deeaying plant remains, together with water and minerals from the soil, and plays the especial part of a nitrogen-eatehing apparatus. In return for this import service the root pays a tax to the fungus by sparing it eertain of its tissue eontents. It is a curious faet then that
the myeorhiza is only formed where lnmus or vegetable mould abounds."

These instrnctive investigations offer an intclligible explanation of the growth of that well-known subterramean fungus, the truffle (Tuber cibarium), the microscopic appearances of a section of which formed the subject of a paper I contributed to "The Popular Science Review" some years ago (1862). The fungus, as will be seen by the fine section cut through a truffle, Fig. 280, consists of floceulent filaments, which in the first instance cover the ground at the fall of the leaf in antumn, undcr oak or beech troes, the hyphre of which penetrate the ground, through the humid soil to the root-hairs of the tree. Filaments (mycelia) are again given off whieh terminate in asci or sacs filled with minute spores of about $\frac{1}{2500}$ th of an inch in size, while the interspaces are filled up by mycelia, that become consolidated into a firm nut-like body.

What happens, then, is this: Trees and plants with normal roots and root-hairs, when growing in ordinary soil, ean adapt their roots to life in a soil heavily charged with humus only by contracting symbiotic association with the fungus and paying the tax demanded by the latter in return for its smpplies and services. If this adaptation is impossible, and no other suitable variation is evolved, snch trees cannot grow in such soils. The physiological relations of the root to the fungus must be different in details in the ease of non-green, purely saprophytie, plants, Neottia, Monotropa, de., and in that of green plants like Erica, Fagus, and Pinus. It is, however, a well-known fact that ordinary green plants cannot utilize vegetable débris dircetly, and forest trees do so in appearance only, for the fungi, yeasts and bacteria there are actively decomposing the leaves and other remains. A class of pscudo-symbiotic organisms are, however, being brought into the foreground, where the combined action of two symbionts results in the death of or injury to a third plant, each symbiont alone proving harmless. Some time ago Vuillemin showed that a disease in olives results from the invasion of a bacillus (B. olece), which can, however, only obtain its way into the tissues through the passages driven by the hyphre of a fungus (Chetophoma). The resulting injury is a sort of burr. This observer also observed the same bacillus and fungus in the canker burs of the ash.

Among many similar cases well worth further attention are the invasion of potato-tubers by bacteria, these making their way down the decaying hyphe of pioncer fungi. Professor Marshall Ward has seen tomatocs infected by similar means, and other facts show that many bactcria which quicken the rotting of wood are thus led into the tissues by fungi.

Probably no subject in the whole domain of cryptogamic botany has wider bearings on agricultural science than the study of the flora and changes on and in manure and soil. Nitrifying bacteria play a very important part by providing plant life with a most neccssary food. They occur in the soil, and two kinds have been described--the one kind converting ammonia into nitrous acid, and the other changing nitrous into nitric acid. We are principally indebted to Winogradsky for onr knowledge of these bacteria; he furnishes instances of the bearing of bacteriological work on this department of science, and explains, not only the origin of nitre-beds and deposits, but also the way the ammonia compounds fixed by the soil in the neighbourhood of the root-hairs are nitrified, and so rendered directly. available to plant life. The investigations of other observers show that the nitrifying organism is a much more highly-developed and complex form than had been suspected; that it can be grown on various media, and that it exhibits considerable polymorphism-i.e., it can be made to branch ont and show other characteristics of a true fungus. "I hare," writes Professor Ward, "for some time insisted on the fact that river water contains reduced forms of bacteria-i.e., forms so altered by exposure to light, changes of tomperature, and the low nutritive value of the water, that it is only after prolonged culture in richer food media that their true nature becomes apparent." Strntzer and Hartleb show that the morphological form of the nitrifying. organism can be profoundly altered by just such rariations of the conditions described by Ward, and that it occurs as a branched mycelial form ; as bacilli or bacteria ; or as cocci of various dimensions, according to the conditions.
"These observations, and others made on variations in form (polymorphism) in other fungi and bacteria, open out a rast field for further work, and must lead to advancement in our knowledge of these puzzling organisms; they also heip us to explain many
inconsisteneies in the existing systems of classification of the soealled 'species' of bacteria as determined by test-tube culture."

Algæ.-The algals have a special charm for microseopists. I am free to confess my interest in these organisms, and for several reasons. In this humid elimate of ours they are accessible during the greater part of the year ; they can be found in any damp soil, in bog, moss, and in water-indeed, wherevor the conditions for their existence seem to be at all favourable for development. Should the soil dry up for a time, when the rain returns algæ are seen to spring into life and give forth their dormant spores, which once more resume the cirele of formation and propagation. In the earliest stage of development the spore or spore eell is so very small when in a desiceated state, that any number may be carried about by the slightest breath

Fig. 281.-Nrobic Spores $\times 200$.

1. Wrolic fungi eaught over a sewer ; 2. Fragments of Penicillium spores; 3. Erobic fungi taken in the time of the cholera visitation, 1854.
of air and bornc away to a great distance. To all such organisms I originally gave the name of Ærozoa; now recognised as ærobic and anarobic organisms (Fig. 281).

With reference to the ærobic bacteria I have only to add that in addition to the simple mode of taking them on glass slides smeared over with glyecrine, special forms of xroscopes are now in use for the purpose, consisting of a small cylinder in which a current of air is produced by an aspirator and diffused through a glass vessel containing a sterilised fluid. These are in constant use in all bacteriological laboratories. The results obtained are transferred to sterilised flasks or tubes as those shown in a former chapter.

Miquel, who has given considerable attention to the subject of ferobic and anærobic bacteria, reckons that the number of spores that find their way into the human system by respiration, even should health be perfectly sound, may be estimated at 300,000 a day.

Onc of the most commonly met with forms of mieroorganisms is Leptothrix buccalis. It chiefly finds its nutritive material in the interstices of the teeth, and is eomposed of short rods and tufted stems of vigorous growth, to which the name of Bacillus subtilis has been given (Fig. 282). Among numerous other fungoid bodies diseovered in the mouth, Sareina have been found. See Plate IX., No. 7.

Fig. 282.-Section of the Mucons Membrane of the Mouth, $\times 350$.
Showing: a. The denser eonnective tissue ; \quad. Teased out tissue ; c. Muscular fibre ; d. Leptothrix buccalis, together with minute forms of baeteria and uicroeoeei ; e. Ascomyeetes and starch granules.

The Beggiatoa, a sewage fungus, found by mo in the river Lea water of 1884 growing in great profusion, consists ehiefly of myeelial threads and a number of globular; highly refractive bodics, and may be regarded as evidence of the presence in the water of an abnormal amount of sulphates whieh set free a gas, sulphuretted hydrogen, of a dangerous and offensive eharaeter. Another curious body elosely allied to Beggiatoa alba is Cladothrix; this assumes a whitish pelliele on the surfaee of putrefying liquids.

These saprophytes obtain nourishment from organie matter; nevertheless they are not true parasites in the first stage of their cxistenee, during 'which they live freely in the water or in damp

Fungi, Alqe, Lichens, etc.

Plate I.
soil ; they, however, beeome pathogenie parasites when they penetrate into the tissues of animals, and neeessarily live at the expense of their host.

Bacteria, as I have said, were for a long time elassed with fungi under the name of Selizomyeetes. But the more reeent researches nto their organisation, and more especially into their modo of reproduetion, show that they rather more resemble a group of algre devoid of ehlorophyll. Zopf asserts that the same speeies of algals may at one time be presented in the form of a plant living freely in water, or in damp ground, in association with chlorophyllaceous protoplasm, and at another in the form of a baeterium devoid of green eolouring matter, and reeeiving nourishment from organie substanees previnusly elaborated by plants or animals, thus accommodating itself, aceording to eireumstances, to two very different modes of existence.

That widely-distributed single-eell plant, the Palmoglcea macrococca of Kützing, that spreads itself as a green slime over damp stones, walls, and other bodies, affords an example. If a small portion be seraped off and placed on a slip of glass, and examined with a half or a quarter-inch power, it will be seen to consist of a number. of ovoid eells, having a transparent struetureless envelope, nearly filled by granular matter of a greenish colour. At certain periods this mass divides into two parts, and ultimately the cell becomes two. Sometimes the eells are united end to end, just as we see them united in the actively-growing yeast plant; but in this ease the growth is accelerated, apparently, by cold and damp. Another plant belonging to the same speeies, the Protococcus pluvialis, is found in every pool of water, the spores of which must be always floating in the air, sinee they appear after every shower of rain.

Protococcus pluvialis is furnished with motile organs-two or more vibratile flagella passing through perforations in the eell-wall-whereby, at eertain stages, they move rapidly about. The flagella are distinctly seen on the applieation of the smallest drop of iodine. The more remarkable of the several forms presented by the plant is that of maked spores, termed by Flotow Hamatococcus porphyrocejhlulus. These minute bodies are usually seen to consist of green, red, and colourless granules in equal proportions, and occupying different portions of the eell. They seom to have some share in the after subdivision of the cell (Fig. 283). There are also
still-cells, which sub-divide into two, white the motile cells divide into four or eight. It is not quite clear what becomes of the motile zoospores, 3 , but as they have been seen to become encysted, they donbtless have a special function, or become still-cells under certain circumstances.

It appears that both longitudinal and transverse division of the primordial cell takes place; and that the vibratile flagella of the parent cell retain to the last their function and their motion after the primordial cell has become detached and transformed into an independent secondary cell (Fig. 283, g).

Fig. 283.-Cell Development. (Protococcus pluriulis.)
Protococcus pluvialis, Kiitzing. Hemalococcus pluvialis, Flotow. Chlamido. coccus versatilis, A. Braun. Chemidococcus pluvialis, Flotow and Brauu.
A. Division of a simple cell into two, each primordial vesicle haring developed a cellulose envelope; B. Zoospores, having eseaped from a cell; c. Division of an eneysted cell into segments; D. Division of another cell, with vibratile flagella projecting through cell-wall ; s. An encysted flagellate cell ; F. Division of an eneysted nucleated cell into four parts, with ribratile filaments projecting ; G. Fission of a young cell.

The most striking of the vital phenomena presented by Protococcus is that of periodicity. Certain forms-for instance, encysted zoospores, of a certain colour, appear in a given infusion, at first exclusively, then they gradually diminish, become more and more rare, and finally disappear altogether. After some time their mumber again increases, and this may be repeated. Thus, a cell which at one time presented only still forms at another contained only motile ones. The same may be said with respect to segmentation. If a number of motile cells be transforred from a larger ressel into a smaller one, in the course of a few honrs mosts of them will have
subsided to the bottom, and in the course of the day observed to be on the point of sub-division. On the following morning division will have beeome eompleted ; on the next day the bottom of the vessel will be fonnd covered with a new generation of self-dividing eells, which, again, will produce another generation. This regularity, however, is not always observed. The influenee of every change in the external eonditions of life upon the plant is very remarkable. It is only neeessary to ponr water from a smaller into a larger or shallower vessel to at once induee segmentation of eells. The same phenomenon oceurs in other algals ; thus Vaneheria almost always develops zoospores at whatever time of year they may be brought from their natural habitat into a warm room. Light is conducive to the manifestation of vital aetion in the motile spores ; they usually eolleet in great numbers on the surface of the water; and at that part exposed to the strongest light.

But in the aet of propagation, on the contrary, and when about to pass into the still eondition, the motile Protocoecus eell seems to shun light, and falls to the bottom of the vessel. Too strong sunlight, as when eoneentrated by a lens, quiekly kills the young zoospores. A temperature of undue elevation is injurious to the development of their vital activity and the formation of the zoospores. Frost destroys motile, but not still zoospores.*

Stephanosphera pluvialis is a eonspieuous variety of the freshwater algals, deseribed by Cohn. It consists of a eell eontaining eight primordial eells filled with ehlorophyll, uniformly arranged (see Plate I., No. 24 d). The globular mother-cell rotates, somewhat in the same way as the volvox, by vibratile flagella, two of whieh are seen projecting from each eell and piereing the transparent onter cellwall. Every cell divides first into two, then four, and lastly eight eells, each one of whieh again divides into a number of mierogronidia, whieh have a motion within the mother-eell, and ultimately escape from it. Under certain circumstances each of the eight young eells is observed to ehange plaees in the interior of the eell ; eventually they escape, lose their flagella, form a thieker membrane as at l, and for a time remain motionless, and sink to the bottom of the vessel in whieh they are contaned. If the vessel is permitted to beeome thoroughly dry, and then again has water poured

[^33]into it, motile eells reappear; from which circumstance it is probable that these represent the resting spores of the plant. When in the condition of greatest aetivity its division into eight is perfected dining the night, and carly in the morning light the young cells escape and pass throngh similar changes. It is calculated that in cight days, under favourable cireumstanees, $16,777,216$ families may be formed from one resting-cell of Stephanosplisera. In eertain of the cells, and at particular periods, remarkable amuboid bodies (Plate I., No. 24 c) make their appearance. There is a marked difference between Stephanosphæra and Chlamydocoeeus, for while in the latter the individual portions of a primordial cell separate entirely from one another, eaeh developing its own enveloping membrane, and ultimately escaping as a unicellular individual ; in the former, on the other hand, the eight portions remain for a time living in eompanionship.

Volvocinew.-A fresh-water unicellılar plant of singular beauty and interest to the microscopist is the Volvox globator (Plate I., No. 15). No. 16 represents a portion of another eell, with brownish amœboid bodies enelosed in the protoplasmic web. It is common to our fresh-water pools, and attains a diameter of about $\frac{1}{20}$ th or $\frac{1}{30}$ th of an inch. Its movement is peculiar, a continued roll onwards, or a rotation like that of a top ; at other times it glides along smoothly. When examined under a sufficiently high power, it is seen to be a hollow sphere, studded with green spots, and traversed by green threads connecting each of the spots or spores with the maternal eell. From each of the spores proeeed two loug flagella, lashing filaments, which keep the globular body on the move. After a time the sphere bursts, and the eontained sporules issue forth and speedily pass through a similar stage of development. These interesting cells were long taken to be animal bodies. Ehrenberg described them as Monads, possessing a month, stomach, and an eye.

The setting free of the yomng volvox is essentially a process of cell division, occurring during the warmer periods of the year, and, as Professor Cohn shows, is a considerable adranee mpon the simpler conjugation of two smaller cells in desmids; it more closely resembles that which prevails among the higher algic and a large number of cryptogams. As antmon adranees the volvox spliernles
usually ccase to multiply by the formation of zoosporanges, and certain of their ordinary cells begin to undergo changes by which they are converted, some into male or sperm-cells, others into germ-cells, but the greater number appear to remain sterilc. Both kinds of cells at first so nearly resemble each other that it is only when the sperm cells bogin to undergo sub-division that they are seen to be about three times the size of the sterile cells. Then the primary cell resolves itself into a cluster of peculiar secondary cells, each consisting of an elongated body containing an orangc-coloured cndochrome and a pair of long flagella, as scen in the anthcrozoids of the higher cryptogams. As the sperm-cclls approach maturity the clusters may be seen to move within them; the bundles then separate and show an independent active movement while still within the cavity of the primary cell, and finally cscape through a rupture in the cell-wall, rapidly diffusing themselves as they pass through the cavity. The germ-cells continue to increase in size without undergoing sub-division, at first showing large vacuoles in their protoplasm, but subsequently bcoming filled with a darker coloured endochrome. The form of the cell also changes from its flask-like shape to the globular, and at the same time seems to acquire a firmer envelope. Over this the swarming antherozoids diffuse themselves and penetratc the substance to the interior; and are then lost to view. The product of this fusion, Cohn tells us, is a reproductive cell, or "oospore," which spcedily bccomes enveloped in another membranc with a thicker external coat, besct with conicalpointed processes ; and now the chlorophyll of the young cell gives place, as in Palmoglæ, to starch and reddish or orange-colourcd, and a more highly refractive, fluid. As many as forty of such oospores have been counted in a single sphere of volvox, which then acquires the peculiar appearance observed by Ehrenberg, and described by him under the name of Volvox stellatus. The further history of this wondcrful spheroid uniccllular plant has been traced out by Kirchner, who found that thcir germination commences in the early months of the year-in Fcbruary-with the liberation of the spherical cndospore from its envelope and its division into four cells. A remarkable phenomenon has becu observed by Dr. Braxton Hicksthe conversion of an ordinary volvox cell into a moving mass of protoplasm that bears a striking resemblance to the well-known
amoba. "Towards the end of the antumn the endochrome mass of the volvox increases to nearly double its ordinary size, but instead of undergoing the usual sub-division so as to produce a macrogonidium, it loses its colour and regularity of form, and becones an irregular mass of eolourless protoplasm, containing a number of brownish granules." The final change and the ultimate destination of these eurions amaboid bodies have not been satisfactorily made out, but from other observations on the protoplasmie contents of the cells of the roots of mosses, which in the course of two hours become changed into ciliated bodies, it is believed that this is the mode in which these fragile structures are enabled to retain life and to resist all the external conditions, such as damp, dryness, and the alternations of heat and cold.

It would be quite impossible to deny the great similarity there is between the structure of volvox and that of the motile cell of Protococcus pluvialis. The influence of reagents will sometimes eause the connecting processes of the young cells, as in Protococcus, to be drawn back into the central mass, and the comnecting threads are sometimes seen as double lines, or tubular prolongations of the membrane. At other times they appear to be connected by starlike prolongations to the parent cell (Plate I., No. 15), presenting an almost identical appearance with Pediastrum pertusum. Another body designated by Ehrenberg Spharosirce volvox is an ordinary volvox in a different stage of development ; its only features of dissimitarity being that a large proportion of the green eells, instead of being single, are double or quadruple, and that the groups of flagellate cells form by their aggregation diseoid bodies, each furnished with a single flagellum. These clusters separate themselves from the parent cell, and swim off freely under the forms whieh have been designated Uvella and Syncrypta by Ehrenberg. Mr. Henry Carter, F.R.S., who made a careful investigation of unicellular plants, deseribed Sphrrosira as the mate, or spermatie form of volvor.

Among other organisms elosely allied to volvox and included in Volvocineæ, affording the microseopist many interesting transitional forms in their various modes of fructification, are the Eudorina, still-water organisms that pass through a similar process of reproduction as the volvox. In the Pandorina moram, its reproduction is curiously intermediate between the lower and the higher types; as
within cael cell is a mulberry-like mass, composed of eells possessing a definite number of swarm spores, sixteen usually, which rupture the mother cell, and swim off furnished with a pair of flagella. A similar process takes place in some of the Confervaceæ and other freshwater algec. The Palmella, again, consist of (Plate I., No. 21) minute organisms of very simple structure, which grow either on damp surfaces or in fresh water. The stonework of some of our churehes is often seen to be covered with a species of Palmella, that take the form of an indefinite slimy film. The "red snow" of Aretic or Alpine regions, considered to be a species of Protococcus, is frequently placed among Palmella. A more claracteristic form of the P. cruenta is the IIcematococcus sanguinis, the whole mass of which is sub-divided by partitions enclosing a larger or smaller number of cells, which diffuse their granular contents through the gelatinous mass in which their several changes take place. The albuminoid cnvelope of these masses is seen to contain parasitic growths, which have given rise to some discussion, especially when their filaments are obscrved to radiate in various directions.

The Oscillariacece constitute a genus of Confervacer which have always had very great intcrest for the microscopist in consequence of their very remarkable animal-like movements, and from which they derive their generic name. For more than a century these Bacillaria have excited the curiosity of all observers without any one having derived more than an approximate idea of their remarkable rhythmical morements. The frustulc consists of a number of very fine short threads attached together by a gelatinous sheath, in one species all of equal length. Their backward and forward movement is of a most singular character ; the only other conferva in which I have seen a motion of a similar kind is the Sehizonema. In this species the frustules are packed together in regular series, the front and side views being always in the same direction. 'These several bodies move along within the filamentous sheath without leaving their respective places. On carcfully following the movement, it is seen at first much extended, and then more compressed, while the frustules become more linear in their arrangement, and present a closer resemblanee to Bacillarin paradoaca, angmented by the cireumstance that the frustules are seen to move in both directions. A frustule of Schizonema can move independently of the
sheath, and so will a detached frustule of bacillaria. 'This peenliar and exceptionally anomalous phenomenon as that of the movements of bacillaria can liardly be confined to a solitary species. The movenuents of the frustules are much accelerated by warmth and light. The longer filaments of other minute species only shightly exhibit any

Fig. 284.-Confervacer.

1. Volvox globutor; 2. A section of volvox, showing the flagellate margin of the cell; 3. A portion more highly magnified, to show the young volvocina, with their nuclei and thread-like attachmerts; 4. Spirogyra, near which are spores in different stages of development; 5. Confcrve floccosa; 6. Stigcoclonium protcnsum, jointed filaments and single zoospores; 7. Staurocarpzes gracilis, conjugating filaments and spores. motion of the kind, but have peculiar mudulating motions.

Confervaces are a genus of algals. The species consist of unbranched filaments composed of cylindrical or moniliform cells, with stareh granules. Many are vesicular, and all multiply by zoospores generated in the interior of the plant at the expense of the granular matter. They are, for the most part, found in fresh water attached or floating, some in salt water, and a few in both, in colour usually green, but occasionally olive, violet, and red. The Confervacea proper are oftelı divided into four families: 1. IFydrodictide ; 2. Zygnemida; 3. Confervidae; 4. Chatophoridce. To the microscopist all the plants of this genera are extremely intcresting as subjeets for the study of cell multiplication. The process usually takes place in the terminal cell, the first step in which is the division of the endochrome, and then follows a sort of hour-glass contraction aeross the eavity of the
parent eell, whereby it is divided into two equal parts. This is better seen in some of the desmids than in Fig. 284, Nos. 4, 5, and 6. Some speeies are eharaeterised by a different mode of reproduction; these possess a number of nuclei, and multiply by zoospores of two kinds, the largest of which have either two or four eilia, which germinate dircetly the smaller are bieiliated ; conjugation has been seen to tako place in a few instanees.

Allied to the Confervaeer is an interesting plant, Splucroplea annulina, which has reecived eareful attention from Cohn. The oospores of this plant are the produet of a proecss partaking of a sexual nature, and whon mature are filled with reddish fat resieles which divide by segmontation.

The Edlogoniacece also closely resemble Confervaeer in habits of life, but differ in some partieulars, especially so in the mode of reproduetion (only a single large zoospore being set free from each cell) and by the almost complete fission of the eell-wall or one of the rings whiel serve as a hinge. The zoospores are the largest known among algals, and each is deseribed as having a red eyc-spot. The Chatophoracese form an interesting group of eonfervoid plants, and are usually found in running streams, as they prefer pure water: One of the eharaetcristics of the group is that the cxtremities of the branelies are prolonged into an acute-shaped termination, as represented in Fig. 284, No. 6. A very pretty object under the microscope is Draparnaldia glomerata, belonging to this species. It consists of an axis eomposed of a row of eells, and at regular intervals whorls of slender prolongations, eontaining ehlorophyll or endochrome of a deeper green; these attain to an extraordinary longth.

The Batrachospermoe bear a strong resemblance to frog-spawn, from whieh they derive their name, and are ehiefly a marine group of algals allied to the Rhodespermere or red seaweeds. The late Dr. A. Hassall first described them; they have sinee reeeived more eareful attention from M. Sirodot. They are reddish-green, extremely flexible, and nothing can surpass the grace of their movements in water: lut when removed from their clement they lose all form, and resemble a jelly-like substanee without a trace of organisation; but if allowed to remain quict they regain their original shape.

The presence of the cell-membranc will be best demonstrated by breaking up the filaments, cither by moving the thin glass cover, or by cutting through a mass of them in all directions with a fine disseeting knife. On now examining the slide, in most instances many detached empty pieees of the cell-membrane, with its strixe, will be seen, as well as filaments partly deprived of protoplasin. On the application of iodine all these appearances become more distinguishable in consequence of the filament tuming red or brown, while the cmpty cells remain either unaffceted, or present a slight yellowish tint, as is frequently the case with cellnlose when old.

With regard to the contents of the cell,

Fig. 285.-Mesoglia rermicularis. the endochrome is colonred in the Oscillatoriæ, and is distingnishable by circular bands or rings around the axis of the cylindrical filament. Iodine stains them brown or red, and syrup and dilute sulphuric acid produce a beautiful rose colour. As to their mode of propagation, nothing positive is known. If kept for some time they gradually lose their grcen colour; a portion of the mass, becoming brown, sinks to the bottom of the vessel, and presents a granular layer.

Mesoglia vermicularis (Fig. 285) consists of strings of eells cohering and held together by their membranous covering. In the lowly organised plaut Vaucheria (Plate I., No. 23, V. sessilis)-so named after its discoverer Vancher, a German botanist-a genus of Siphonacea, we have an cxample of true processes of scxual generation. The branching filaments are often seen to bear at their sides peculiar globular bodies or oval protuberances, nipple-shaped buddings-out of the cell-wall, filled with a dark-colomed endochrome and distributed in pairs, one of which curves round to meet the other, when conjugation is seen to take place. Near these bodies others are found with pointed projections, which have been described as "horns," but these, Pringshelm says, are "antherids which produce antherozoids in their interior," while the capsule-like bodies constituting the oospores become, when fertilised, a new gencration, which swarm out through a cavity or aperture in the parent cell-wall.

The fruit of fresh-water and most olive-green algals is enclosed in spherical carities under the epidermis of the frond, termed conceptacles, and may be either male or femalc. The zoids are bottleshaped and have flagella; the transparent vesicle in which they are containcd is itself enelosed in a second of similar form. In monocious and dicecious algals the female conceptacles are distinguished from the male by their olive colour. The spores, when developed, are borne on a pedicle cmanating from the inner wall of the conceptacle. They rupture the outer wall at its apex ; at first the spore appears simple, but soon after a series of changes takes place, consisting in a splitting up of the endochrome intosix or cight masses of spheroidal bodics. A budding-out occurs in a few hours' time, and ultimately. clongates into a cylindrical thread. The Vaucheria present a double mode of reproduction, and their fronds consist of branching tubes resembling in their general character that of the Bryophyta, from which indeed they differ only in respect of the arrangement of their green contents. In that most remarkablc plant Saprolegnia ferox, which is structurally so closely allied to Vauchcria, though separated from them by the absence of green colouring matter, a corresponding analogy in the processes of development takes place. In the formation of its zoospores, an intermediate step is presented between that of the algre and a ciass of plants formally placed among fungi.

The Ulvacece.-The typical form of seaweeds is the Ulva lactuca, woll known from its fronds of dark-green "laver" on every coast throughout the world. Ulve are scen to differ but little from the preceding group of fresh-water algals. The specific difference is that the cells, when multiplied by binary subdivision, not only remain in firm connection with each other but possess a morc regular arrangement. The frond plane of the algal is cither more simple or lobed, and is formed of a double layer of cells closely packed together and producing zoospores. The whole group is chiefly distingrished from Porphyra by their green colour, the latter being roseatc or purple. Ulve are mostly marine, with one or two exceptions. One specics (U. thermalis) grows in the hot springs of Gastein, in a temperature of about 117° Fahr. The development of Ulver is seen in Fig. 286. The isolated cells, A, resemble in some points those of the Protococcus; these give rise to successive subdivisions determining the cluster's seen at B and c, and by
their aggregation to the confervoid filament shown at D. These filaments inerease in length and breadth by suecessive additions, and finally take the form of fronds, or rows of cells.

The marine greenish-olive alga present a general appearance whieh might at first sight be mistaken for plants of a higher order of eryptogams. Their fronds have no longer the form of a filament, but assume that of a membranous expansion of eells. The eells in which zoospores are found have an increased quantity of eoloured protoplasm aeeumulated towards one point of the eell-wall; while the zoospores are observed to eonverge with their apiees

Fig. 286.-Successive Stages of Devclopment of Ulvæ.
A. Isolated spores; B and c. Clusters of cells ; D. Cells in the filamentous stage.

Fig. 287.-Sphacclaria cirrhosa, with spores borne at the sides of the branchlets.
towards the same point. In some algæ, whieh seem to be closely related in form and structure to the Bryophyta, we notiee this important differenee, that the zoospores are developed in an organ speeially destined for the purpose, presenting peculiarities of form and distinguishing it from other parts of the branching tubular frond. In the genus Derbesia distinet spore eases develop, a young branch of which, when destined to beeome a spore ease, instead of elongating indefinitely, begins, after having arrived at a eertain lengtl, to swell out into an ovoid resiele, in the cavity of whieh a considerable aecumulation of protoplasm takes plaee. This is separated from the rest of the plant, and becomes ann opaque mass, surrounded by a distinet membrane. After a time a division of

the mass takes place, and a number of pyriform zoospores, eaeh of whieh is furnished with flagella, are set free.

In Cutleria (Fig. 288) we have a special feature of interest with two kinds of organs, seemingly opposed to each other with regard to their reproductive functions. The sporangia not only differ from those of other speeies, but the frond cousists of olive-colomred irregularlydivided flagella, on each side of which tufts (sori) consisting of the reproductive organs, intermixed with hair-like bodies, are seattered. The zoospores are divided by transverse partitions into four eavities, each of which is again bisected by a longitudinal median septum. When first thrown off they are in appearance so mueh like the spores of Puceinia that they may be mistaken for them, although so very much larger than those of other olivecoloured algæ.

Floridece, the red algæ (Plate II.), prescnt many varieties of structure, although less appears to be known of their reproductive processes than of lower forms of cryptogamic plants. These are, however, of three kinds. The first, to which the term polyspore has been applied, is that of a gelatinons or membranous periearp or conceptaele, in which an indefi-

Fig. 288.-Cutleria dichotoma. Section of lacinia of a frond, showing the stalked eight-chambered oosporanges. growing on tufts with intercalated filaments. Maguified 50 diameters. nite number of zoospores are contained. This organ may be either at the summit or base of a braneh, or it may be concealed in or below the cortical layer of the stem. In some eases a number of sporc-bearing filaments emanate from a kind of membrane at the base of a spheroidal cellular perisporangium, by the rupture of which the zoospores formed from the endochrome of the filaments make their escape. Other changes have been observed ; however, they all agree in one partieular, namely, that the zoospore is developed in the interior of a cell, the wall of which forms its perispore, and the internal protoplasmic membrane endochrome, the
zoospore itself, for the eseape of which the perispore opens out at its apex.

The seeond form is more simple, and consists of a globular or oroid cell, containing a central granular mass ; this ultimately divides into four quadrate-shaped spores; these, on attaining maturity, eseape by rupture of the cell-wall. Another organ, called a tetraspore, takes its origin in the cortieal layer. The tetraspores are arranged either in an isolated manner along the branches, or in numbers together ; in some instanees the branehes that

Fig. 289. - Dusyce kutzingicna, with seed ressel and two roirs of tetraspores. Magnified 50 diameters. contain them are so modified in form they look like special organs, and have been called stichidia; as, for example, in Dasya (Fig. 289). Of the third kind of reproductive organ a difference of opinion exists as to the signifieation of their antheridia; although always produced in precisely the same situations as the tetraspores and polyspores, they are agglomerations of little colourless eells, either united in a buneh, as in Griffithsia, or enelosed in a transparent eylinder, as in Polysiphonia, or eovering a kind of expanded dise of peeuliar form, as in Laureneia. Aecording to eompetent observers, the eells eontain spermatozoids. Nägeli describes the spermatozoid as a spiral fibre, which, as it eseapes, lengthens itself in the form of a serew. Thuret, on the contrary, says the eontents are granular, and offer no trace of a spiral filament, but are expelled from the eells by a slow motion. The antheridia appear in their most simple form in Callithamnion (Plate II., Nos. 32 and 34), being redueed to a small mass of eells eomposed by mumerous little bunches whiel are sessile on the bifureations of the terminal branehes. The spores are simpler struetures than the tetraspores, and mostly oceupy a more important position. They are not scattered through the frond, but grouped in definite masses, and generally enclosed in a special capsule or eonceptaele, whiels may be mistaken for it tetraspore case. The simplest form of the spore fruit eonsists of spherieal masses of spores attaehed to the wall of the frond, or imbedded in its substanee, without a proper
conceptacle ; such a fruit is called a favellictium, and occurs in Halymenia; the same name is applied to the fruits of similar structures not perfectly immersed, as those of Gigartina, Gelidium, de., where they form tubercular swellings on the lobes. In some, the tubercles present a pore at the summit, through which the spores emerge forth. In other cases, as in Ceramium (Plate II., Nos. 27 and 37), the spores occupy a more conspicuous place ; a characteristic species is Delessaria (Plate Il., No. 39), the coccidium cither oceurring on lateral branches, or is sessile on the face of the frond, when it consists of a case filled with angular-shaped spores attached to the wall of the case. The general extermal appearance of the red alge is very varied, but it scems to attain to its deepest colouring in the Red Sca, which, it is said, is entirely due to the peculiarly vivid red scaweed. They are all exquisite objects for the microscope, as may be sumised from the few varieties presented in Plate II. The Florider of the warmer seas exhibit most elegantly formed fronds, as will be seen on reference to the "Phycologia Australica" of the late Dr. William Harvey, F.R.S.

The Characeæ may be placed among the highest of the algals, if only for the complexity of their reproductive organs, which certainly offer a contrast in their simplicity of structure. Chara vulgaris, stonewort, is a simple fresh-water plant, preferring still freshwater ponds or slow-moving rivers rumning over a chalky soil. It thus derives the calcarcous matter found in the axis of the plant, together with a small portion of silica. Its filaments (or branches, as some botanists prefer to call them) are given off in whorls. The Characere are a small family of acrogens, consisting of only two or three at most. They are monœcious and diœcious, the two kinds of fruit being often placed elose together. They may easily be grown in a tall glass jar for observation. All that is necessary is to put the jar occasionally under the house tap and let the water run slowly over the top for a short time, thus renewing the contents without disturbing the plant. The hard water supplied to London suits chara better than softer water. Both chara and nitella are objects of great interest to microscopists, since in the former the important fact of vegetable circulation was first observed. A portion of the plant of the natural size is shown in Fig. 290, No. 1.

Characeæ.

Wach plant is composed of an assemblage of long tubiform cells placed end to end, with fixed intervals, around which the branchlets

Fig. 290. - Diagrammatic sketch of Chara.

1. A stem of Chara vulyaris, matural size; 2. Magnified view (arrows indicating the course taken by the chlorophyll); 3. A limb, with buds protruding; 4. Portion of a leaf of Vallisneria spiralis, showing cyclosis of chlorophyll gramles. are disposed with great regularity. In nitella the stem and branehes are composed of simple eells, which sometimes attain to sereral
inches in length. Each node, or zone, from which the branches spring, consists of a single plate, or laycr, of small cells, which are a continuation of the cortical layer of the internode (Fig. 290, No. 3) as an outgrowth. Each cell is partially filled with chlorophyll gramules, and it is these that are seen under the microscope taking the course shown by the arrows (Fig. 290, No. 2). The rate of movement of the granules is aceclerated by moderate warmth and retarded by cold. It is in viewing the circulation in

Fig. 291.-The Fructification of Chara fragilis.
A. Portion of filament containing "antheroids"; B. A group of antheridial filanents, composed of a scries of cells, within cach of which antherozoids are formed; c. The escape of mature antherozoids, with whip-like prolongations, about to swim off; D. Antherid supported on flask-shaped pedicle; E. Nucule cnlarging, and scen to contain oospores; F. Spores and elaters of Equisetum ; f. Spores snrrounded by elaters of Equisctum.
water plants that the warm stage of the microscope is brought into usc. Borne along with the protoplasmic stream are a number of solid particles consisting of starch gramules and other matters. The method of viewing the circulation is by cutting sections off a portion of the plant with a very slarp knife, and arranging them in a growing cell with it few drops of water, and covering over with a thin cover-glass.

The reproductive process of Chara is effected by two sets of bodies, both of which are placed at the base of the branches (Fig. 291,

E and D) cither on the same or different plants, one set known as globules or anthericts, and the other as moules, containing the oospores or archegones. These are often of a bright red colour, and have covering plates, or shields (is and F), cmriously marked, and the central portion is composed of a number of filaments rolled up (as in E) or frec (as seen at 13), projecting out from the centre of the sphere. The antherid is supported on a short flesk-shaperl pedicle, which projects into the interior. At the apex of each of the eight manubria is a roundish hyaline cell, termed a capitulum, and at its apex again six smaller or secondary capitnla. The long whip-shaped filaments are divided by transverse septa into a hundred or more compartments, every one of which is filled with an antherozoid (as at A), consisting of a spiral thread of protoplasm packed into two or three coils; these escape and become free (as seen at c), cach having two long fine flagella. The young antherozoid swims off with a lashing action, and the whole field appears for a time filled with life. They swim about freely, but their motion gradually ceases, and soon they arrive at a state of inaction.

Aitella appears to liave a somewhat different mode of fructification to that of its congener. It puts forth a long filamentous branch from one of its joints, which, on reaching the surface of the water, terminates in a whitish fruit-like cluster. It is eren a more delicate and less robust algal than chara, and every care should be taken to imitate the still water in which it grows. It delights in shady woods and in calcareous open pools.

Similar eare is requisite with regard to Vallisneria; and a more equal temperature is better suited to the growth of this aquatic plant. It should be planted in the middle of the jar or aquarium, about two inches deep in mould, closely pressed down, then gently fill the jar with water. When the water requires changing, a small portion only should be run off at a time. It appears to thrive in proportion to the frequency of changing the water, and taking eare that the water added rather increases the temperature than lowers it.

The natural habitat of the Frog-bit, another water-plant of much interest, is found on the surface of ponds and ditehes; in the autumn its seeds fall, and become buried in the mud at the bottom during the winter; in the spring these plants rise to the surface, prodnce
flowers, and grow througlont the summer: Chara may be found in many places around London, and in the upper reaches of the Thames.

Anacharis alsinastrum.-'This remarkable plant is so unlike any other water-plant that it may be at once recognised by its leaves growing in threes round a slender stom. It is also known as "Wiatcrthyme," from a resemblanec it bears to that plant.

The colour of the plant is deep green ; the leaves are nearly half an inch long; by an eighth wide, eg-shaped at the point, with serrated edges. Its powers of increase are prodigious, as cvery fragment is capable of becoming an independent plant, producing roots and stems, and extending itself indefinitely in every direction. The specific gravity of it is so ucarly that of water, that it is more disposed to sink than float. A small branch of the plant is represented, with a hydra attached to it, in a subsequent chapter.

The special cells in which the circulation is most readily seen are the elongated cclls around the margin of the lcaf and those of the midrib. On examining the leaf with polariscd light, the cells are observed to contain a large proportion of silica, and present a very interesting appearance. A bright band of light encircles the leaf, and traverses its contre. In fact, the leaf is set, as it were, in a framework of silica. By boiling the leaf for a short time in equal parts of nitric acid and water, a portion of the vegetable tissue is destroyed, and the silica rendered more distinct, without changing the form of the leaf.

It is necessary to make a thin section or strip from the leaf of Vallisncria for the purpose of exhibiting the cirenlation in the eclls, as shown in Fig. 290, No. 4. Among the cell granules, a few of a more transparent character than the rest, are seen to liave a nuclcolus within.

The phenomenon of cell cyclosis occurs in other plants beside those growing in water. The leaf of the common plantain or dock, Plantago, furnishes a good example, the movement being seen both in the cells of the plant and lairs of the cuticle torn from the midrib.

Cell-division.-In order to study the process of cell-division the hairs on the stamens of Tradescantia should be taken. Remove one from a bud on a warm day and let a drop of a one per cent. sugar solution fall upon it, and cover it with a thin glass cover. Place it for
a short time in a moist-chumber (Fig. 256), and then examine it with a magnifying power of 500 diameters. The nucleus of the cell will be seen, near its terminal position, to gradually clongate in the direction of the longer axis of the cell and become more granular, while the protoplasm moves towards the extreme end ; the mucleus at the same time will present a striated appearanee, with the fibrilla aranged parallel to the longer axis of the nucleus, and at length approaeh each other at the poles. A nuclear spindle will now be produeed, and the fibres ruptured in the equatorial plane, so that two nuelei will be found in place of the one. The best preparations of nuelei are obtained by making thin longitudinal sections of activelygrowing plants (young rootlets of Pinus, for example), and staining them with hematoxylin in the manner described in a former ehapter.

Desmidiaceæ and Diatomaceæ.

The two groups of Desmidiaceæ and Diatomacee differ so little in their general eharaeters that they may be spoken of as members or representative families of mieroseopic and unicellular algo alike in their remarkable beauty and bilateral symmetry, and of such peeuliar interest as to eall for speeial notiee. Desmids differ from diatoms chiefly in colour; in lacking a non-silicious skeletou, and in their generative process, which for the most part consists in the conjugation of two similar eells. Diatoms, on the other hand, have dense silicious skeletons and a general absence of green eolouring matter. Ralfs, in his systematic monograph, enumerates twenty gencra of desmids. The limiting membrane is alike firm and flexible, since it exhibits some elasticity and resistance to pressure, and is not readily decomposable. Traces of silica are found in only a few of the desmids, while the frustule of the diatom is chiefly composed of this substance; both have an external membranous covering, so transparent and homogeneous in structure as to be in danger of being entirely overlooked, muless some staining material is used, together with a high-power objective possessing eonsiderable penctration. In some species, however, the mueous covering is more elearly defined, as in Staurastrum and Didymoprium Grevelli. Openings occur in the outer membrane of other speeies, as the Closterium.

PL.ITE X.

DESMIDIACWA

Many species of desmids have a power of motion, the cause of which must be due either to cilia or a flagellate organ. This, however, is denied by some observers, who regard their movements as due to an exudation of the mucilaginous contents of the cell, to exosmose, or diffusion, neither of which hypotheses will at all help us to understand the gliding movements of the Oscillarire or the sharp jerky movement of the Schizonema. The movements of desmids are especially exerted when in the aet of dividing, and by sunlight, towards which they are always observed to move. The force with whieh some diatoms move about is very great, and this can only be satisfactorily explained by admitting a specialised organ.

The appearance of the Desmidiacer (Plate X.) is much modified by their eminences, depressions, and processes, as well as that of the surface, the margin of the fronds, and the depth and width of the central constriction. The surfaces may be dotted over irregularly, the dots themselves being elevated or depressed points in their structural character. The margins of some have a dentate appearanee, as in Cosmarium. In the elongated forms, such as Penium, the puncta are disposed in lines parallel to the length. In several these lines are either elevations or furrows, it is not always easy to say which; they are peculiar, however, to the elongated forms of Closterium. When the lines are fine they produce a striation of the surface, but in order to discover this the fronds should be viewed when empty and by a fairly good power. The modifieation of surface in several gencra seems to be due, not to mere simple appendages, but to expansion of the limiting membrance into thickened processes, and which may terminate in spines, as in Xantlidium and Staurastrum (Plate X., Nos. 8-19 and 22). A gencral distribution over the surface is eharaeteristic of the former, bnt in Euastrum the surfaees are very irregular, and therefore described as "swellings or inflations." Micrasterias has its margin decply incised into lobes, which in some have a radiating arrangement; when the lobes on the margin are small they eonstitute crenations or dentations. The fronds of Euastrum binatum are bicrenate on the sides, as are those of Desmidium and Hyalotheea and other species. Another varicty of margin exists, known as undulating or wavy, while the general concavity or convexity of the margins furnish other specific charaeteristics.

Pediustrea (Plate X., Nos. 24-29).-The members of this family formerly included the Micrasterias and Arthrodesmius of Ehrenberg. From their arrangement of cells in determinate numbers and definite forms, it has been thought by some observers that they should be removed from the desmids to a special or sulb-family. The points of difference consist in the firmness of the outer covering, in the frequent interruptions on the margin of the cells, and in the protrusion of "horns," or rather a noteh more or less deep. It is true that the cells are not made up of two symmetrical halves, and that they are in aggregation, which is not (except in the Scenedesmus, a genns that distinetly connects this group with desmids) in linear s ries, but in the form of discoidal fronds. They, however, divide into 8,16 , or 32 gonidia, and these move about for some time before the formation of a new froud. It was Nägeli who first instituted a sub-genus of Pediastrum, under the designation of Anomopedium, the chief characteristic of whieh is the absence of bilobed peripheral eells. In Culastrum the cells are hexangular, the eentral ones very regularly so ; in Sorastrum they are wedge-shaped, or triangular, with rounded-off angles. Viewed laterally the eells appear oblong. The eells of Pediastrum are eonsiderably compressed, so that when aggregated they form a flattened tubular structure; in figure they are polygonal, frequently hexagonal, a shape owing, in all probability, to mutual lateral pressure during growth. There is a pervading uniformity in the contents of the eells oif the different gencra, which eonsist of protoplasmic endochrome. At first the colour is pale green, but it beeomes decper with full maturity, while the decaying eells are scen to clange to a deep reddish-yellow or brown. The protoplasm is also elear and homogencous, but in time granules appear, enlarge, and multiply in number; moreover, each ecll presents a single bright green vesicle, around which are eolleeted elear eireular spaces or globules, recalling those of Closterium, and rarying in number from two to six or more, their position not being regnlated by the partition wall as in Palmellæ, but by the eentre of the entire frond. Oil globules are also contained in the eells; their presenee is indicated by the addition of a drop of tineture of iodine. On one oecasion Naigeli saw in Pecliastrom boryanum the endochrome disposed in a radiating manner; an arrangement which often obtains in algals and in other
vcgetable eells with a eentral nucleus. The cells of]'ediastrex are always united together in compound fronds, as represented in Plate X., Nos. 24 and 29.*

The differenees pointed out in no way eonstitnte a claim to remove Pediastrea from among Desmidiaeex, eertainly not to rank as a distinet species.

Remoduction of Desmidtucece.- A true reproductive aet is presented by the conjugation or coupling of two fronds, and by the resulting developincnt of a sporangiom and subsequent interchange of the eontents of the two cells. At mother time self-division is frequently secn to take place in all respeets as in the eells of other algre. The procecding is varicd in some cssential particulars by the form of the fronds and by other eircumstanecs; as in fission of Euastrum, for instanee (seen in Plate X., Nos. 1, 2, and 12), when the narrow conneeting bands between the two scgments of the fronds are rapidly pushed aside by growth and finally divide. Two modes of conjugation of fronds are represented in Platc X., Nos. 25 and 33, in Closterium and Penium. The act of conjngation admits of variations in charaetcr, as shown in Staurastrum and Mierosterias; the contents of both fronds are discharged into a delicatc intermediate sae ; this gradually thickens and produees spines (Plate X., Nos. 8 and 19). In Didymoprium the scparate joints mite by a narrow proecss pushed out from caeh other, often of considerable length, throngh which the cndochrome of onc cell is transforred to the other, and thus a sporangium is produced within onc of two cells, just is in the conjugatre (No. 5). In Peuium . Jennereri the conjugation takes a varied form ; the fronds do not open and gape at the sutnrc, but couple by small but distinct cylindrieal mbes (No. 27).

Among those chmmerated, the compressed and deeply constrieted cells of Euastrum offcr the more favonrable opportunities for studying the manner of their division ; for although the frond is really a single ecll, in all its stages it appears like two, the segments being always distinet, from the earlicst stage. The scgments, however, are separated by a comecting link, which is subsequently eonverted into two somewhat round hyaline bodics. These bodies gradually increase and aequirc colour, and as they grow the original segments are

[^34]further divided, and at length beeome diseonneeted, each taking a new segment to supply the plaee of that from which it is separated. It is eurious to trace the progressive development of the newer portions, which at first are devoid of all colour; but as they beeome larger a faint green tint is observed, whieh gradually darkens, and then assumes a granular appearance. Soon the new segments attain their normal size, while the covering in some speeies shows the presence of puncta. In Xanthidium, Plate X., Nos. 9, 10, and Staurastrum, Nos. 15-18, the spines and proeesses make their appearance last, beginning as mere tubercles, and then lengthening until they attain their perfect form and size, armed with setre ; but complete separation frequently occurs before growth is fully completed. This singular' proeess is repeated again and again, so that the older segments are mited suceessively, as it were, with many generations. When the cells approaeh maturity, molecular movements may be at times noticed in their contents, precisely similar to what Agardh and others aptly term "swarming." Meyen describes this granular matter as stareh.* Closterium, early in the spring, when freshly seeured and exposed to light, presents a wonderful appearance, these bodies being kept continually in motion at both ends of the frustule by the ciliary action within the eell, and the whole frond is seen brilliantly glittering with active cilia. When a gleam of stronger. light is allowed for a moment to fall on the frond, the rapid undulations of the cilia produce a series of most delieate prismatic Newton's rings. The action and distribution of the eilia, together with the cyelosis of the granular bodies in the frond, are better seen by the aid of Wenham's parabola or a good condenser with a central stop. One of the wide angular objectives shows the eireulation around the marginal portions of the whole frond. The stream is seen to be running up the more external portion, internal to which is another stream following a contrary direetion; this action, eonfined to the space between the mass of endochrome and the outer portion of the cell-wall, is seen to pass above or around the space in whieh cyelosis of the spores is taking place.

[^35]During the stmmer of 1854 , the late Rev. Lord Sidney Ciodolphin Osborne and myself became much interested in the remarkable family of Closteria. Fig. 292 is a lighly magnifiod view of C'losterium lunula which 1 drew by the aid of the camera-lucida at the time. There could be no doubt about the eiliary action within the frond : it was in every way similar to that of the branchiae of the musele, the same wavy motion, which gradually became slower as the death of the desmid drew near. This was brought about carlicr when the cell was not kept supplied with fresh water.

Fig. 292.-Clostorium lunula.
In diagram A, line Z points to a cluster of ovoid bodies; these are seen at intervals throughout the endochrome within the investing membrane. These bodies are attached to the membranc by small pedicles, and are occasionally scen in motion about the spot, from Which they eventually break away, and are carried off, by the circulating fluid, to the chambers at the extremities of the frond ; there they join a crowd of similar bodies, in constant motion within the chambers, when the specimen is quite fresh. That the action of these free granules or spores is "Brownian," as surmised by some writers, is in my opinion entircly fallacions. It is doubtless in a measure due to the current brought about hy the ciliary motion of the more fluid contents of the cell.

The circnlation, when made out over the centre of the frond, for instance at a, is in appearance of a wholly different nature from that secn at the edges. In the latter the matter circulated is that of gramules, passing cach other in distinct lines, but in opposite directions; in the circulation as seen at a, the streans are broad, tortuous, of far greater body, and passing with much less rapidity. To see the ecntre circulation, use a (illett's illuminator and a $\frac{1}{8}$ th or a $\frac{1}{10}$ th immersion ; work the fine adjustment so as to bring the centre of the frond into focus, then almost lose it by raising the objective ; after this, with great care, work the milled head mentil the darker body of the endochrome is elearly brought out.

At B is an enlarged sketch of one extremity of the frond. The arrows within the chamber pointing to b denote the direction of a strong current of fluid, which can be occasionally followed thronghout. It is acted upon by cilia at the edges of the chamber; the greater impetus appearing to come from the contre of the endochrome. The fluid is here acting in positive jets, that is, with an almost arterial action ; and according to the strength with which it is propelled at the time, the loose floating bodies are sent to a greater or less distance from the end of the frustule ; the fluid is thus impelled from a centre, and kept in activity by the lateral cilia, that create a rapid current and give a turning motion to the free bodies. The line - a, in this diagram, denotes the outline of the membrane which encloses the endochrone; on both sides cilia can be seen. The circulation exterior to it passes and repasses in opposite directions, in three or four distinct courses ; these, when they arrive at - c, secm to encomer a stream making its way towards an aperture at the apex of the chamber ; then they appear to be driven back again by a stronger force. Some, howerer; do occasionally enter the chamber, but very rarely will one of the bodies escape into the outer current, and should it do so, is carried about until it becomes adherent to the side wall of the frond.

With regard to the propagation of the C'. lumela, I have never seen anything like conjugation; but 1 have repeatedly seen selfdivision (shown at D $\mathrm{a} a$). This atct is chiefly the work of one half of the fromd. Having watched for some time, one half is seen to remain passive, while the other has a lateral motion from side to side, as if moving on an axis at the point of juncture; the motion increases,
is more active, until at last with a jerk one segment separates itself from the other, as seen at E. It will be notieed that each end of the segment, is perfectly closed before separation finally takes place; there is, however, only one perfect chamber, that belonging to the extremity of the original entire frond. The cireulation contimes for some time previous to and after subdivision, in both fronds, and by almost impereeptible degrees inereases in volume. From the end of the endochrome symptoms of elongation of the frond take place, the semi-lunar form gradually changes, elongates, and is more defined, until it takes the form and outline of the fully-formed frustule at the extremity. The obtuse end -b of the other portion of frond is at the same time clongating and contracting, and in a few homs from the division of the one segment from the other the appearance of each half is that of a nearly perfeet frustule, the chamber at the new end is complete, the globular circulation exterior to it becomes affeeted by the circulation from within the said chamber, and, shortly afterwards, some of the frec bodies desecud, and become exposed to the current already going on in the chamber. E is a diagram of one end of a C. didymotocum, in which the same process was well marked, and completed while it was under observation.

It will appear to most observer's that if the continuation of the widely-spread family of Desmidiaceæ was wholly dependent upon conjugation and subdivision of their frustules, a process requiring several hours for its completion, the whole species must have long: ago disappeared. It may be presumed then that some other mode of reproduction must prevail. In the fresh-water algre the two more general mothods of multiplication are clearly governed by the conditions of the seasons ; the resting-spores sceuring continnity of life during the winter, the swarm-spores spreading the plant profusely during the warmer portion of the ycar, when rapid growth is possible. I therefore regard the actively swarming bodies seen in contimons motion at the two extremo portions of the frustule of Closterium lunula as being either oospores or zoospores, by means of which reproduction takes place.

Diatomaceæ, commonly ealled lwittleworts, llate XI., are chiefly composed of two symmetrical valves, narrow and wand-like, navicular, miniature boat-shaped, hence their name N'avicula (little ship). Hitherto they have excited the decpost interest among microscopists
beeause of their wonderfully minute structure, and the difficulty involved in determining their exaet nature and formation. Each individual diatom has a silicious skeleton, sjoken of as a frustule, frond, or cell, having a rectangular or prismatic form, which mostly obtains in the whole family, the angles of the junction of the two united values being, as a rule, aeute, and enclosing a yellowish-brown endoehrome. Deeply-notelied frustules, like those of the Desmidiaceic, do not occur, and the produetion of spines and tubereles so eommon in that family is rare in the Diatomacex. Great variety of outline prevails, so much so that no rule in this respect can be formulated.

The frustules, however, are usually composed of two equal and similar halves, but exceptions to this are found in the Actinomthese, Coeeoncidx, and one or two other families. The extremities of some speeies, e.g., Nitzshia and Pleurosigma, are extremely elongated, forming long, filiform, tubular processes; in Biddulphia and Rizoselenia, short tubular processes from their margins. Great variety of outline may prevail in a genus, so considerable indeed that no aceurate definition can be given, the characteristics shading off through several species until the similarity to an assumed typieal form is much diminished, which may again be modified by aeeidental cireumstanees that surround the development of the silicious frustule. It must not be forgotten that the figure is greatly modified or entirely ehanged by the position of the valves, whether seen in one position or another, as already explained in connection with "Errors of Interpretation." Again, in the genera Navieula, Pinnularia (Plate II., Nos. 33, 38, and 40), and others, the frustules are in one aspect boat-shaped, but in the other either oblong with truneated ends, or prismatic. In the genus Triecratium (Plate XI., No. 10), the differenee of figure is very remarkable as the front or side view is examined.

The sudden change in appearance presented to the eye as the frustule is seen to roll over is rather peculiar. As a rule, therefore, we must examine all speeimens in every aspeet, to accomplish which very shallow cells should be seleeted, sily of $\frac{1}{100}$ th of an ineh deep, and covered with glass $\frac{1}{2} \frac{1}{50}$ th of an inch thick. A good penetrating objective should be used, and eareful illumination obtained. The Diatomaceæ are perhaps more widely distributed than any other elass of infusorial life; they are found in fresh, salt, and brackish

DIATOMACEE, RECENT AND FOSSIL.
water; many grow attached to other bodies by a stalk (Plate II., No. 33, Liemophoria and Aehanthidium) ; while others, as Pleurosigma, No. 40, swim about freely.

There are a considerable number of Diatomaceæ whieh, when in the young state, are enclosed in a mueo-gelatinous sheath; while others are attached by stipes or stalk to algae. It would be vain, in a limited space, to attempt a description of this numerous and extensive family. Naigeli and other observers deseribe a "mueilaginous pelliele on the imner layer of the valves," while, as Menghine observes, "an organie membrane ought to exist both inside and outside, for the siliea could not become solid exeept by erystallizing or depositing

Fig. 293.

1. Pleurosigma attenuatum; 2. Plcurosigma angrulatum; 3. Plcurosigma Spencerii. Magnified 450 diameters.
itself on some pre-existing substance." The surface of the frustules is generally very beautifully seulptured, and the markings assume the appearance of dots (puneta), stripes (striæ), ribs (eostæ), pinnules (pimne), of furrows and fine lines; longitudinal, transverse, and radiating bands ; eanals or canaliculi ; and of eells or areolx ; whilst all present striking varieties and modifieations in their form, eharacter, and degree of development. Again, the fine lines or striee of many frustules are resolvable into rows of mimnte dots or perforations, as occur in Pleurosigma angulatum, delineated in the aecompanying microphotograph (Fig. 294), taken for the anthor purposely to show the markings on this espeeially selected test diatom.

The nature of the markings on the diatom valves is "one of
considerable interest, and attempts have been made to produce them artificially, but without snecess.

Professor Max Schultze devoted a great amount of time to the

Fig. 294.-Plourosigma angulatum, magnified 4500 diameters.
(From a mierophotograph taken by Zeiss with the 2 mm, aprochromatic objective, 1.30 numerical aperture, and projection eje-piece, No. 4.)
investigation of the subject, and has recorded in a voluminous paper** the resnlts of his observations. He says, "Most of the species of the Diatomacere are characterised hy the presence on their outcr surface of certain differences of relief, referable either to elevations or to depressions disposed in rows. The opinions of microseopists with respect to the nature of these markings are still somewhat divided. Whilst in the larger forms, and those distinguished by their coarser dots, the appearance is manifestly due to the existenee of thinner spots in the valve, we cannot so easily explain the eanse of the striation or punctation in Pleurosigma angulatum and similar finely-marked forms."

Dr. R. Zeiss some time ago furnished me with a microphotograph of a frustule magnified 4500 diameters that seemed to confirm Mr. T. F. Smith's view of the strueture of these valves. Dr. Van Heurek has also made a study of this diatom, and eoncludes that the valves consist of two membranes of thin films, and of an intermediate layer, the outer being piereed with openings. The outer mombrane is, he believes, "so delicate that it is easily destroyed by acid or by frietion, and the sevcral processes employed in cleaning and preparing it for microscopical examination. When the openings or apertures of the internal portion are arranged in altemate rows they assume the hexagonal form ; when in straight rows, the openings are seen to be squarc or oblong." A deseription hardly in aecord with Fig. 294.

Movements of Diatoms.

The late Professor. Smith, in his "Synopsis of Diatoms," refers to their movements in the following terms: "I am constrained to bolieve that the movements observed in the Diatomacce are due to forces operating within the frustule, and are probably eonneeted with the endosmotic and exosmotic action of the cells. The fluids which are concerned in these actions must enter, and be emitted through the minute foramina at the extremities of the silicious valves." Schultze's researches, which were made at a later date, carried this debatable question somewhat further. He is of opinion "that a sarcode (protoplasmic) substance envelops the external surface of the diatoms, and its movements are due to this agent exclusively."

* Verhandl. I. Natur. Hist. Jahr. xx. [. 1. "Níierns. Jourr. Science," vol. iii., 1. 120 .

His investigations were mainly eonfined to P. angulatum, and to the larger P. attenuutum (Fig. 293, 1 and 2), as the transverse markings on the frustule do not impede to so great an extent the observation of what is going on within. The living specimen of P angulutum under the microseope usnally has its broad side turned to view, with one long curved "raphe" uppermost, and the other in eontret with the glass eover (Fig. 293). Within the frustule the yellow eolouring matter, "endochrome," fills the eavity more or less eompletely. In the broader part of the frustule these bands of endochrome deseribe one or two eomplicated windings. It is only possible in those speeimens in which the bands are narrow to properly traee their foldings, and determine their number. The next objeets whieh strike the eye on examining a freshly-gathered Pleurosigma are numerous highly refraetive oil-globules. These are not, however, all in the same plaee, and one globule appears nearer the observer than the other ; their relative position is best seen when a view of the narrow side of the frustule ean be obtained, so that one raphe is to the left and the other to the right. The blue-blaek eolour whieh is assumed by these globules after treating with aeid demonstrates their oleaginous nature. The middle of the eavity of the frustule is oeeupied, in the larger navieula, by two large oil-globules (seen in the diagrammatie Fig. 295), and by a eolourless finely granular mass, whose position in the body is not so elearly seen in the flat view as in the side view. Besides the eentral mass, the eonieal eavities at either end of the frustnle are seen to enelose granular substanee, and two linear extensions from eaeh of three masses are developed, elosely underlying the raphr. In the side view, therefore, they appear attaehed to the right and left edges of the interior of the frustule. This eolourless granular substanee earries in its eentre, near the middle part of the diatom, an imperfeetly developed nueleus whieh is not very easy to see, but may be demonstrated by the applieation of an aeid. The eolourless substance is protoplasm, and eneloses numerous small refraetive partieles ; this, on adding a drop of a one per eent. solntion of osmie aeid, is eoloured blue-black, and proves to be fat. It is, however, exceedingly diffieult to determine the exaet limitations of the protoplasm, on aeeount of the highly refraetive eharaeter of the silieious skeleton, and the obstruction to the light presented by the endochrome.

At a short distance the protoplasm reappears, contracted into a considerable mass, within the terminal ends of the frustule. Schultze obscrved in this part of the protoplasm a rapid molecular: movement, "cyclosis," such as oceurs in Closterium, and also a current of the granules of the protoplasm along the raphe. "Pleurosigmu angulatum 'cravels,' as do all diatoms possessing' a raphe, along this line of suture. To crawl along, it must have a fixed support." "There is obviously," adds Schultze, "but one explanation; it is clear that there must be a band of protoplasm lying along the raphe, which causes the particles of colouring matter to adhere, and gives rise to a gliding movement. For there is but one phenomenon which can be compared with the gliding motion of forcign bodies on the Diatomaceæ, and that is, the elinging to and easting off of particles by the pseudopodia of the rhizopod, as observed, for instance, on placing a living Gromia or Miliolina in still water with fincly-powdered carmine. The nature of the adhesion and of the motion is in both eases the same. And since, with diatoms as unicellular organisms, protoplasm forms a large part of the cell (in many eases two distinctly moving protoplasms), this implies that the external movements are referable to the movements of the protoplasm." It is quite evident to those who have studied the movements of diatoms that they are surrounded by a sarcode structure of a more pellucid character than that of Amoba. Six years before Schultze's obscrvations were published, I wrote in a third edition of my book, page 307, "The act of progression favours the notion of contractile tentacular filaments-pseudopodia-as the organs of locomotion and prchension."

Since my former observations on the movements of diatoms, I have given much attention to two forms, P. angulatum and Pinmularia. The powers used werc Hartnack's No. 8, and Gunlack's $\frac{1}{16}$ inch immersion ; Gillett's condenser illumination, with lamp flame edge turned to mirror and bull's-cyc lens; a perforated slide with a square of thin glass 006 cemented to it, and a eover-glass of -005. So far as I could satisfy myself, no terminal space, as in the Closteria, could be seen, otherwise the course of the genmules is as freely traced as in that form. They are more minute than the C'losterium lunula gramules, more steadily or slowly secn to pass up and down one half the frustule towards the extromity,
one half of the current seeming to turn round upon its axis and descending towards the other: The granules were thickly scattered at the apex, but gradually became fewer, and the aseending and descending current tapered away towards the central nodule, which becanc more filled up or closed in.

This beautiful sight was not confined to one frustule, but was exhibited in all that were in a healthy condition. I examined several, and watehed them for a long time. The phenomenon deseribed depends much upon the healthy condition of the frustule at the time; as the movements of the diatoms became sluggish, the circulation gradually slackens and then ceases altogether. I also saw a somewhat similar action in the more active specimens of P. hippocampus and Navicula

Fig. 295.-Ontline sketches of Pimnularix, showing vesicles.
cuspidate, but the coarser markings and thickness of the wall of these diatoms seomed to place greater difficulties in the way of observation than the finer valves of the P. angulatum. One thing I believe is certain, that the circulation described is precisely similar to that scen in the Clostcria, or, on a much larger scale, in Chara and the leaf of the Anacharis, bearing in mind also that in the Clostcrium the cell is divided by a transverse suture, and in P. angulatum by a longitudinal one (Plate II., Nos. 38-40). About the same time some very lively specimens of the Pinnularia were sent to me, and the movements of these frustules were more closely observed. One or two of the more active would attack a bodyrelatively larger than itself, it wonld also foree its way into a mass of gramular matter, and then recede from it with a jerky motion. In more than one instance a cell of Palmoglea was seized and carried away by the Pinnularia, the former at the time being
actively engeged in the process of cell division. Other diatoms present among my specimens were also in an aetive eondition, and the circulation of gramular matter in all was distinctly visible. In the Pimmlarice two large colomless vesieles were seen on either side of the median nodule, eaeh having a central nueleus, as represented in the accompanying sketch, made while under observation in two positions. The eentral portion of cach frustule was closely paeked with a rieh yellowish-brown coloured endochrome, interspersed with

Fig. 296. - Gomphoncma constrichem. (From a microphotograph.)
a few fat globules. The phenomenon of cyclosis was not seen in any of these diatoms, but I have satisfied myself, by staining, of the presence of a delicately fine external protoplasmic eovering in many diatoms. That their movements resemble the gliding movements exhibited by the Anceba can searcely be doubted. Numerous forms of Diatomacese are follud growing on or attached to water-plants or pieces of detached stalks, which, although generally simple, are sometimes compound, dividing and subdividing in a beantiful ramous mamer. Pimularie, Nitzschiat, de., are seen adherent by one extromity, about which they turn or bend thenselves as on a hinge. By the process of eell-division, groups
of Synedre become attached by a point, in a fan-like form. The fan-like colleetion of frustules is said to be flabcllate, or radiate. In Liemophora, Achnanthes and other spccics (Plate 11., Nos. 29-33) the donble condition of union of frustules and of attachment by a pediele are illustrated. When a stipe branches it does so normally in a dichotomous manncr, each new individual being produced by a sceondary pediclc. This regular dichotomy is seen in several genera: Coceonema and Gomphoncma, the latter more perfcetly in Fig. 296, from a microphotograph, in which a branehing, or rather longitudinal,

Fig. 297.-Isthmic enervis. Microphotograph. rupture of the podicle takcs place at intervals, and the entire organism presents a morc or less complete flabella, or fanlike cluster, on the summit of the branches, and impcrfect or single frustules irregularly scattered throughout the whole length of the podicle.

Isthmia enervis (Fig. 297). - The unicellular frustule of this species is extremely difficult to define, owing to the large areolations of the ralves; it has a remarkable internal strueture. The olive-brown eell contents arc fonnd eollceted, for the most part, into a central mass, from whieh radiating, branched, granular threads extend to and unite with the periphery. When viewed by a magnifying power of 600 or 700 diameters, these prolongations are scen to be eomposed of aggregations of ovate or spindle-shaped corpuseles, held together by protoplasmic matter. Thesc bodics are sometimes quicscent, but more often travel slowly to and fro from the ecntral mass. The general aspect under these conditions so ncarly corresponds to the eharaeteristic circulation in the frustules of mieellular plants and of certain rhizopoda, that it is diffieult to realise that the object when under cxamination is an elcgant marine diatom.

There is a large seetion of diatoms in which the frustules are diffused throughout a muco-gelatinous envelope in a definite manner. Histologically this is homologous with the pedicles and connecting nodules thrown out during the act of self-division, and in some species (Cocconeis, Fragillania, de.) it often persists after that act is complete.

Diatomacer, Recent and Fossil.

Fig. 298.-Fossil Diatoms from Spriugfield (Barbadoes).
1, Achnanthidium ; 2, Diatoma vilyare, side view and front view; 3, Biddulphia; 4, 5, 6, 7, Amphitotias antcdiluviuna, front view, with globular and oval forms ; Gomphonema clongatum and copritatum.

Fossilised Diatomacea.--Dr. Gregory was of opinion that a large number of diatoms separated into species are only transition forms, and more extended observations have proved that form and outline are not always to be trusted in this matter. Species-making is a modern invention, and ean hardly apply to the indestructible fossilised forms of the frustules of Diatomaeer, with their beautiful seulpturings and geometrical constructions, which have not been materially changed sinee they were first deposited. Startling and almost ineredible as the assertion may appear to some, it is none the less a fact established beyond all question, that some of the most gigantic mountain-ranges, as the mighty Andes, towering into space 25,250 feet above the level of the set, their base occupying vast
areas of land ; as also massive limestone rocks ; the sand that eovers boundless deserts ; and the soil of many wide-extended plains, are each and all principally composed of Diatomacer. And, as Dr. Buckland once observed: "The remains of sueh minute animals have added much more to the mass of materials which compose the exterior crust of the globe than the bones of elephants, hippopotami, and whales."

In 1841 the late Mr. Sollitt, of Hull, diseovered the beautiful longitudinal and transverse strice (markings) on the Pleurosigma hippocampus. A curved graeeful line rums down the shell, in the centre of which is an expauded oval opening. Near to the central opening the dots elongate erossways, presenting the appearance of small short bands.

In the vicinity of this town many interesting varieties of Diatomacer have been found, the beauty of the varied forms of which are constantly under investigation; at the same time some of them are highly useful, as forming that elass of test oljects which are better calculated than many others for determining the excellence and powers of certain objectives. Mr. Sollitt carefully measured the markings on some of the frustules and found they ranged between the $\frac{1}{300} \overline{00}^{\text {th }} \frac{1}{130000}$ th of an inch ; the Pleurosigma strigilis having the strongest markings, and the Pleurosigna acus the finest.

Mr. J. D. Sollitt not only first proposed their use, but he also furnished the measurements of the lines of the several members of this family, as follows :-

Amphipleura pellucida, or Acus, 130,000 in the inch, cross lines.
,\quad sigmoidea, 70,000 in the inch.
Navicula rhomboides, 111,000 in the inch, cross lines.
Plcurosigma fasciola, fine shell, 86,000 in the inch, cross lines.
strong shell, 64,000 in the inch. cross lines.
", strong shell, 64,000 in the meh. cros
". strigosum, 72,000 in the inch, diagonal lines.
," angulatum, 51,000 in the inch, diagonal lines.
" quadratum, 50,000 in the inch, diagonal lines.
"S Spencerii, 50,000 in the inch, eross lines.
", attcnuatum, 42,000 in the inch, cross lines.
", Balticum, 40,000 in the inch, eross lines.
") formosum, 32,000 in the inch, liagonal lines.
", strigilis, 30,000 in the inch, cross lines.

MLATE XII.

MICRO-IHOLOGLALH OF 'IES'L' DIATOMS.

Lichenaceæ.

The lichens are a family of autonomous plants, an intermediary group of algals or eellular cryptogams, drawing their nourishment from the air through their whole surface medium, and propagating by spores usually onclosed in asci, and always having green gonidia in their thallus. Their gonidia, bright coloured globular cells, formı layers under the cortical eovering of the thallus, and generally develop in the form of incrustations, which cover stones, wood, and the bark of trees, or penetrate into the lamellæ of the epidermis of woody plants. The gonidia of lichens partake of both the charaeter of vegetative and reproduetive cells.

The thallus in the frueticose group attaches itself by a narrow base, growing in the form of a miniature shrub. Another group is met with in a slimy eondition-the gelatinous lichens. These species, for the most part, furmished dyes before the diseovery of the coal-tar dyes. In many of the Palmella cruenta, commonly found growing on the walls and roofs of houses, a eolourless acid liquid is found, whieh, on being treated with alkali, produces a briglit yellow colour; and another, Avernia vulpina, furnishes a brown dye; the Rocella fuciformis and R. tinctoria yield the purple dye substance known as orchil, or arehil, from whieh the useful blue paper of the chemist for testing aeidity is manufactured. Usnic acid, eombined with green and yellow resins, seems to be more or less a eonstituent of many lichens.

A vertieal seetion of Palmella stellata is given in Plate I., No. 26, in which the emission of the ripe spores of the lichens is seen to be not unlike that whieh takes place in some of the fungi, Pezizæ, Spherix, \&c. If a portion of the thallus be moistened and placed in a common phial, with the apotheca turned toward one side, in a few hours the opposite surface of the glass will be found covered with patehes of spores, easily perceptible by their eolour ; or if placel on a moistened surfaee, and one of the usual glass slips laid over it, the latter will be eovered in a short time. As to the powers of dissomination of these lowly organiscd plants, an observation led to the conclusion that the gonidia of lichens lave greater powers in this direetion than was formerly supposed. It is fomed that by placing a cloan sheet of glass in the open
air during a fall of snow, and receiving the melting water in a tube or bottle, quantities of what has been looked upon as a "unieellular plant" cau be taken, the eells of which may be kept in a dormant condition for a long time during cold weather, but upon the return of spring warmth and moisture they begin to. inerease, by a proeess of subdivision, into two, four or cight portions ; these soon assume a rounded form, and burst the parent cell-wall open; these seeondary cells then begin to divide and subdivide again, and the proeess may go on withont much variation for a long time. The phenomena described may be watched by taking a portion of the bark of a tree on which Chlorococeus has been deposited, and placing it under a glass to keep it in a moderately moist atmosphere; the only difference being a change in colour, eaused by the growth of the fibres, as may be seen on mieroseopieal examination. "And this," says Dr. Hieks, who first observed this phenomenon in plant life, "is an instruetive point, because it will be found that the eolour varies notably according to the lichen prevalent in its neighbourhood." * He believes there ean be no doubt that what has been ealled Chlorococcus is nothing more than the gonidia of a lichen; and that under suitable conditions, eliefly drought and warmth, the gonidium often throws out from its external elrelope a small fibre, which, adhering and braneling, forms a "soridium." "The soridia remain dormant for a very long time, and do not develop into thalli unless in a farourable situation, in some eases it may be for years. It will be pereeived that the soridium eontains all the elements of a thallus in miniature; in faet, a thallus does frequently arise from one alone, and the fibres of neighbouring soridia interlaee ; thus a thallus is matured very rapidly. This is one of the eanses of the variation of appearanee so eommon in many species of liehens, more readily seen towards the centre of the parent thallus. When the gonidia remain attached to the parent thallus, the eireumstanees are, of eourse, more favourable, and they develop into sceondary thalli, attaehed more or less to the older one, which, in many instanees, deeays beneath them. This

[^36]process being continned year after year gives an apparent thickness and spongy appearance to the lichen, and is the principal cause of the varions modifications in the external aspect of the lichens which cansed them formerly to be misunderstood and wrongly classified." **

The erratic lichens are found among the genus Palmella, some of which grow among boulders of the primary and metamorphic formations, curled up into a ball, and only fixed to their matrix by a sleuder thrad. The globular Lecanora esculenta will at times suddenly cover large tracts of comntry in Persia and Tartary, where it is caten by the cattle. During a scarcity of food a shower of these lichens, Mr. Berkeley tchs us, fell at Erzcroum, and saved the cattle from starvation. \dagger

Another group of the l'almella, or Peltigeri, so named from the target-like discs on their surface, spread their foliaceous fronds over the ground, and as the fruit is marginal, it gives the thallus a digitate appearance. These are often spotted over by a little red fungus. The Lecidinei contains numerous species of the most varicd habits, and always crustaceous, and so closely adhereut to the hard rocks and stoncs on which they grow, that at length they disintegrate them. From this low species a higher form arises, with erect branching stems, and clothed with foliaceous, brightly-coloured scales.

The Coccocarpei is mainly distinguished by haviug orbicular dises cutirely deprived of the cortical envelope called an excipulum. The dises spring at once from the medullary stratum, and contain asci and sporidia similar to those of the minute fungi Sphrerix. Some of the lichens are themselves parasitic, and begin existence under the thick skin of the leaves of tropical plants, and spread encrusting thallus over their surfuce, the excipulum and perithecia being black; but in most cases these are beautifully sculptured, and are interesting objects for the miscroscopc. Indeed, the sphere-bearing lichens, with upright stems bearing globular fruit at the extremity of their branches, are at first indicated by a swelling, but in time the outer layer bursts and exposes sporidia,

[^37]which are beautiful objects under the microscope on account of their spherical form and more or less dcep bluc tint. Humble and lowly as lichens may appear to be, they liave been divided into fifty-cight or more gencra and 2,500 species. The brothers Tulasnc, De Bary, the Rev. Mr. Berkeley, and others, devoted great attention to the peculiarities of their structure and natural history.

Hepatice.-An intermediary group of much intcrest to the microscopist are the Hepaticæ (liverworts). These are found growing on damp rocks in the ncighbourhood of springs and dripping banks. The scalc-moss, the Marchantice polymorphia (Fig. 299), may be taken as typical of this little group, with its gemmiparons conceptacles and lobed receptacles, bearing archegones on transparent glass-like fruit stalks, carrying on their summits either round shield-like discs or radiating bodics

Fig. 299.-Marchantia polymorphia. with a striking resemblance to a wheel without its tyre.

The liverworts are closely allied to the mosses, and as much difficulty was expcrienced in dividing the two, Hooker placed the whole under one genus, the Jungermannia. More recently, however, they have been divided into those with a stem and leaves confluent in a frond, Marchantia; those with stem and leaves distinct, Jungermannia; and those with a solitary capsule, filiform, bivalved, stalked, with a free central placentation, Anthocotacer. Some botanists have further divided them, but they are all extensively propagated by gemmæ.

The fronds carry the male organs, or antherids, and the dise, in the first instance, bears the female organs, or archegones, and after a time gives place to the sporanges, or spore cases. It is thesc bodies which are of so much intercst to microscopists; if the plant is brought into a warm room, they suddenly burst open with some violence the moment a drop of water is applied to them, and the sporanges are dispersed in a small cloud of brownish dust. If this dust is examined under a medium power, it is seen to consist of a number of chain-like bodics, somewhat like the spring of a small watch ; and if the process of bursting be closely watched, these minute springs will be found twisting and curling about in
every direction. The strueture of the frond itself will be seen to be interesting when eut in the vertieal direction and placed muder the mieroseope.

The gemmic of Marchantia polymorphia are produeed in elogant membranous eups, with a toothed margin growing on the upper surfuee of the frond, espeeially in very damp eourtyards between the stones, or near rumning water, where its lobed fronds are found covering extensive trats of moist soil. At the period of fructification the fronds send up stalks, whieh earry at their summit round shield-like radiating dises, which bear upon their surfaee a number of little open basket-shaped "coneeptacles." These again expand into singularly graceful eups (as in Fig. 300), and are found in all stages of development. When mature, the basket contains a number of little green round or oblong discs, each composed of two or more layers of cells; the wall itself being surmounted by a glistening fringe of teeth, whose edges are themselves regularly fringed with minute outgrowths. The cup seems to be

Fig. 300.-Gemmiparous conceptacle of Marchantia polymorphia, expanding and rising from the surface of a frond. In the interior are seen gopidial gemmæ already detached by the splitting of the epiderm. formed by a development of the superior epidermis, which is raised up, and finally bursts and spreads out, laying bare the seeds.

The arehegones of Marehantia are very emrious bodies, while the elater and spores are even still more so. These are elongated eells, each eontaining a double spiral fibre coiled up in the interior. It is the clasticity of this whiel tears apart the cell-membrane, and sends forth the spores with a jerk, and thus assists in their dispersion. Marchantia is the type of the malloid Hepatiex.

Musci, Bryophyta.

Mosses are a beantiful class of non-vascutar cryptogams. Limmens called them servi, servants or worknen, as they seem to labour to produce vegetation in plaees where soil is not already formed.

The Bryophyta fom three natural divisions: the Bryinæ, or true mosses ; the Sphagnaecr, or peat-mosses ; and the Hepatiere, or liverworts. The two first are commonly united. In these the sexual organs consist of antheridia and arehegonia, but they are of simpler structure than will be

Fig. 301.-Screw-moss. found in ferns; and the first generation from the spore is asexual.

The eommon or wall serew-moss (Fig. 301) grows almost everywhere, and if examined elosely, is seen to have springing from its base numerous very slender stems, eaeh terminating in a dark brown ease, whieh eneloses antheroids. If a pateh of the moss is gathered when in this state, and the green part of the base is put into water, the threads of the fringe will uncoil and disentangle themseres in a most eurious and beantiful manner ; from this eireum-

Fig. 302.-Section of leaf of Sphagnum moss, showing large cells of spiral fibres and connecting apertures. stance the plant takes its popular name of serewmoss. The leaf usually eonsists of either a single or a double layer of eells, having flattened sides, by which they adhere one to another. The leafcells (Fig. 302) of the Sphagnum or bog-moss exhibit a eurious departure from the ordinary type; they are large, polygonal, and elongated, and eontain spiral fibres loosely eoiled in their interior. The young leaf does not differ from the older ; both are evolved by a gradinal proeess of differentiation.

Mosses, like liverworts, possess both antheridia and pistillida, whiel are engaged in the process of fructifieation. The fertilized eell becomes gradually developed into a eonical body elevated upon a footstalk, the walls of the flaskshaped body earrying the higher part upwards as a calyptra or hood upon its summit, while the lower part remains to form a kind of collar round the base. These spore-ealpsules are elosed on their summit hy opercula or lids, and their mouths when laid open are
surrounded by a beantiful toothed fringe, termed the peristome. This fringe is shown in Fig. 303, in the centre of a capsule of Funaria, with its peristome in situ. The fringes of teeth are variously constructed, and are of great service in discriminating the genera. In Neckera antimyretica the peristome is donble, the imner being composed of tecth united by cross bars, forming a very pretty trellis. The seed spores are contaned in the upper part of the capsule, where they arc clustered round the central pillar, termed the columella ; and at the time of maturity, the interior of the capsule is ahmost entircly occupied by spores.

Fig. 303.-Mouth of Capsule of Funaria, showing Peristome.

Fig. 304. -Hair-moss in Fruit.

The undulating hair-moss, Polytrichum mudulatum (Fig. 304), is found on moist, shady banks of pools and rivulets. The seed-vessel has a curious shaggy eap; but in its construetion it is very similar to that of the screw-moss, execpt that the fringe around its opening is not twisted. The reproductive organs of mosses are of two kinds ; the capsule containing minute spores, archegonia, and the antheridia, or male effloresecnec. The capsule, theca, or sporangimm, is lateral or terminal, sessile, or on a fruit stalk (seta) of varions shapes, indehiseent, or bursting by four valves at the sides, or more commonly by a deciduous cup, operculum. When this falls the mouth of the eapsule becomes exposed. The rim is erowned with tooth-like or
eilia-like appendages in sets of four or multiples of that numberperistome. These are often brightly coloured and hydroscopic. By simply breathing upon them they suddenly fly open, and are endowed with motion, that is, if they contain spores. The spores on germination produce a green confervoid-like mass of threads, from which the young plant arises.

The Sphagnaece, or "bog mosses," have been separated from true mosses from the marked differences they present. The stem is more widely differentiated, and throughout its structure a rapid passage of fluid takes place. It has the power of absorbing moisture from the atmosphere, so that if a plant be placed dry in a glass of water with its rosette of leaves hanging over the edge, it acts like a syphon, and the water will drop from it until the glass is emptied. As may be supposed, the leaf is composed of large open eells, and it absorbs more water than the root. The antherids or male organs of Sphagnacere resemble those of liverworts, rather than those of mosses, both in form and arrangement: they are grouped in "catkins" at the tips of the lateral branches, each of the imbricated perigonal leaves enclosing a single globose antherid on a slender foot-stalk, and surrounded by long branehed paraphyses of cobweb-like tenuity. The female organs, or arehegones, do not differ materially in structure from those of mosses ; they are grouped together in a sheath of deep green leaves at the end of the shorter lateral branchlets at the side of the rosette or terminal erown of leaves. The sporange is rery uniform in all the speeies, and the spores are in groups of fours, as in mosses, around a hemispherieal eolumella. These plants grow so rapidly that they soon cover a pool with thin matted bundles of branches, and as they deeay they fall to the bottom, and become the foundation of the future bog or peat moss.

Felices.-Of all the spore-bearing families the ferns are the more miversally known. They eonstitute an execedingly numerons genera and species, and vary from low herbaeeous plants of an inch in height to that of tree ferns, which attain a height of fifty or more feet, terminating in a graeeful eoronet of fronds or leaves. Of whatever size a fern may be, its spores are, for the most part, microscopie, produced within the sporangium by coll division, and are therefore free and variously shaped.

The true mode of development of ferms from their spores was
that furnished by Naigeli, who annomeed the existence of antheridia. On the spore starting into life it sends out from the eell-wall of its outer coat a white tubular projeetion, or root fibre (Fig. 305, $1, \mathrm{~B}$, and c), whieh passes throngh the eell-wall of its outer eoat. This attracts sufficient moisture to burst open the outer, and then it begins to inerease by the smbdivision of its eclls, until the primary green prothallus D is formed. This falls to the ground, and, being furnished on its under side with thread-like fibres, fixes itself to the earth, and thus is developed the rhizome, or root of the future plant.

Fig. 305.-Development of the Globular Autheridium and Spermatoids of Pteris servelata.
A. Spores ; B, C. Early stages of development; D. Prothallus with radial fibres; a, a and a, b are sternatoids; and h, h. Enelosed antheridia.

In each of the antheridia, whieh are numerous, a cell is formed, chiefly filled with albuminous matter and free spores, each having attached a flat ribbon-like filament, or stermatoid, eurled in a spiral manner. These are ultimately set free by the rupture of the eellwall, and commence revolving rapidly by the agency of the whip-like appendage at the larger end.

The sporangia, or spore-eases, are, for the most part, globular in form, and are nearly or quite surrounded by a strong clastic ring, which in some cases is continued to form a stalk. When the spores are ripe, this ring, by its elastie force, tears open the sporangia and gives exit to a quantity of microseopic filaments, curled in corkserew-
like fashion (ligs. 305 and 307). The ring assumes various forms ; in one group it passes rertieally up the back of the sporangium, and is eontimed to a point termed the stomata, where the horizontal

Fig. 306. - Sporangia of Polypodiaceous Ferns.
a, b. Polypodiaceæ ; e. Cyantheineæ ; d. Gleicheninere ; c. Schizeiner ; f. Osmundinere. bursting takes plaec. This form is seen in Fig. 306, a, b. In other groups it is vertical, as in c, c; in others transverse, as in d; or apical, as at e; and in a fow instances it is obsolete, as in f. These are the true ferms, and their systematic arrangement is chiefly founded on the peeuliarity of the sori and sporangia, eliaracters which bccome quite intelligible by the aid of the microscope.

The beautiful ringed sporangium of the forn (Fig. 307) when ruptured gives exit to the dust-like spores; these, examined under a moderate power, are seen to be sub-globose and pyramidal, the outer eoat or exospore being a eoloured hyaline eell with nuclei similar to the spores of mosses, but in which

Fig. 307. -Spores of Depuria prolifcia. ehlorophyll soon begins to form, and from this little green embryonic growth the organs of reproduction are formed.

In all ferms the pistillidia or arehcgonia are analogous to the ovules or naseent seeds of flowering plants, and contain, like them, a germinal vesicle, which becomes fertilized through the ageney of the spiral filaments, and then gradually develops into an embryo plant possessing a terminal bud. This bud begins at onee to unfold and push out leares with a circinate vernation, of a very simple form at first, and growing up beneath the prothallium, coming out at the notch; single fibrous roots are at the same time sent down into the earth, the deliente expanded prothallium withers away, and the foundation of the perfeet fern
plant is haid. When a fern acquires a considerable stem, as in a tree fern, it consists of cellular tissine and an external cortical portion forming fibro-vascular bundles, sealariform dnets, and woody fibte. lig. 308,1 , shows an oblique section of the footstatk of a fern leaf with its bundle of scalaviform ducts.
'Ihese observations on ferms have acquired increased interest from subsequent investigations made on the allied Cryptogams, and on the processes oceuring in the impregnation of the Conifers. Not only have later researches furnished a satisfactory interpretation of the archegonia and antheridia of the mosses and liverworts, but they have made known and co-ordinated the existenee of amalogons

a.

1.

Fig. 308.-a. Vertical section of Fern-root, showing spiral tissue and cells filled with granular bolies; b. Section of Footstalk.
phenomena in the Equisetacer, Lycopodiacex, and Rhizocarper, and prove, moreover, that the bodies deseribed by Dr. Brown in the Conifers under the name of "eorpuscles" are analogous to the rechegoniue of the Cryptogams; so that a link is hereby formed between these groups and the higher flowering plants.

Equisetucerp.-The development of Horse-tails (Fig. 309), the name by which they are commonly known, corresponds in some respeets with that of ferns. They comprise a little group, and the whole of their strueture is composed in an extraordinary degree by silex, so that even when the organic portion has been destroyed by prolonged maceration in strong acid, a consistent skeleton still remains. It is this flinty material that eonstitutes their chief interest for microscopists, A portion of their silicious particles is
distributed in two lines, arranged parallel to the axis of the plant, others are grouped into oval forms, and commeted by a chain as in a necklace. The form and arrangenent of the crystals are better seen under polarised light. Plate V1II., No. 170, a portion of the epidcrmis, forms an extremely beantiful cloject. Sir David Brewstcr pointed ont that cach silicious particle has a regular axis of double refraction. What is usually said to be the fructification of the Equisctacere forms a cone or spike-like extremity to the top of the stem (Fig. 309), the whole resembling in series of spike-like branches

Fig. 309.-Equisetum giyanticum.
a. Fragment of stem showing mode of branching out; b. Cone or spike of fructification; c. Scale detached from conc; d. Spore with elastic filaments; c. Vertical section of stem; f. Transverse section showing hexagonal eclls.
(the real stem being a horizontal rlizome), and a cluster of shield-like discs, each of which carries a circle of sporanges that open by longitudinal slits to set free the spores which arc attached to it in two pairs of elastic filaments (shown in Fig. 291, F, G), elaters; these arc at first coiled up around the spore in the manner represcnted at G , but on their liberation they cxtend themselves as shown at F . The slightest moisture will close them up again, and their purpose having been served in the distribution of the spores, they are no longer required. If a number of spores be spread out on a glassslip under the microscope and, while watching, a bystander breathes upon them, they inmediately respond, are set in motion, presenting a curious appearance, but as soon as the hydroscopic efficet has passed off they return to their previous condition. These spores
can be momited in a eell with a movable eover, and made to oxhibit the same effect over and over agrain.

The rascular tissuc of the Equisetacere (Fig. 309, e,f) shows them to be of il higher grade than the ferns. More recently discovered Horse-tails, of Brazil, grow to a gigantic size, but even these are comparatively small when compared with the Calamites, and other fossil Equisetacer of the coal measures and new red sandstone. They all require a calcareous flinty soil for growth. A spring watercourse making its way to the sea, as in the Chines of the Isle of Wight, is very favourable, the author having gathered them more than onee in Bramble Chine.

Nearly allied to ferns is a little group of small aquatic plants, the Rhizoearpeæ (pepperworts), which cither float on the water or creep along shallow bottoms. These are chiefly eurious from having two kinds of spores produced from separate sporanges ; smaller and larger " mierospores" undergoing progressive sub-division without the formation of a distinet prothallium; eaeh eell giving origin to an antherozoid, a generative process said to belong exelusively to flowering: plants, eorresponding indeed to the pollen grains of higher plants.

Structure of Phanerogamiæ or Flowering Plants.

The two great divisions of the vegetable kingdom are known as Cryptogamia and Phanerogamia. It does not follow, however, that there is any abrupt break between the two, as will appear from the eontext. Although it is customary to speak of the flowering plants as a higher grade of life, yet there is an intermediary class of Phanerogamix in which the conspieuous parts of the generative system partake of a condition elosely resembling those of the higher Cryptogamiæ, observed in Gymnosperms, Conifere, and Cyeadæ. So it may be said the distinetive character of the former is that of reproduction by seeds rather than flowers. The progress of botanieal scienee during the latter half of the Vietorian reign has been quite as remarkable as that of histology; while the comparative physiology and morphology of plants have perhaps advaneed even more rapidly beeause the ground was newer. The eonsequence is that the speeialisation of botimieal science has been brought about concurrently with a more comprehensive nomenclature. The ehief eanse
in this instane of modern specialisation is ntility. "If we look at the great gromp of plants from it hoald point of vew, it will be seen that the fungi and the phancrogams ocenpy public attention on olter gromads that do the algee, mosses and ferns. Algiee ane especially it physiologist's group, employed in (fuestions on mutrition, reproduction, and cell division and growth. The Bryophyta and Pteridophyta, are, on the other hand, the domain of the morphologist eonermed with such questions as the alternations of generations and the evolution of the higher plants.
"Fiungi and phanerogams, while equally or even more employed ly specialists in morphology and physiology, appeal widely to general interest, and evidently so on the ground of utility. Without saying that this enhanees the importance of either group, it eertainly attracts seientifie attention to them. Howerer, the histology of the minnte eell, in addition to its importance from an academieal point of viess, has a special interest for the microseopist."

It would be impossible to find anything more remarkable in histology than the detailed agreement in the structure and behariour of the nuclens in the higher plants and the higher animals, an agreement which is eonspienously manifest in those speeial divisions which take place during the maturation of the sexual eells.
sio with regard to the question of "alternation of generations." We have known since the important discoveries of Hofmeister that the development of a large part of the vegetable kingdom involves a regular alternation of two distinct gencrations, the one which is sexual being eonstantly succeeded, so far as the normal cyele is concerned, by the other whieh is asexual. This alternation is most marked in the mosses and ferus. In the Pryophyta the ordinary moss or liverwort plant is the sexnal generation of the ovum, which, when fertilised, gives rise to the moss-fruit, and represents the asexual stage. The latter is onee more seen io form spores from which the sexual plant is again developed.

In the Pteridophyta the altermation is equally regular, but the relative development of the two generations is totally different, the sexual form being the insignifient prothallus, while the whole fernplant, as we ordinarily know it, is the asexual generation.

The thallus of some of the lower Bryophyta is guite eomparable with the prothallus of if fern, so as regards the sexual qeneration
there is no difticuly in secing the relation of the two chassess ; but when we come to the asexual generation or sporophyte the ciase is totally different. 'lhere is no appreciable resemblance botween the fruit of any of the Broophyta and the plant of any vascular Cryptogam.
"It is now known that in the higher plants a remarkablo numorical change takes place in the constituents of the maclens of the eell shortly before fertilisation. Jn angiospermons plants a reduction of the ehromosomes occurs shortly before differentiation of the sexual cells. Thus, in the casce of the lily, lertilisation is not the simple fusion of nuclear bodies. These spheres are seen to fuse in prirs, and then by position to determine the plane of first clearage of the orum: agrecing, in fact, closely with what is observed to take place in the animal kingdom."

In the higher grades of plants it will be evident that the several tissues that eompose their bodies are not found in the root, stem, and leaf without definite order and purpose, but that they are grouped into systems for the performance of different kinds of work. Jn all Howering plants at least three different systems may be clearly distinguished. These are the epidermal or boundary tissue system, the fundamental or ground tissue system, and the fibro-vascular or conducting system. All three systems of tissme originate from meristem eells, located at the growing point of the stem and root.

Although these systems characterise the higher types of plants, the clementary tissues (represented in Plate XILI. and in other figures) enter alike into the several component parts of nearly all plants. 'The stem, the branch, and the root, are allike constituted of an outcr coating which affords a mechamical support, and once formed takes no firther share in the economy of the plant, excepting that of assisting to convey fluid from the roots to the branches and leatces, an action more of a cilpillay nature than vital. The nourishment of the plant is brought abont ly other material structures, as the pith, the cortex, the eambinm, and so forth, all of which greatly assist in the formation process. The worly portion of the plants is especially concerned in furnishing sulport to the softer pulper texmores, while the tissmes of leaves and Hown's are ehicfly composed of cells compactly hedd together by protoplasmic or alhmminoid matter. Wiater, of conse, enters langely into the constituents of
all plants. Beneath the epidermis is another layer of importance, the parenchymatous, which becomes more or less solid with the growth of the pith and eellular wall. In the pulpy substance of some leaves the epidermis presents a thin lamina of palisade-tissue, the bulk of the mesophyll consisting of spongy parenchyma or selerenchymatous fibres (seen in Fig. 310), which also serve to show the disposition of the several layers about to be brought under notice.

Development of the Tissue Systems.-In the growing plant the embryonie cells soon become differentiated into three primary meristem layers, known as dermatogen, periblem, and phlocm, from which

Fig. 310.-Section of Leaf of Piper.
c. Cortex ; 61. Epidermis ; prol. Palisade-tissue ; scl f. Sclerenchymatous fores of periuyele ; o. Oil gland.
are developed respectively the primary cortex, epidermis, and the stele or vascular cylinder. The dermatogen forms the outermost layer of eclls at the growing point, and when present, always develops into true epidermal tissuc. In stems the dermatogen is always single-layered, while in roots it consists of several layers and develops a many-layered epidermis.

The periblem oecurs immediately beneath the dermatogen, forming a hollow eylinder of tissue, which surrounds the phloem. From the periblem is developed the fundamental tissue of the primary cortex. When no dermatogen is present in the growing-point (stems of vaseular cryptogams) the external layer of the periblem develops cells whieh perform epidermal functions. The phloem oecupies the centre of the growing-point, and consists of a solid mass of

DLATE XIH.

ELEMENTARY PLANT TISSUES.
To face page 45.
somewhat elongated cells. Firom the phluem are developed the fibro-vaseular and fundamental tissues of the vaseular-eylinder or stele.

Epidermal or Boundary Tissue System.-This systen eonstitutes the external eovering of the plant, and is eommonly called the epidermis. It includes, besides the ordinary epidermal cells, the guard-cells of the stomata and watcr pores, the plant hairs or trichomes, and the epidermal or external glands. The epidermal tissues are chiefly protective infunction, serving to prevent excessive evaporation from the interior tissues of the plant.

In stems the external layer of eells, whatever its origin, is known as the epidernis, while in roots it is called the cpiblema. The

Fig. 311.
a. Epidermis, reticulated ducts, and conjunctive palisade cells ; b. Vertical section of alder root, woody layer, and boundary ducts.
cpidermis usually consists of a single layer of cells, but in some cases it is two or three-layered, as in the leaves of figs and begonias.

In land plants the epidermis is nsually strongly cutinised, while in submerged plants it is never cutinised. The epidermis of land plants is also often waxy, the wax occurring on the surface as minute grains, rods or flakes, constituting the so-called bloom of leaves and fruits, and giving to them their glaueous appearanee. Chlorophyll bodies are usually absent from the ordinary cpidermal cells of land plants, while they commonly occur in the epidermal eells of aquatic plants.

Ordinary epidermal cells are usually thin-walled and thansparent, and contain a muclens and colourless watery protoplasm, but are destitute of both chlorophyll-bodies and starel-grains.

The extermal layers of the outer walls constitnte the entiele of the plant, while the internal layers and the radial and imer walls
are composed of cellnhose. The ecells of the epidermis ate always rery compactly arranged, having their walls so closely adherent that the interecllular spaces are entirely obliterated except at the stomata and water-pores.

There are exceptions to this rule, as, for example, in Cinchemut calisaya, which shows no trace of epidermis, this being replaced by a corky layer of tubular cells. Where this oceurs in a plant to any extent, the whole of the onter tissues are displaced, and the bark consists exclusively of phlom tissues. 'Jhis, although of constant occurrence in C^{\prime}. calisalye, is not so common in other species, as C. succirubiu, the middle structure of which eonsists of parenchymat in

Fig. 312.

1. Vertical section of leaf of Iris germanica; $\quad, \quad a$. Elongated cells of the eniderm; b. Stomata cut through longitudinally ; c, c. Green cells of the parenchyma ; d, d. Colomlcss tissue of the interior of the leaf. 2. Portion of leaf torn from its surface ; a. Elongated cells of the cuticle ; b. Cells of the stomata: c. Cells of the parenchyma ; d. Limiting wall of the epidermic cell ; c. Laeture or openings in the parenchy ma corresponding to the stomata.
which appear more or less numerous isolated store-cells, and when these are absent there is a formation of rhytidoma and displacement of the tissues containing the store-cells and ducts. The chlorophyll of C. succirubia is very marked, and its spectrom presents seren distinct alusorption bands.

The epidermal system of plats in general includes other tissoues than those alsearly mamed, as the guardeells of the stomatit, the water-pores, plant-hairs or trichomes, and the extmonal opepidermal ghambs, all of wheh are but moditications of ordinary epridemal tissue.

The Stomate on Breathin!! Ponesate apertmes in the epidermal wheh
 bordered by two moditiod epidermal cells, called ginurdecells. Stumatat
are formed in the following manner ：A young epidernal cell divides into two equal portions by the formation of a soptum acros＇s its middle，each half developing into a guard－cell ；the septmm now splits lengthwise and separates the gruard－cells，leaving an aperture or stoma between them．

In the higher plants the grard－cells of the stomatal are cressent－ shaped and occur in pairs，the concave sides of the cells facing each other with the aperture between，while in mosses the stomatal possesses but a single amular genard－ecll which sumrounds the aperture．The shard－cells of stomata usnally contain chlorophyll－bodics in addition to the ordinary protoplasm．They have the power of increasing or diminishing the size of the apertme mader the influence of light and moisture，thus regulating the amount of evaporation from the internal tissues of the plant．

Hater Pores or Hater Stomate are apertures in the epidermis， similar in strncture to ordinary stomata，but differ from them both in function and distribntion．Water－pores excrete water in the form of drops，and have their guard－eells fixed and immovable．They always oecur at the ends of vasal bundles，and are found on the margin and at the apex of leaves．

Plent Hairs or T＇richomes are modified epidermal cells prolonered externally，and may be either micellnlar or multicellular．Each hair consists of a basal portion，or foot，which is cmbedded among the ordinary epidermal cells，and an apical portion or body，which is prolonged externally：Ordinary epidermal hairs are usually thin－ walled，the imer layers of the twall being eomposed of cellnlose， while the outer layer is more or less strongly eutinised．The walls may beeome hardened by deposits of lime－salts or silical．Sometimes the cells become ghandular and secrete oily，resinons，or irritating matturs，as in stinging－nettle hains（Plate Nill．，No．19），when they are known as glandular hatrs．The development of resin－pasiseges may he observed in transverse sections of the stem of the iry （／Verfera leflir）cut from a yougg succulent stem，and mounted in Hyerme．ITheresin is seen seatitered thromg the rortex and pith， and in the soft hast which lies nutside the eamhimm in rarions stages of devolopment，stating from a group of four cells withont inter－ cellulan spaces．

Root hairs spring from the epiblemat and are never chtinised，but
are frequently more or less mucilaginous. The root-hairs are the principal absorbing organs of the plant, and are confined to the younger roots, oecurring just above their tips. Root-hairs are never present in aquatie plants, and are absent from the roots of certain of the Conifere. It is a emrious fact with regard to bell-heather growing in higher latitudes, that the plants possess a peenliar root strneture as a protection against droughts. In most of them the sustentation of life depends upon the formation of a number of long thin filaments on their roots resembling root-hairs, which penetrate the root, forming nodular masses within it. These filaments belong to a fmngus entirely parasitic to the root, and yet different from a common parasite, inasmuch as the plant in this way obtains so much of its nomishment, and when the fungus is not present, or is removed, the plant can no

a. Section of the testa of Gourd Seed, showing commmicating cells filled with colouring matter; b. Section of stem of Clematis, three pores separated and more highly magnified ; c. Transverse section of same, showing medullary rays. longer live on a peaty soil. The leaf-blade of the coarse moorland grass Nardus is likewise endowed with a singnlar property-that of rolling up cylindrically and spreading out again to adapt itself to the dry and wet weather of the moorlands of Scotland.

Fundamental or Ground Tissue System.-This system eonstitutes the groundwork of plants, and is the system through which the vasal bundles are distributed. The fundamental tissues are composed largely, thongh not wholly, of parenchyma, and are ehiefly concerned in the metabolic work of plant life.

Ground tissne includes, besides ordinary parenchymit, collenchyma, sclerenchymatous parenchyma, fibrons tissuc, cork, laticiferons and glandular tissues. To the fundamental system also belongs the chlorophyll cells of leaves, the thin-walled cells of the pith and medullary lays, the cells of the cortex of stems and roots, and most of the soft cellular tissues in all plants.

The lower plants consist almost cutirely of fundamental tissue. In the herbaecous forms of the higher plants the ground tissues largely predominate, white in woody plants they are present in much smaller proportion, the vascular tissucs being the most abundant. In aquatic plants generally, the fundamental tissues constitute the prineipal system.

The hypoderma occurs immediately bencath the epidermis, and consists of several layers of eells. A collenchymatons hypoderma is found in the stems and petioles of most herbaceons dicotyls, and frequently occurs next the midr-rib of leaves, where it forms a

Fig. 314.
a. Tangential section of Tasus lucucta (Yew), showing the woody libre; b. Vertical section of samc, spiral fibres, and ducts ; c. Vertical section of Elm, showing ducts and dotted cells.
strengthening tissuc. A sclerenchymatous hypoderma oceurs either as a continuous layer beneath the epideruis, as in the stems of some ferns, P'teris aquilina, and in leaves of the pine; or it may form numerous isolated strands beneath the epidermis, as in the stems of horsetails and in cortain Umbelliferae.

The endodermis is the imermost layer of the extra-stelar fundamontal tissmes, and always abuts on the stele or steles. In monocotyls it marks the boundary between the cortex and the central cylinder, and it is sometimes spoken of as the nuclens sheath.

In stems the endodermal cells are usually thin-walled and mnlignified, haviner at suberous thickening band extending round the
"pper, lower and lateral surfices, which in eross-section ipplat's its a black dot on the radial wall (Fig. 3lf, r.)

According to its position in the stele, the conjunctioe tissue is divided into three principal portions, viz, that portion which invests the vasal bundles, the pericycle; that portion which lics between the bundles of the stele, the interfascicular conjunctive tissue ; and that which occupies the centre of the stele, the medullary conjunctive tissue. 'The pericycle, formerly called the pericambinm, is the outermost layer of the coujunctive tissue of the stele.

The bundle-sheath of the yomig stem is more easily recornised than in the older stem. It is, in fact, a continnons layer of cells, whose radial walls have a characteristic dark spot on eatch radial wall. The bundle-sheath lies immediately outside the vascular bundles, curving slightly towards the centre of the stem in the spaces between the bundles. It is more prominent in the stem when very young, as the cells are then filled with starch granules. This layer of cells will be readily seen in sections treated with iodine.

In dicotyls and gymosperms the mednllary rays consist essentially of interfascicular ground tissue. The medullary conjunctive tissue occupies the centre of the stele, constituting the so-called pith, and usnally consists of parenchymatous cells, but may contain, in addition, either stonc cells, selerenchyma fibres, laticiferous or glandular tissnes.

The Fibro-vascular or Comluctiny Tissue Siystem.-This system eonstitutes the fibrous framework of the plant, and is the system by means of which fluids are conducted from one part of the plant to another. Its function is partly to give strength and support, but principally to conduet the crude and claborated juices to and from the leaves. It is found only in the higher plants, constituting the tongh and stringy tissucs in stems and roots, and the system of reins in leaves. The fibro-vascular system consists essentially of raseular tissue (ducts, tracheids, mud sieve-tubes), and forms long strands-the fibro-vascular bundles-which extend vertically through
 as applied to the conducting system, is not strictly enrect, since filies do mot alwase acompany the vasentar eloments, hence this system is often spoken of ats the viseular syistem, int the hmolles ats vascollar, or more briedly as vasal bundles.

That the armangement and course of the vasenlar bundles in dicotyledons stems are cammeeted with those of the leaves is ant abrions fate. It may be seen in sections of Itelianthus, but is more markedy shown in piants with rexulaty deenssate leares, as ('eratslma, (lematis, de. Still, the arangement of the bundles may differ radically from that of the leaves, and is, to a cortain cxtent, independent of them. 'This will be noticed in sections of flaris amare, where the hundles do not rum Inngitudinally, but, in timgential spirals. These, as Nägeli pointed ont, hase un direst. relation with the leaves : and he recommends a series of types for

Fig. 315.

1. Transverse section of the stem of Cedar, showing xylen or wool; 2. Section of stem of Conifer, the phloem and \%ones of ammal growth; 3. Section of an frory Nut, eells, and radiating pores; 4. Section of the nuter or ligneous portion of same, with monating cells.
investigation, in which it will be seen how elosely the arrangement of the bundles is eomnected with the arrangement of the leaves, and the momber of bundles entering the stem from cach leaf: fleris remarr, leaves altemate, leaf-trace with one bundle ; Lupinns, leaves altermate, leaf-trace with three hmalles; (crastimm, leares opposite, leaf-trace with one humdle ; (lematis, leaves opposite, leaf-trace with thre bundes; Stachys, leaves apposite, leaf-taree with two bundles.

The comection of the leaf and stem will be best seen by eutting longitudimal sections through a young norle of Helianthus, so as to inchade the median plame of the leat, or of hoth leaves if opposite to each other, as they often are ; sterp them in dilute potash for
twenty-four hours and mount in glycerine. A medium power will serve for their examination. The course of the vascular bundles will appear dark through the more transparent parenchyma. The continuty of the tissues of the stem and petiole if followed will be seen to have no definite bomndary between the two parts; the bundles from the petiole pass into the stem, and no bundle of the upper internode lies in the same rertical plane as that which enters fronn the petiole between two successive bundles of the vascular ring.

* Every complete vasal bundle consists of xylem or wood and phloem or bast.

The former consists essentially of trachery tissme (ducts and tracheids), and may contain in addition both wood fibres and wood parenchyma. The phloem or bast consists essentially of sieve tissue, and usually contains some ordinary parenchyma. In angiosperms companion-cells always accompany the sieve-tubes in the phloem, while in gymnosperms they arc absent.

According to the rclative positions of the xylem and phloem elements, there are two principal kinds of conjoint bundles-the collateral and the concentric. Of these again there are three varieties, but the experiments with leaves bring out parallel facts; that in ordinary stems the staining of the wood by an ascending coloured liquid is duc, not to the passage of the colomed liquid up the substance of the wood, but to the permeability of its ducts and such of its pitted cells as are united into regular canals; and the facts showing this at the same time indicate with tolerable clearncss the process by which wood is formed, for what in these cases is seen to take place with dye may be fairly presumed to take place with sap.

Taking it, then, as a fact that the vessels and ducts are the chamels through which the sap is distribnted, the rarying permeability of their walls, and consequent formation of wood, is due to the exposure of the plant to intermittent mechanical strains, actual or potential, or both, in this way. If a trunk, a hough, shoot, or a petiole is bent by a gust of wind, the substance of its convex side is subject to longitudinal tension, the substance of its concave side being at the same time compressed. This is the primary mechanical effoct. The secondary is when the tissucs of the convex side are stretched, and also produce lateral compression. In short, the formation of

Fig. 316.-Termination of Vascular System.
1.-Absorbent organ from the leaf of Euphorbia neriifolia. The cluster of fibrous cells forming one of the terminations of the vascular system is here embedded in a solid parenchyma.
2. - A strncture of analogous kind from the leaf of Ficas elastict. Here the expanded terminations of the vessels are embedded in the network parenchyma, the eells of which unite to form envelopes for them.
3.-End view of an absorbent organ from the root of a turnip. It is taken from the ontermost layer of vessels. Its fumnel-shaped interior is drawn as it presents itself when looked at from the outside of this layer, its narrow end being direeted towards the centre of the turnip.
4.-Shows on a larger scale one of these absorbents from the leaf of Panax: Lessonii. In this figure is clearly seen the way in which the cells of the network parenelyma unite into a closely-fitting ease for the spiral eells.
5.-A less-developer absorbent, showing its approximate connection with a dnct. In their simplest forms these structures consist of only two fenestrated cells, with their ends hent round so as to meet. Sueh types occur in the eentral mass of the turnip, where the vasenlar system is relatively imperfect. Besides the comparatively regular forms of these absorbents, there are forms composed of amorphons masses of fenestrated cells. It should be added that both the regnlar aud irregula kinds are very variable in their unmbers: in some turnips they are abundant, and in other's scarcely to be found. Possibly their presence depends on the age of the turnip.
6.-Represents a much more massive absorbent from the same leaf, the surrounding tissues being omitted.
7.-Similarly represents, without its sheath, an absorbent from the leaf of Clusia flara.
8.-A longitndinal seetion through the axis of another such organ, showing its annuli of reticulated eells when cut through. The cellular tissue which fills the interior is supposed to he removed.
wood is dependent upon transverse strains, such as are prorluced in Whe atrial parts of mpright phants lig the ation of the wind.

In concentrice bundles one of the elements, cither the xylen of the phoem, oecupies the centre, and is more or less smromberl by the other, as seen in Fig. : 10 . Neristem tissue is never present, hence coneentric bundles are always closed. They, however, ocenr in the stems of most ferns, and are always surromded by a perieyele and endodermis, and should be regurded as steles. ('oneentric lmudles with a central phloem oeenr in the

Fig. 317. -- Vertical section of Sugar-cane Stem showing paraehymi and crystalline cells, x 200 dimmeters. rhizomes of some monocotyles, as Calamms, Iris, Convallaria, de.

The Stele, or Vascular Cylinder, is developed from the phloem of the growing plant, and consists of one or more vasal bundles imbedded in fundamental tissue, the whole being enelosed by a pericyele and an endoderm. The typical stele includes all the tissues erolved by the endodermis, which, however, forms no part of the vaseular eylinder itself, but merely surrounds it. The perieycle is alwars the outermost layer of the tissues of the stcle, while the endodermis is the imnermost layer of the extra-stelar tissnes.

The arborens type of stem can be hest followed by making sections of a twig of the elin (Ulimes compestris), which will be found to be eylindrical hirsute, green or hrown according to age, the latter eolomr being due to the formation of cork. Small brown exeresecnees are seattered over its surface; these are termed lenticels. The cork will be seen to lie immediately below the epidermis, and to consist of cubieal cells, with little or no cell contents; they are armanged in radial rows, without intercellular spaces. The walls of these cork eells will stain yellowish-hrown with Schnltze's solution. 'Treat a thin section with sulphmic acid and the walls will swell out and gradually lose their sharpmess of ontline, with the exception of the
cuticularisod outer wall of the epidermis and the cork. This material is oecasionally found developed in the twigs of the elm, so that it can be separated as thick radial plates of tissue.
"By comparing sections of twigs cut of varions ages, the following information may be gleaned: That cork cambium, or phellogen, appears as a layer of cortical cells below the epidermis, and that these divide parallel to the surface of the stem. The result of suecessive divisions in this direetion is the formation of sccondary tissue, which develops externally as cork, internally as phelloderm. The truc cork cambium eonsists of only a single eell in each radial row,

Fig. 31s.

1. Laticiferons Tissue ; 2. Vertical section of a Leaf of the India-rubber Tree, with a central gland ; 3. Vertical cast of spiral tubes of Opmentia.
from whieh, by suecessive division, all these secondary tissues are derived-i.e., eambiun of vascular bundles. As stems grow older, layers of cork appear suceessively further and further from the external surface; not only the eortex, but also the outer portions of the phloem are thas cut off from physiological eomeetion with the inner tissne. The term burk is applied to tissues thus cut off, together with the cork which forms the physiological boundary. The stem of Vitis affords a grood example of such suceessive layers of cork."

Fror the study of sicve-tubes take the vegetable marrow, in which they are of extrabrdinary size. Cut transverse sections of the stem and stain with cosin, and mount them in glycerine. The general arrangement will be seen to differ from that of most other herbaceous
plants. Below the epidermis a thick watled hand of selerenchymat with lignified walls will be seen distinct from the vasenkar bundles, which readily take a stain. The vascular lmodles are separate and distinct, and the structure of the bundle is abnormal, there being in cach a separate central mass of xylem, with the phloem masses lying, the one central, the other in the peripheral side. Betweon the xylen and the phloem masses is the cambimm layer. 'The structure being the same in both will serve for the stndy of the punctate siere-plates; these are readily stained with cosin, as shown in Sach's text-book.

Laticiferous Tissues (Fig. 318).-In cutting sections of latex care must be taken to at once transfer them to alcohol so as to prevent the flow of the latex from the cell:s, otherwise the laticiferous ressels will be much less easily traced. The better method is to phunge the root of the dandelion (Leontodon taraxacum), after eleaning, into alcohol, and there let it remain until it has become hardened; then cut thin tangential sections from the phloem, and longitudinal sections through the cambium, and mount them in potash and glycerine. The laticiferous vessels appear cirenlar in the transverse sections with brown contents; these are distributed in groups round the central xylem. Observe in shch sections the presence of sphere crystals of immin. These are formed quite irespective of the cell-walls.

Laticiferous eells are readily seen in the cortex of Euphorlina splendens, cut just ontside the vascular ring. Long tubes will be seen to rum through the cortical parenchymu, with thick cellulose walls and gramular contents. These are the laticiferous cells, the branching of which distinguishes them from the preceding structure. Included in the gramular contents are starch grains of a peculiar dumb-bell form.

Leaf or Petiole.-The general morphology of leaf tissuc is essentially the same as that of the stem from which it proceeds. In the typical monostetic stem of Phanerogame each leaf receives a portion of the stele or central cylinder of the stem. Such portion is termed a meristele, and may be eithor entire or split. np into as number of schizosteles.

The mieroseopical structure of leavos shonld be studied in the whole organ, and by the aid of isolating elements. The whole or
portion of a leaf should be soaked in chloral hydrate solution; this will render it transparent, whereby the internal structnre cilu be studied as a whole. Sections should be prepared from freshl leaves, or chried ones softened by soaking in water. ('ut them transversely, both in the direction of the mid-rib and at right angles to it. This is best effected by placing the material between two pieces of elder pith or fresh carrot. Sections of the whole are made and transferred to a dish of water. Leaf sections are elsily made for examination by macerating the leaves in solntion of caustic potash varying in strength from one to five per eent. The epidermis on both sides may be detached, and the elements of the mesophyll and vascular bundles isolated for separate examination.

Potassiam permanganate proves to be a useful roigent. A weak solution canses the protoplasmic structures to swell up, thus assisting in the observation of the structure of the chromatophores. This solution may also be employed as a macerating fluid. Beantiful preparations are obtained in this way of the sieve-tubes of Vitis.

Special structural peculiarities are to be observed in the leares of varions plants in which the epidermis consists of more than a siugle layer of cells (e.g., the leaves of Fiens, Peperacce, Begoniacer, de.), cystoleths in the cells of the epidermis of Urtica; glaudular structure in Ruta, Psorales ; the coriaceons leaves of the Cherry Laurel, and the eylindrical leaves of Stonecrop) (Sectum ucre).

Reproductive Organs.-The development of the rudiments of flowers is of an extremely interesting nature, and the complete Hower should be carcfully studied. Median sections are best suited for the purpose. In the large majority of plants the calyx is developed first, then the corolla, and next the stamens. Prepariations shonld he made from materials hardened in alcohol, or first fixed with a strong solntion of picric acid and then hardened in alcoliol.

Pollen-grains.-Microspores are fomd lying free in soctions made of the reprodnctive orgins ; these may be transfered to a glycerine fluid and examined moder a high power. They are mostly spherieal, with grannlan protoplasmic contents, in which with much ditticulty two maclei can be made ont. Momnt and examine, as typer of the varions forms of gramules, the pollen of Helianthus, Althera, Cuenrbita, Enothera, Orchis, Minose, Tulipa, dee. Mount any of these
pollen-grains in a weak solution of cane-sugar (abont five per ceut.), examine with a high power, and note the confignation of their walls with a medinm power mader polarised light. If transwerse sections be made from vory young buds, the development of the anther and the pollen may be traced. The material shond be preserved in stroug alcohol, and the sections treated with equal parts of alcohol and glycerinc, and exposed in a watcl-glass that the alcohol may evaporate. By this method sections may be prepared for illustrating the forma-

Fig. 319.--Pollen Grains.
A. Pollen-grain of Clove-pink ; 13. Poppy ; c. Passion-flower (Pessiflora cervicu); D. Cobece seandens. tion of the tapetum, special mother-cells, and division of the nuclens.

Starch Gramules.- One of the most universally distributed materials found in plants is stareh composed of two substances, !ranuluse, which constitutes by far the largest part, and a skeleton of furinose. It is ouly the former of these that stains blue with iudine solutions; the latter partially assumes a brownish colour. The structure of stareh grauules is not of equal density throughout: the hilum or unclear portion is most conspicuous; around which the rest of the material is deposited in layers, indicative of stratification. The several layers next to the hilnm are less dense than those farthest from it. The position of the hilum determines the form of the grain, a few being romided, others oval or elougated. The grain also contains different proportions of water ; this comeys the appearance of concentric lines or curves about the uncleus. The latter is more eonspicnous in the potato starches, as seen in Plate Xlll., Nos. 6-15. Starch grains, iu nearly all cases, are formed by the ageney of proteid bodies, either chloroplasts or anyloplasts, aud under the action of suulight are gradnally broken up and employed in the process of growth. There are some plants, however, notably the Compositeæ, in which another carbohydrate,
inulin, takes the place of stareh from the first, and is used as a reserve food material. For this reason we look in vain for starch in the cells of Immla, Taraxacmm, de. From the whole gromp of fungi stareh is absent; this seems to explain the fact that chloroplyyll, or colouring matter, is rarely met with in the fungi, henee their inability to utilize, like green plants, earbon-dioxide is food.

Fig. 320. - Swollen Potato Stareh, after the application of potassium hydrate.
(Magnified 210 diameters.)
The tissues which most commonly contain starel, or which contain it in largest quantity, are those of the parenchymatous series, though it sometimes occurs in the latex of laticiferons tissues, and even in ducts and tracheids. In the stems of Dicotyledons it oecurs ehiefly in the parenchyma of the middle and inner bark, in the medullary ray cells, and in the cells of the pith. In the roots of these plants it has a similar distribution, being for the most part confined to the middle or imer bark and the mednllary rays, pith not being present in these organs. In sucenlent stems and roots, of course, it also commonly oceurs in the xylem tissues of the fibro-vasentar bundles.

A study of the various kinds of starehes is important, since this material is very largely used ats an alulterant. ()ther than michoscopical means of detecting fratuds are practically nseless: assaying is tedious and expensive, while the mieroseope is allways arailathle and at hand. The limits of rariation should be studied in stateches from the same species of plants; the variations are not very wide, hut in most eases characteristic, so that the discrimination is at all

Fig. :21.
(a a Granules aml cells of cocon; b b b. Arrowroot, Tous-les-mois c e c. Tapioca starch. (Magnitied 300 diameters.)
times an easy task. The reagents required are simply iodine aud dilute potassium liydrate, aided by polarised light.

The stareh grains of the potato are the best to stuly in the first instance on aceount of their large size (Fig. 320).

In arrowroot starch (Fig. 321) the stratification is almost as distinet as in that of the potato ; the grains much resemble cach other. Althongh somewhat smaller, the grains of arrowroot are more uniform in size. The starches are much used as an whlterant of drugs and various articles sold ats cocoas.

Wheat-starch (Fig .322) consists of circular flattencel grains
varying much in size, the central nucleus and stratification of which are very difticult to clistinguish.

In the smaller starches the hilum becomes more.indistinct, and without stratifieation, as in rice-starch, the latter being angular in shape. The hilum in other leguminous plants forms a longitudinal eleft ; white ryo-starch exhibits distinct cracks. Compound grains are occasionally met with, as in the oat. In Plate XIIT. will be found

Fig. 322.
(1. Husks of Wheat-stareh, swollen by reagents and heat; b. A portion of cellulose ; c. Rice-stareh, magnified 420 diameters.
small groups of starches taken under the same medium power for the sake of comparison. In the microscopical examination of starches first use a $\frac{2}{3}$-inch or a $\frac{1}{2}$-inch and then a $\frac{1}{6}$-inch objective.
'The bran of the husk of wheat when broken by grinding is seen to be composed of two coats of hexagonal cells, the onter of which is detached by the roasting process. The hexagonal eell layer is, however, so little altered as to be perfectly distingnishable under the microscope. Thas even a small admistme of roasted corn with coffee or chicory ean be detected withont much difficulty. As to whether starch gramules should be reginded as erystalline or colloid borlies, a difference of opinion still prevails. There are, however,
reasons for believing that the polarisation effects produced by stareh grains are not due to erystalline structure but to stress or strain, of the same nature as the polarisation of glass when it is subject to strain. The polarising phenomena are precisely such as would be induced in any transparent solid composed of layers, the inner of which being kept in a state of stress by the compression exerterl by the outer layers. Moreover, when by use of a swelling reagent, such as caustic potash solution, the onter wall of the starch is made to expand by the imbibition of water, the polarisation effects immediately disappear. Were the solid particles of erystal thins forced apart by water each partiele would still exhibit polarisation phenomena.

Wiant of space will not permit me to further enlarge upon other miero-ehemical substanees that enter into the eomposition of plants; as, for example, the oil seereting glands. These when present take the place of starch. There is, however, one product among the cell contents of plants of some interest to the mieroseopist-those extremely fine crystals known as raphides, composed of caleimmphosphate and oxalate. Mr. Gulliver insisted upon the value of raphides as charaeteristie of several families of plants. Sehleiden states that "needle-formed erystals, in bundles of from twenty to thirty in a cell, are present in almost all plants," and that so really practical is the presence or absence of raphides, that by studring them he has been able to piek out pots of seedling Onagracere, which had been aeeidentally mixed with pots of other seedlings of the same age, and at that period of growth when no other botanical eharacter would have been so readily snfficient.

If we examine a portion of the layers of an onion (Plate XIT., No. 3), or a thin section of the stem or root of the garden thularh (No. 4), we shall find many cells in which either bundles of needleshaped erystals or masses of a stellate form ocenr; not strictl? raphides.

Raphides were first noticed by Malpighi in Opmetia, and subsequently described by Jurine and Raspail. According to the latter observer, the needle-shaped or acicular are composed of phosphate, and the stellate of oxalate of lime. There are others having lime as a basis, in combination with tartaric, malic, and eitrie acids, all of which are destroyed by acetic acid; others are soluble in many of the fluids employed in mounting. These crystals riary in size from

STELLATE AND CLYSTALLINL TISSUE OF PLANTS.
the $\frac{x}{10}$ the of an inel, while others are as small as the $\frac{1}{10 n}$ th. They oceur in all parts of the plant; in the stem, bark, leaf, petals, fruit, root, and even in the pollen, and oecasionally in the interior of eells. Lhe certan species of aloe, as Aloe vermucose, we are able to diseern small silky filaments ; these are bundles of the acioular form of raplides, and probably, as in sponges, aet as a skeleton support to the interinal soft pulpy mass.

In portions of the eutiele of the medicinal squill (Scilla maritima) large eells are found fuil of needle-shaped erystals. These cells, however, do not lie in the same plane as the smaller cells of the cuticle. In the euticle of an onion every eell is oecupied either by an oetahedral or a prismatic crystal of ealcium oxalate. In some speeimens the octahedral form predominates; in others, even from the same plant, the erystals are prismatio and arranged in astellate form, as in that of the grass (Pharus cristatus). (Plate XTV., No. 6.)

Raphides of peenliar figure are found in the bark of eertain trees. In the hiecory (Corya alla) may be observed masses of flattened prisms having both extremities pointed. In vertical sections from the stem of Elaragnus anoustifolia, numerous raphides of large size are embedded in the pith, and also fomnd in the hark of the appletree, and in clm seeds, every eell eontaining two or more minute crystals.

In the firaminacer, especially the eanes; in the Equisetum hyemale, or Duteh rush; in the husk of riee, wheat, and other grains, siliea in some form or other is abundant. Some have beautifullyarranged masses of siliea with raphides. The leaves of Deutzia sreliu, No. 7 , are remarkable for their stellate hairs, developed from the eutiele of both their upper and under surfaees; forming most interesting and attractive objects examined under polarised light. (Plate VIII., No. 173.)

Siliea is found in the strueture of Rubitece both in the stem and leares, and, if present in suftieient thickness, depolarises light. This is especially the case in the glandular hairs on the margins of the leaves. One of the order Compositre, a plant popularly known as the "sneezewort" (Arehillue ptarmica), has a large amomet of silica in the hairs fonnd about the serratures of its leaves.

All plants are provided with hairs; some few with hairs of it defensive character, Those in the Urtich dioica, commonly ealled
the S'tinging-netfle, are glaudular hairs, developed from the cuticle, and contain inn irritating fluid ; in other hairs a circulation is visible: examined under a power of 100 diameters, they present the appearanee seen at Plate XIII., No. 19.

The fibrous tissue of plants is of great value in many manufactures. It supplies material for ou linens, cordage, paper, and other industries. This tissue is remarkable for toughness of fibre, and exhibits an approach to indestructibility, in the use it is put to in conuection with the electric light. It is of importance, then, to be able to distinguish it from other fibres with which it is often mixed in various manufactures. Here the use of the microscope is found of considerable importance. In flax and hemp, in which the filres are of great length, there are traces of transvorse markings at short interyals. In the rongh condition in which flax is imported into this

A. Cotton ; 1. Fibres of Flax ; c. Filaments of Silk ; D. Wool of Sheep. country, the fibres have been separated, to a certain extent, by a process termed huckling, and further subjected to backling, maceration, and bleaching, before it can be reduced to the white silky condition required by the spimer and weaver, and finally assumes the appearance of structureless tubes, Fig. $323 \mathrm{l3}$. China-grass, New Zealand flax, and some other plants produce a similar material, but are not so strong, in consequence of the outer membrane containing more lignine. It is important to the manufacturer that he should be able to determine the true character of some of the textures employed in articles of clothing ; this he may do by the aid of the microseope. In linen we find each component thread made up of the longitudinal, mmarked fibres of flax; but if cotton has heen mixed, we recognise a flattened, more or less rounded band, as in Fig. 323 ィ, having a very striking resemblance to lair, which, in reality, it is ; since, in the condition of elongated wells, it lines the
immer surface of the porl. These, again, should he contrasted with the filaments of silk, Fig. 323 r, and also of wool, Fig. 323 D. The latter may be at once recognised by the zigzag transrerse markings on its fibres. The surface of wool is covered with furrowed and twisted fine eross lines, of which there are from 2,000 to 4,000 in an inch. On this structure depends its feltiny property. lin judging of fleeces, attention should be paid to the fincness and clasticity of the fibre-the furrowed and scaly surface, as shown by the microseope, the quantity of fibre in a given surface, the purity of the fleeee, upon which depend the suceess of the scoming and sulnsequent operations.

In the minmen-clotlis of the Egyptians flax only was used, whereas the Peruvians used cotton alonc. By the many improvements introdueed into mannfacturing processobs, flax has been rednced to the finencss and texture of silk, and eren made to resemble other matcrials.
lossil Plents.-It is well known that the primordial forests furnish a number of families of plants familiar to the modern algroologist. The cord-like plant, C'hordre filium, known as "dead men's ropes," from its proving fatill at times to the too adventurous swimmer who gets entangled in its thick wreaths, had

Fig. 324.

1. Woody Fibre from the ront of the Elder, exhibiting small prores ; 2. Woody tibre of fossil wook, showing large pores; 3. Wuody fibre of fossil wood, bordered with poses and spinal fibres; 4. Fussil woal from coul. a Lower Silurian representative, known to palaontologists as P'ulceochorde, or ancient chorda, which existed, apparently, in two species, a larger and a smaller. The still better known Chomdrus crispus, the Irish moss, or Cimmgen moss, has likewise its apparent, thongh nore distant representative, in chondritis, a Lower Sihmian algal, of which there secms to exist at least three species. The fucoids, or kelpweeds, appear to have also their representatives in such plants as Finesides grueritis, of the lower Sihntians of the Malverns ; in short, the

Thallogens of the first ages of vegetable life seem to have resemblert in the group, and in at least their more prominent features, the algae of the existing time. And with the first indications of land we pass from the thallogens to the acrogens-from the seaweeds to the fermallies. The Lyeopodiacew, or club-mosses, hear in the axils of their leaves minute cireular eases, whieh form the reeeptacles of their sporelike seeds. And when high in the Upper Silurian system, and just when preparing to quit it for the Lower Old Red Sandstone, we deteet our earliest terrestrial organisms, we find that they are composed exclusively of those little spore-receptacles.

The existing plants whence we derive onr analogies in dealing with the vegetation of this early period contribute but little, if at all, to the support of anmal life. The ferms and their allies remain untonehed by the grazing animals. Our native elub-mosses, though onee nsed in medicine, are positively deleterious ; horsetails (Equisetacece), though harmless, so abound in silex, which wrap then round with a enticle of stone, that they are rarely eropped by eattle; while the thiekets of ferm which eover our hill and dell, and seem so temptingly rieh and green in their season, searee support the existence of a single ereature, and remain untouched, in stem and leaf, from their first appearance in spring until they droop and wither under the frosts of early winter.

The flora of the coal measnres was the riehest and most luxuriant, in at least individnal productions, with which the fossil botanist has formed an aequaintance. Never before or sinee did onr planet bear so rank a vegetation as that of which the numerous coal seams and inflammable shales of the earboniferous period form but a portion of the remains-the portion spared, in the first instance, by dissipation and decay, and in the second by denuding agencies. Nevertheless ahmost all our coal-the stored-up fuel of a world-is not, as it is often said to be, the product of destroyed forests of conifers and flora of the profuse regetation of the earliest periods in the history of onr globe. Later investigations show that our eoal measures are the compressed acemmutions of peat-bogs whieh, layer hy layer, have sunken down under the superimposed weight of the next. The rertieal stems of coniferous trees became imbedded by a matmal process of decay, and were subsequently overwhehned in the ereet position in which they are found. The true grasses seareely appear
in the fossil state at all. For the first time, anid the remains of a Hora that seems to have had but few flowers-the Oolitic ages-do we detect, in a few broken fragments of the wings of butterflies, decided traces of the flower-sucking insects. Not, however, intil we enter into the great Tertiary division do these become numerons. The first bee makes its appearance in the amber of the Eocene, locked up hermetically in its gen-like tomb-an embalmed corpse in a crystal coftin-along with fragments of flower-bearing herbs and trees. Her tomb remains to testify: to the gradual fitting 1 p of onr earth as a place of habitation for creatures destined to seek delight for the mind and eye, as cortainly as for the proper senses, and in especial marks the introduction of the stately forest trees, and the arrival of the charmingly beautiful flowers that now deck the earth.*

* For more detailed information on the structure and classification of unicellular plants, and cryptogams, the reader is referred to Ralfs" "British Desmidacee" ; Smith's " British Diatomacees "; Goebcl's "Outlines of Classification and Special Morphology"; Berkeley's "Cryptogamic Botany"; De Bary's "Comparative Anatomy of the Phancragams and Ferns"; Professor Marshall Ward's "Sach's Physiology of Plants," and numerons memoirs on Fnngi ; and Bower and Sidney Vine's "Course of Practical Instruction in Botany;" a most instmetive book on the histology of plants.

CHAP'LER II.

The Sub-kingdom Protozoa.

The consideration of the whole special group of organisms forming the subject matter of this chapter, under the heading of l'rotozoa, were formerly included among Infusoria, which also embraced every kind of microscopical arfuatie body, whether belonging to the regetable or animal series. A more eritical survey of the organisation and aftinities of Infusoria and the members which constituted the group led to a re-arrangement, which has been very generally accepted as forming a sub-kingdom, Protozoa. This may be defined as embracing all those forms of life, referable to the lowest grade of the animal kingdon, whose members for the most part are represented by organisms possessing a single cell or aggregation of cells (and also included under the general term of unicellular organisms) the whole of which are engaged in fceding, moring, respiring, and reproducing by segmentation or fission much in the same way as that of the mincellular plants described in a previous chapter. Following out this sub-division of the cntire series of Protozoa, the sevoral groups range themselves into four readily distingrishable sections. In the first, the most lowly organised and most abundint have no oral orifice in the literal meaning of the word, fool being intereepted at any point of the surface of the body. This most simple elementary type of structure of the l'rotozoa is represented in the Λ mobil and Actinophrys, the varions representatives of the Foraminifera, and certain Flagellata, as Spumella and Anthrophysa. Next in the ascending scale is a group of Protozoa, in which, though differentiation has not procceded so far as to arrive at the constitution of a distinct oral aperture, the inception of food substance is limited to a discoidal area oceupying the anterior extremity of the body and is associated with the special food-arresting apparatus. 'Io this

Greuarinira, Policystina, Foraminipera, Rotifera, b:tc.

section of the Protozoa are relegated the mimiter flagellate, "collanbearing "amimals, and also the entire gromp of sponges or l'orifera.
ln the third section the highest degree of organisation is arrived at. Here is represented a single, simple, often highly-differentiated oral aperture or true mouth. Associated with this section are fomd the majority of those organisms that collectively constitute the class Infinsoria in the proper acceptation of the term, and it embraces the majority of the Ciliata, the Cilio-flagellata, as Euglena, Chilomonas, de., in which the presence of a distinct and cireumscribed oral aperture is clearly seen. With the fourth and remaining section of l'rotozoa, the oral or ineeptive apparatus exhibits a highly characteristic struetural modification. This is not restricted to a definite area, nor is it associated with the entire surfaee of the body, but it consists of a number of flexible, retractile, tentacle-like organs radiating from diverse and definite regions of the periphery, each of which subserves as a tubular sueking-mouth, or for the purpose of grasping food. These may be literally cleseribed as many-mouthed, and have been appropriately designated lolystomata. The true zoological position of the Spongida or Porifera is not finally settled, the members of this important section having been formerly regarded as a subordinate group of the Rhizopoda or an independent elass of the Protozoa; eonsequently a tendency has been shown to assign to them a position more nearly approximating to that of the Coelenterata, or zoophytes and eorals, or plaee them among the more highly organised tissueeonstrueted animals, the Metazoa, these leing eharaeterised by groups of eells set apart to perform eertain functions for the whole animal. A division of labour is seen to be marked in these lower animals as the organism becomes more specialised, and the number of functions a eell performs becomes more and more limited as the body becomes more complex.

It has been found eonvenient to adopt the following definition of the Infnsoria as one more generally aeeeptable. The l'rotozoa in their adnlt eondition are furnished with prehensile or locomotive organs, that take the form of eilia, flagella, or of adhesive or suctorial tentaeula, but not of simple pseudopodia; their zooids are essentially unicellutar, free swimming or sedentary ; they are either naked, loricate, or inhahit a simple, mucilaginous matrix ; single or united in aggregrations, in which the individual units ate distinctly
recognisable ; not mited and forming a single gelatinons plasmodimm, as in Mycetozoa, nor immersed within and lining the interior cavities of a complex protoplasmic and mostly spiculiferons skeleton, as in the Spongida, their food substances being intercepted loy a single distinct oral aperture, or by several apertures through a limited terminal region or through the entire area of the gencral surface of the body. They inerease by simple longitudinal or transverse fission, by external or internal gemmation or division, preceded mostly by a quiescent or encysted state, into a greater or less number of sporular bodies. Sexual clements, as represented by true ova or spermatozoa, are entirely absent, but two or more zooids frequently coalesce ats an antecedent proeess to the phenomena of open formation.*

The infusorial body in its simplest type of development, as in Amoba, exhibits a struetural composition substantially corresponding with that of the lowest organised tissue eell. There is no distinct bounding membrane, or cell-wall, and it is throughout, and apart from the nucleus or endopart, one continuous mass of gramular matter, but otherwise homogeneous and undifferentiated protoplasm. l'rofessor Greef, who has made a study of the Amobla, describes motor fibrils in the exoplasm which are active and large in A. terricola. These are readily seen by staining with osmic acid, and, after washing this out with water, immersing in a weak alcoholic solution. In Amoba so prepared and examined with a high power, the whole body will be seen to be surrounded by a distinet double integumentary layer. Highly refractive bodies may also be seen in the interior, comected together by extremely fine filaments. Professor Greef conclndes that here we have to do with muscular fibrille, which traverse the contractile outer zone in a radial direction and there terminate for the time being. By a similar method, axial filaments ean be demonstrated in Heliozoa; these, it is believed, are the true motors of their pseudopodia, and also the axial struetures of the Acineta, a marine animal related to ciliate infusoria.

In the Amoba, at one time well known as the Proters umimulcule, Fig. 325, the marvellous body creeps onward in a flowing mamer, occasionally and langnidly emitting a single pseudopod first on one side, then on the other. More eommonly it puts on a dendroid or palmate form ; then again it assmmes more or less grotesque shapes

[^38]in which almost any eoneeivable inage may be imagined. The body, as will be seen in this highly-magnified figure, is full of gramules (with the exeeption of a thin elear outer hyaline zone), and near the entre is a globular or diseoid body known as the moleus, eomposed of slightly denser material than that which surrounds it. The division of the body into two is preeeded by a division of this mucleus. Near the latter is a elcar spherieal space- the eontraetile

Fig. 325.-Ameeba, Proteus animalcule; magnified 600 diameters.-(Warne).
vaeuole-whieh gradually expands, and then rather suddenly eollapses and reappears at the same spot, the systole and diastole being slow and eontinuons. The eontraetile vaeuole eontains a elear liquid whieh is expelled on the eollapse of the vaenole. This organ probably serves the double function of respiration and exerction. The Amoba is omnivorous, ehicfly a vegetarian, and, therefore, found on the ooze of ponds or on the moder surface of the leaves of aquatie plants, espeeially among Confervie. It ean be readily produeed by plaeing a fow fibres of fresh meat in an infusion of hay.

The Gregarime eonsist of a remarkable group of organisms, but these, although unicellular, are, for the most part, eonfined to the intestinal tract of worms and of the ligher animals, and will therefore be deseribed among internal parasites.

The fungus-animals, Myectozoa, have already been referred to in a previous chapter. The best known speeies, however, is found in tan yards in the form of creeping masses of naked protoplasm, termed Plasmodia. Cakes of protoplasm beeome segregated from the main mass, and break up into Amoba-like spores, which mite

Fig. 326.—Thizopoda lobosa.
A. Diffluyiapmotciformis; 13. Difluryia oblonga; C, D. Arcella aceminata and dentata. again to form Plasmodia.

The Rhizopoda, or rootfooted elass of animals, are among the most interesting simple organisms with whieh the mieroseope has made us aequainted. In the living state they have the power of protruding pseudopodia from the body, by whiel they ereep about, or eling to plants when in seareh of food. This group, in faet, ineludes Amœba, Foraminifera, Sun-animaleules, and Radiolarians. In the first the pseudopodia are simple and lobose; in the seeond they are slender, eonfluent and retieulate; while in the two last they are simple, radiating and somewhat stiff, and partake of a caleareous formation.

Of the Lobosa, we may take a well-known representative of the group, the Protomyxa, found at the bottom of fresh-water pools, espeeially those near bog-moss, where its minnte orange-eoloured particles of jelly-like substance are seen eveeping over stones or shells. If quietly watehed the psendopodia, some of which are broad and others slender, become quiescent spheres, whieh break up into numerous portions, eaeh of whieh becomes a new animal.

This group is divided into the shell-less (Nuda) and shell-formed ('Iestacea). The brown, horny eovering is often finely faected, and is either shaped like a dome, semi-eireutar, or flat as a box,

1

3

4

2

5

6
through which they protrude thoir fow or many pseudopodia (seen in Fig. 326).

In the Difflugia the lorica or shell is strengthened by the addition of silicious particles; in Euglypta it is sac-shaped, with a jagged free margin, the surface being covered by overlapping scales; while Arcella are capable of secreting vesiches of air in their interior, whereby they are enabled to rise to the surface. On some parts of our coast, if the sa sand be carcfully looked over with a pocket lens, there will often be found minute grains of a porcclain oval kind, belonging to the Miliolina, segmented or strung together not quite in the same planc.

Fig. 327. -Section of Rotalia. a, a, Radiating interceptal canals ; b, Intermal bifurcations; c, Transverse branch; d, Tubular wall of chambers.

Fig. 328.-Riosalina varians or Discorbina globutaria, with pseudopodia protruding.

The Foraminifera are rhizopods, whose simple protoplasmic bodies send forth, through perforations in the mombrane or euter covering of calcium carbonate and silica, branching rays of pseudopodia. The order is divided into two groups, the Imperforata and the Perforata ; in the former the shcll or harder structure possesses only one or more apertures, whereas in the latter; in addition to the main opening, the shell has its walls perforated throughout, which admits of minute pscudopodia or finc threads being protruded (Fig. 328). (See also Plate IH., Nos. $75-85$.) The vast majority of Perforatic form their shells, or rather skeletons, of calcium carbonate and silica, which renders them almost indestructible. Consequently the form is prescrved through ages, and they present objects of the greatest interest to the microscopist.

A curious and interesting feature of the Foraminifera-often an element of difficulty to the student-is the tendency of morlifications of types comprising the larger groups to run into parallel isomorphous series. Thus, if the entire class be roughly divided, as it sometimes has been, into three orders, comprising respectively the forms characterised by porcellaneous, arenaceous, and hyaline "tests," the same general conformation and arrangement of chambers will be found in each of the three series. The most remarkable example, cven among the smaller groups, is the Rotaliidæ, of which three or four genera may be arranged in parallel lines, and in more or less closely isomorphous series. In the report appended to the "Challenger" scheme of classification many examples are enumerated. In Arenacea we have a small family of Foraminifera, the external surfaces of which present a ridge and furrow arrangement, and the incrustations are entirely of a sandy nature held together by a cement secreted by the animal. (Plate XV., No. 1, Astrorhiza limicola.)

Gromia.-Among the more remarkable of the Perforata group the Gromia have a foremost place. They are very minute globular or oval-shaped bodies, about one-twenty-fourth of an inch in length, found in fresh, brackish, and salt water. The forms brought up in Dr. Wallich's deep sea soundings of 1860 were taken attached to pieces of corallines, or found loose among Globigerina ooze. At first there appears to be nothing peculiar about these tiny specks of matter resembling the ova of a zoophyte, but presently, at the smaller cond, a very fine thread is protruded, and then another, dividing into finer branches, and, ultimately, a complete network of filaments extends on all sides, and become attached to the side of the glass jar that contains them. Now, on employing magnifying power, every thread exhibits a circulatory motion, an up and down stream or cyclosis of granules suspended in a fluid mass. It is by means of these pseudopodia, as the threads are termed, that the Gromia moves its body along and clings to the glass. We may surmise, then, that thicse pseudopodia are either gelatinous, glutinous, or terminate in sucker-like processes. Increase in the "test," integument, is brought about, as in Difflugia, by the secretion of calcareous matter or by cementing fine silicious particles to the outer wall, as the protoplasm is seen to flow over the test, so that when it comes in contact with a diatom it is thercby drawn towards the oral opening and slowly digested.

Some considerable time elapsed between the diseovery of Gromia by Mr. W. Archer; Fi.R.S., and the demonstration of a nueleus and eontractile vesicle by Dr: Wallich. It was thought that in the whole of the Monozoa the nuclens was absent, but it is now known that this important body is cinbedded in the protoplasmie substance, and the reproduction of these curions animals is thereby secured. Among the better known speeies of Gromia is G. Dujardinii, chiefly distinguishable by the darker colour of the "test," by the greater quantity of silica that enters into the formation of its psendopodia, and by the formation of isogamous zoospores, two of which are seen in conjugation in Plate XV., No. 2. An excess of protoplasm must also be seereted to admit of so large a protrusion outside the testa.
G. Lieberkïhnia (of Claparède and Lachman), No. 5, differs in formation. Its shape is pyriform, and the opening whence the pseudopodia streams out is situated in a lateral depression about midway in the testa, c, o. Hence a trunk branch is seen to issue forth, and from this a ramification of threads, p sedp, extends to a eonsiderable distance in all directions.

The Miero-gromia of Hertwig, No. 4, is the minutest form of the genus yet discovered, and differs from those already deseribed in the mode of reproduction. The individual takes the shape of a water bottle with a short neck, whence issue forth a limited number of very slender threads. The test is quite transparent, and it was in this species that the nucleus and contractile vesicle, which lie embedded near the month, were first clearly made out.

The zoospores of Micro-gromia have a curions habit of uniting with-their neighbours to form a colony, No. 4. Their colonisation is apparently intended to facilitate multiplication. Reproduction is carried on somewhat after the manner of Yolvox. The globular bodies formed sink to the bottom of the glass vessel, and there remain for a time in a quiescent state. In the course of a day or two the mass assumes a motive appearance, increascs in bulk, becomes more ovoid in shape, and ultimatcly the nnclens shows the first sign of division. Vertical segmentation takes place, as at A, into two equal parts ; cach half is seen to possess its fair share of the nucleus and contractile vesicle. It then turns in the horizontal direction, and now there appears to be an upper and a lower division, the uppermost having a neck-like attachment, and this is making its way to the
narrow oral opening in the parent testa, as at B. Here it is seen pressing forward, and at c the neek is protruding some distance, and the seeond half assumes a bottle shape; at d the greater part of the animal is nearly set free, and after a short rest it fully lannches forth. It finally pulls itself together, as at e, and either develops a pair of Hagella and swims off, or assumes the form of an Actinophrys. In either ease, and in a very short spaee of time, the separated young animal is quite ready to re-unite, as at F , and assist in forming a new eolony of the species.

The Polymorphina belong to a low genus of the Foraminifera. They eonsist of a number of forms and exhibit a rather extensive series of variations, although consisting of a few simple types, and showing transitions between forms which at first seem to be distinct. The majority of spocies keep to the sea bottom; some few are pelagic, and occur in abundance on the surface of the ocean. Among the latter are the Globigerina: its shell is about one-fortieth of an inch in diameter, and usually composed of seven globular chambers arranged spirally in such a manner that all are visible from above, each chamber opening by a creseentic-slaped orifice into a dcpression in the middle of the next. Perfeet specimens bristle with long slender spines, the pores affording passage to psendopodia, which stream out along the spines. The more carefully-eonducted deep-sca investigations have brought to light the faet that the floor of the ocean, at great depths, and over a vast area, is formed of these white or pinkish eoloured bodies, all containing on an average about 60 per cent. of calcium carbonate. It is a question whether the Globigerinidse which make up the bulk of the ooze actually live at the bottom as well as the surface of the sea. This question has given rise to much disenssion. Dr. Murray came to the eonclusion that pelagic speeies do not live near the ocean floor. This opinion is partly based on the fact that the area of the Globigerina ooze eoincides with the area of surfaee of temperature at whieh these bodies are found to exist. When the surface water is too eold for them, they are not to be found, neither are they found below. The late Major s. R. J. Owen, while dredging the surface of mid-oeean-the Indian, and the warmer portion of the Atlantic-found attached to his nets a number of these interesting bodies, and which always made their apparanee
just about sunset. In Plate III., Nos. 43-52, a number of these interesting and varionsly-formed bodies are given, and an attempt is also made to show the richly-tinted colour appearanees presented by the sareode or protoplasm of the (itobigerina.
"Many of the forms," writes Major Owen,* "have hitherto been clamed by the geologist, but I have found them enjoying life in this

Fig. 329. - Globigerina and other bodies taken in deep sea soundings (Atlantic).
their true home, the silieious shells filled with eoloured sarcode, and sometimes this sareode in in state of distension somewhat similar to that found projecting from the Foraminifera, but not in sueh slender threads. There are no objects in nature more brilliant in their colouring or more exquisitely delieate in their forms and structure.

* "Jourmal of the Linn. Socicty," vol. viii., p. 202 ; vol. ix., 1. 147, 1866 and 1867.

Some are of but one colour, crimson, yellow, or blue; sometimes two colours are found on the same individual, but always separate, and rarely if ever mixed to form green or purple. In a globular species, whose shell is made up of the most delicate fretwork, the brilliant colours of the sarcode shine through the little perforations very prettily. In specimens of the triangular and square forms

Fig. 330.-Globigerina and other bodies taken in decp sea soundings, 1856 (Atlantic).
(Plate 1lI., Nos. 43, 44, 45 and 46), the respective tints of yellow and crimson are vivid and delicately shaded; in one the pink lines are concentrie; while another is of a stellate form, the points and uneoloured parts being bright elear erystal, while a beatiful erimson ring surrounds the central portion. A globular form resembles a specimen of the Chincse ball-cutting-one sphere within another this, however, appears to belong to a distinet species.
"The shells of some of the globular forms of these Polycystina, whose conjugation I believe I have witnessed, are composed of a fine fretwork, with onc or more large circular holes ; and I suspect the junction to take place by the union of two such apertures. That the figures of these shells become elongated, lose their globular form after death, and present a disturbed surface is seen in some of the figures represented in Plate III., Nos. 82-85." Those without internal chambers have been described as Orbulina universa, Plate III., Fig. 78, while Nos. 75 and 76, although members of the same family, have been separated, but all should certainly be united under Globigerina.
"The minute silicious shells of Polycystina present wonderful beauty and variety of form ; all are more or less perforated, and often prolonged into spines or other projections, through which the sarcode body extends itself into pscudopodial prolongations resembling those of Actinophrys. When seen disporting themselves in all their living splendour, their brilliancy of colouring renders them objects of unusual attraction. It will appear that they wish to avoid the light, as they are rarely found on the surface of the sea in the daytime ; it is after sunset and during the twilight that they make their appearance."

Many forms of Globigerina and Foraminifera are represented in Figs. 329 and 330. These varied and beautiful forms were dredged up with soundings made in 1856 for the purpose of ascertaining the depth of the Atlantic, prior to the laying down of the electric telegraph wire from England to America, and taken at a depth of 2,070 fathoms.

Heliozoa.-Actinophrys-Sol, "sun-animalcules," belong' to this group ; most of them inhabit fresh water (Plate III., No. 66). The chief characteristic, and the one to which they owe their name, is the possession of long, slender, somewhat stiff pseudopodia; these radiate from all parts of the body. The living animal usually contains green-coloured particles within a minute translucent spherical globule of about $\frac{1}{2} \frac{1}{50}$ th of an inch in diameter. It is, therefore, variously designated the green sun-animalcule, Acanthocystis, or ActinophrysSol. It is commonly fonnd amongst the weeds in clear pools of water, where desmids abound. The pseudopodia appear to be stiff; they are, however, quite flexible, and the body contains more than
one clear vesiele with a nucleus; reproduction is secured by the simple division eommencing in the mucleus. The little animal ean move over a hard surface by the alternate relaxation and stiffening of its pseudopodia; when one of these touches π small organism, it is believed to paralyse it, then envelop, and deliberately digest it. In another species, the lattice-animalcule (Cathrulina), the pseudopodia or silicious threads are arranged tangentially. It grows on a long flexible stalk, attached to an aquatic plant, the total length of which is about $\frac{1}{20} \sigma^{\text {th }}$ of an inel. The globular body is perforated in all directions, through which the fine stiff pseudopodia are thrust out; it is often known to form colonies.

In this order may well be placed the Radiolaria; they are, however, usually separated. But Radiolarians, whether seen alive or in their skeleton form, are surpassingly beautiful. By the favour of Messis. Warne, I am enabled to append a frontispicee plate to this volume taken from their "Royal Natural History." These bodies are all marine, and live in zones of several thousand fathoms, and like their congeners, the Globigerina, they avoid a strong light, and only appear after sunset. Their bodies are supposed to emit a phosphorescent glow, but more is known of their silicious skeletons than of their living forms ; yet it is not this feature that separates them from other orders of rhizopods, but the possession of a membranous central capsule enclosing the nueleus. The body substance outside this eapsule is highly vacuolated in some species, especially in surface forms. A few are without a skeleton, and these consist of oval masses of protoplasm, with slender pscudopodia. In a few species the skeleton is formed of a glassy horny substance, termed acanthin, arranged in the form of radiating spines.

Radiolarians secrete a silicious skeleton, which assumes a varicty of forms, as trellis-work, boxes joined by radiating spines, helmets, baskets, bee-hives, dises, rings, and numerous other forms. Hacckel has described upwards of four thousand species, and possibly as many more could be adrled to this number. Radiolaria are divided into two groups. In the one there is either no skeleton or one of silex ; in the other the skeleton is formed of radiating spines of a homy nature. These are again subdivided according to the characters of the eentral eapsule. In those forms with a silicious skeleton the geometrical pattern eonforms more or less to the shape of the central
capsule, being cither spherical or conical. The central capsule is regarded as being homologous with the calcarcous shell of Globigerina. Reproduction takes place by simple division into two, or by the body breaking up into spores, each provided with a flagellum, or two spores may fuse together, and the result will be an adult Radiolarian. Certain yellow corpuscles present in the onter part of their bodysurface change into micellular parasitic algals ; these can be separated and cultivated independently of their host. The Radiolarians live floating at all depths from 1,000 to 2,500 fathoms, and are distributed over areas in the central Pacific and the south-castern part of the Indian Ocean, the oozc forming the ocean bed being made up of their skeletons to an extent of 80 per cent. of the deposit; hence it has become known as Radiolarian ooze. The chalky-looking Barbadocs earth, a Tertiary formation, is composed almost entircly of their skeletons. Somewhat similar deposits cxist in the Nicobar Islands, in Greece, and in Sicily.

It will have been noticed that by far the greater number of Foraminifera are of marine origin, and these occur in such widespread profusion that the finest calcarcous particles which constitute the seashore in some places consist almost wholly of their microscopic remains. At former periods of the earth's history they appear to have existed cren in greater profusion than at the present time. This is evidenced by their remains forming the principal constituent of our largest gcological formations.

Moreover, during the Canadian Gcological Sinvey large masses of what appeared to be a fossil organism were discovered in rocks situated near the base of the Laurcntian scries of North America. Sir William Dawson, of Montreal, referred these remains to an animal of the foraminiferal type; and specimens were sent by Sir W. Logan to the late Dr. Carpenter, requesting him to subject them to a careful examination. As far back as 1858 sir W. Logan had suspected the existence of organic remains in specimens from the Grand Calumet limestone, on the Ottawa River, but a casual exanination of the specimens was insufficient to determine the point. Similar forms being seen by Sir W. Logan in blocks from the Grenville berd of the Laurentian limestone were in their turn tried, and ultimately revealed their true structure to Sir William Dawson and Dr. Sterry Hunt, who named the structure Eozoon Canadense.

The masses of which these fossils consist are composed of layers of serpentine altornating with cale spar. It was found by these observers that the calcureous layers represcnted the original shell, and the silicious layers the softer parts of the once living Foraninifera. The results were arrived at through comparison of the appearance presented by the Eozoon with the microscopic structure which Dr: Carpenter had previonsly shown to characterise certain mombers of the Foraminifera. The Eozoon not only exceeded other known Foraminifera in size to an extent that might have easily led observers astray, but, from its apparently very irregular mode of growth and general external form, no help was derived in its identification, and it was only by microscopical examination of its minute structure that its true character was ascertained. Dr. Carpenter wrote:-"The minute structure of Eozoon may be determined by the microscopic examination either of thin transparent sections, or of portions which have been subjected to the action of dilute acids, so as to remove the calcareons portion, leaving only the internal casts, or models, in silex, of the chambers and other cavities originally occupicd by the substance of one animal." Subsequently he found portions of minute structure so perfect that he was able to say that "delicate pseudopodial threads were originally put forth through openings in the shell wall of less than $\frac{1}{10000}{ }^{\text {th }}$ of an inch in diameter" (Plate 111., Nos. 64, 65). In a paper read at the meeting of the Geological Society he stated that he had since detected Eozoon in a specimen of ophicalcite from Bohemia, in a specimen of gneiss from near Moldan, and in specimens of serpentine limestone sent to Sir C. Lyell by Dr. Gümbel, of Bavaria. These also were found to be parts of the great formation of the "fundamental" gueiss, considered by Sir Roderick Murchison as the equivalent of the Laurcutian rocks of Canada.*

If the remains of Foraminifera be dissolved in dilute hydrochloric

[^39]acid, an organic basis is left, after the removal of the calcareous matter; aceurately retaining the form of the shell with all its openings and pores. The carthy constituent is mainly calcium earbonate; but there is also a small amount of phosphate of lime in the shells of many of them.

Fig. 331.

1. Separated prisns from onter layer of Pinna shell ; 2. Skeletons of Foraminifera from limestone ; 3. Recent sliell of Polystomella crispa; examined under dark-ground illumination.

Infusoria.

We are now brought face to face with animals which possess considerable variation of structure, Infusorial animalcules, as they are termed. It was Ehrenberg who attributed to them a highly complex organisation, but later observations negatived these views and showed them to be animals formed of one or more eells, or colonies of so-called individuals. It is true that this eell or united protoplasm may show a wonderful amount of differentiation, what with its nuelcus and vacuole, mouth and gullet, its variouslyarranged cilia or flagella, its contractile fibres, its separation into an outer denser and a more fluid inner protoplasm, and its horny cup and stalks.

In these few lines we have a condensed summary of the special
qualities of minute forms of life that afford much interesting work for the microscope.

Among those widespread, and in some respeets heterogeneous, forms of life associated mader the comprehensive title of Infusoria, we

Fig. 332.-Acineta, magnified 600 diameters (IName).
encounter types that not only differ very widely from one another, but which occupy a different rank or position, so to speak, with regard to the relation they bear to each other, and also to the outlying representatives of the series-differences that permeate throughout the ranks of this extensive group. Furthermore, a
considerable number of Infusorial animalenles foreshadow or typify, in a eorresponding degree, the separate or associated cell elements out of which higher tissue structures-metazoic organisms-are bnilt up. We may take the well-known example Euglena viridis (Plate IlI., No. 67), or Parameeium (No. 74), and their allies; these would appear to be the prototypes of Turbellaria. Another more lowly organised group of the Ciliata exhibits a distinct and highly-interesting affinity to the Opalinidr. There are many other species (Acineta, Plate III., No. 68, for instanee), which at first sight would seem to stand by themselves and present no marked agreement with any metazoic type. Indeed, the function of these and other polypites consists simply in seizing food and eonveying it through perforations at the extremity of eaeh separate tentaculum to its interior. In Acineta certain of the tentaeles only are suetorial, and these, being the inner ones, fulfil the ingestive function, while the peripheral series are prehensile. This stalked club-shaped body (Fig. 332), whieh fixes itself to seaweeds or Bryozoa, is seen to have a nueleus, and also clear vesieles in the body-substance; its embryos are eiliated. It is an objeet of eonsiderable interest even among eurious marine animalcules; one or two species inhabit fresh water. The spiral-mouthed Spirostomum are among the largest of the elass, and in sunlight are visible to the naked eye as slender golden threads of about $\frac{1}{10}$ th of an inch in length. The mouth slit, extending half the length of the body, is bordered on one side by eilia. The body is eylindrieal and the surfaee eovered with rows of eilia. Its multiplication takes place by transverse fission through the middle.

Flagellate Infusoria.-The charaeteristic of this group, as its name implies, is the possession of one or more flagella or whip-like appendages, at the base of whieh is an opening in the denser surface layer of protoplasm, and in the interior a nueleus and one or more contraetile vacuoles, and not infrequently a brilliant red spot of pigment known to microseopists as the eye-spot. The Monads, whieh constitute the simplest members of the group, are eommonly found in fresh-water pools and vegetable infusions. The typieal form consists simply of a spherieal or oval cell provided with a flagellum. The Volvox was formerly placed in this group, but as it contains chlorophyll it is properly claimed by the botanist. The collared group possesses
cup-like collars, and these frequently secrete horny receptacles or cups, and form clegant tree-like colonies.

The mail-coated group are of very varied form, the body being often prolonged into spiny processes. They have two long flagella which fit into grooves purposely provided. But the most interesting and remarkable are the phosphorescent animalcules (Noetiluca), whose beautiful bluish-green luminosity on the surface of the sea has attracted attention from very early periods. It was, however, not until the first half of the present eentury that the luminosity was discovered to be due to the presence of multitndes of these minnte jelly-like spheres.

Fig. 333.-Noctiluca miliaris ; magnified 150 diameters.

Fig. 334.-Pyrocystis ; maguified 150 diameters.

The body of the Noctiluea (Fig. 333) is a nearly globular-shaped eyst, enclosed in a tough membranous wall, from a grooved opening in which a striated museular flagellum or proboscis is projected forth, and it is by means of this the animal swims away even in rough seas. A finc whip-like flagellum is also located in the same groove. At the apex of the fumnel there is a mass of protoplasm which extends itself as a widely-meshed, highly-vacuolated network to the imner wall of the eyst, whence it is believed the phosphorescent light emanates. It multiplics by self-division, first becoming encysted after withdrawing its flagellum, and then breaking up into numerons eiliated helmet-shaped swarm spores. Frequently two organisms fuse into one and then divide into spores.

Noctiluca mainly eonfines itself to the shallower seas, but there are related forms met with in the warmer open seas; these belong to the genus Pyroeystis (Fig. 334). In one variety the body is
perfectly spherieal and without the big flagellum or proboscis. Professor Butsehli, however, regards this species as an encysted or resting phase of the commoner and better-known form.

The late Mr. Philip Gosse, F.R.S., was the first microseopist to deseribe the Noctiluca. After eareful observation, he wrote in his "Naturalist's Rambles" as follows:-"I had an opportunity of becoming aequainted with the minute animals to which a great portion of the luminousness of the sea is attributed. One of my large glass vases of sea-water I had observed to become suddenly at night, when tapped with the finger, studded with minute but brilliaut sparks at various points on the surfaec of the water. I set the jar in the window, and was not long in discovering, without the aid of a lens, a goodly number of the tiny jolly-like globules of Noctiluca miliaris swimming about in various directions. They swam with an even gliding motion, much resembling that of the Volvox globator of our fresh-water pools. They congregated in little groups, and a shake of the vessel sent them darting down from the surface. It was not easy to keep them in view when seen, owing rather to their extreme delicacy and colomrless transparency than to their minutencss. They were, in faet, distinctly appreciable by the naked cye, measuring from $\frac{1}{50}$ th to $\frac{1}{30}$ th of an inch in diametcr."

Among the numerous fresh-water members of the flagellate infusoria, there is one which especially calls for notice, Codosiga, diseovered by the late Professor H. J. Clark. This minute body bears a delieate funnel-shaped protoplasmic expansion or eollar, common to the several members of this organic series. The flagellum is plaed at the basc of the oral opening, and within the circumscribed area of the collar, which is of such extreme tenuity that its true form and nature can only be determined by a very cureful adjustment of the achromatie condenser and aceessory apparatus employed, together with a wide-ingled objcetivc. It is scen to greater advantage by supplying the animal with very finc particles of eolouring matter. In this way it is found that the infundibuliform cup consists of protoplasm, through which the flagellum is protruded and withdrawn into the general substanee of the Nonad's body (Fig. 335). As many as twenty or more zooids are attached to the extremity of a slender footstalk. The length of the body, exclusive of the collar, is $\frac{1}{2} \frac{1}{500}$ th to the $\frac{1}{200}$ th of an inch. The habitat of these
bodies is fiesh water. Mr. Saville Kent in 1869 discovered some of these interesting infusoria in the London Docks.
"The more exact significance of the special organ, the collar, is manifest by the cireulatory currents or cyclosis induced, and there can be no room for doubt that this structure finds its precise homologue in the psendopodia of the foraminiferous group of the Rhizopoda, in which a similar eirculation or eyelosis of the constituent sareode is exhibited. The whole of this highly-interesting flagellate

Fig. 335.-Codosiga umbellata ; a few eolonies of Zooids diverging from the purent foot-stalk with llarella extended, magnified 650 diameters.
order, a comparatively small one as yet, are remarkable for their pale glancous green or florescent hue, such colour assisting materially in their reeognition, even when the magnifying power employed is insufficient for the detection of the very characteristic collar with its enclosed flagellum." *

Ciliata.-Types of Ciliata olntaned from hay infusions are very numerous. Ehrenberg's animaleules were mainly of a large size, and of those belonging to the higher order of the Ciliata, pertaining to such genera as Paramecium, Colpoda, Cyelidium, Oxytricha, and Vorticella. These, however, represent but an insignifieant minority of

[^40]the hosts of flagellate forms which abound in our humid climate, and in hay infusions in particular. In such infusions, watched from day to day and produeed from hay obtained from different localities, the number of types developed in regular sequence is found to be perfectly marvellous, eommencing with the Monas proper, Amphimonas and Heteromita; while Baeteria, in their motile and quieseent forms, are invariably present and furnish an abundant supply of material for the microscope.*

Vortieellidac constitute one of the most numerous families of the ciliate infusoria. All its members are at onee reeognised by their normal stationary condition, and by the structure of their oral system. In but few of the genera is there any marked divergenee from this formula, and when any exists it is made manifest by an increase in development of some one of its elements at the expense of another. For instanee, in the genus Spiroehona, the external edge of the eneircling border or peristome is suppressed, while the immer portion is abnormally developed into a transparent and highly elevated spiral membrane. The bell-animaleules usually possess stalks, and are either solitary or form branching eolonies. Conichilus vorticella (Plate III., No. 80) is a well-known member of the eolony stoek, all the zooids of whieh are mited on a slender branehing pediele, whieh eonsists of a eentral contractile cord enelosed within a tubular hyaline sheath. There are many other shrub-like eolonies

[^41]all variously modified in form and character. The Epistylis opercularia, or nodding-bell animalcule, is an interesting member of a numerous lost of solitary short-stalked forms (Fig. 337). When the animal is disturbed, the heads drop down towards the stalk. This animalcule has been fomd to form a colony ; and another, Carchesium, whose tiny branched tree-like colonies resemble little whitc globular masses of moulds, are seen at once to drop down towards the base of the colony with a jerky movement if the cell be touched. By a process of encysting, all the Vorticellæ and many of the more highly-organised ciliata have the means of what may be termed self-preservation. Should the water dry up in which they have been living, the little animal encases itself in mud at the bottom of the pool. Should this be baked by the sun not the least injury arises, for at this stage it crumbles into dust, and is carried by the wind to long distances, but the first shower of rain calls it back to active life, and soon after it is seen to issue forth as a free swimming bud.

Thuricola valvuta (Plate III., No. 72) possesses a hinge-like process which closes up like a door when the animal contracts itself into its case. This very effectually protects it from assault. Both portions of the valve are capable

Fig. 336.—Vorticella microstoma. of extension. Another group of ciliate infusoria also possess a limited number of cilia, but these, although restricted to the under surface of their bodies, have an umestricted range of motion. The group are all free swimmers, belonging to the genus Oxytrieha. They possess two separate alimentary orifices, neither of which are situated at the extremities or encascd by a dense integument. Their locomotive organs consist either of setre, vibratile cilia, or non-vibratile styles or uncini, variously situated, and all serving to make these infusorial animals very active (Platc III., Nos. 73 and 77). A typical species is the mussel-animalcule (Stylonychia, Fig. 338), common in all infusions and pools of water. Its body is oral and flattened, and about $\frac{1}{100}$ th of an inch in lengtli. At one end a funnel-shaped depression or mouth, with a ciliated margin, leads to the inner part of the body, in which are two oval bodies, a uucleus and a contractile vacuole, which is seen to contract rhythmically. The creature can
also stalk along by means of its cilit or setre, and set up currents to the mouth. Plate III., Nos. 70, 71, 72, 73, and 74, are types of these interesting bodies.

Dr. Balbini believes a true sexual generation oeemrs among these organisms, but, with the exception of the Paramecium, this has

Fig. 337. - Nodding-bell animalcule (Epistyles operculate $) \times 250$ (Warne).

Fig. 338. -Mussel-animalcule (Stylonychia mytilus) under surface.
a. Mouth ; b. Contraetile vaenole; c. Nuclens. (Magnified 150 diameters.)
not been seen to take plaee; even Gruber's more reeent investigations appear to be ineonelusive on this point. Conjugation, however, it is said takes plaee among some attached forms, as in the Stentors. These have been seen to put forth a bud from the body base, and soon after become free swimming bodies. The trumpet-inimaleule (Stentor), a eonspieuous member of the ciliata, is comparatively large, being about the $\frac{1}{25}$ th of :un inch in length when extended to the fill size. It is usuatly found attached to the under
sides of duckweed, and is continually changing its form from that of a small knob when contracted, to the trumpet shape seen in Fig. 339, No. 6, when fully extended, and from which it derives its name. 'The long cilia projected from the upper part form a spiral within the margin of the open mouth leading to the digestive sac. A contractile vacuole lies to the right of the oral opening. New individuals are produced by the process of budding, and in the form of ciliated embryos from the nucleus. Stentors are commonly met with in fresh water, and are usually of a brilliant green colour. These little bodies will bear cutting up: if only a fragment of the mucleus be included in the section, the injury is soon repaired.

Rotifera, or Wheel-animalcules (Fig. 339).-In this group we have a higher type of animal, with a more complex organisation than those previously noticed. The great majority inhabit fresh water, and are readily developed in hay infusions, in bog-moss, in housetop gutters, everywhere if looked for after a shower of rain. The rotating organs from which these fascinating animalcula derive their name consist of two disc-like bodies whose margins are fringed with rows of cilia, which create currents toward the oral aperture, and which have given rise to the optical delusion of rotating wheels. The disposition of the cilia is so arranged as to bring food to the rotifer and conduct it to the mastax or digesting apparatus-a muscular bulb moved by a series of muscles-the gastric glands and stomach. The great transparency of the whole structure permits of the animal economy being easily studied. The body' is covered with a horny envelope of two layers, and is divided into segmental divisions, which slide into each other telescopic fashion. Consequently, as the water dries up, the animal is for a long time rendered indestructible and capable of resisting varying temperatures and the action of caustic reagents.

Rotifers are oviparous, and their eggs are conspicuous and of three kinds. The common soft-shelled eggs produce females, the smaller and more spherical produce males. The ephippial, or smmmer eggs, are often beset with spines or bosses; these have only a membranons covering, and are hatehed soon after they are lad, or before learing the ovit sate. The male rotifer is but a third of the length of the female, often without cilia, and appears to have no alimentary tract ; indeed, the only internal organ is a large sperm
sac. Rotifers have been divided by Dr. Hudson and the late Mr. Gosse in their charming work on these very interesting "Wheclanimalcules" into four orders, according to their powers of locomotion, as follows:-(1) Rhizota, the rooted; (2) Bdelloida, the

Fig. 339.

1. Rolifer vulguris with its eilia; b. rotating ; c. horn ; d. œesophagus; f. onter ease; g. ova, foot protruding throngh outer ease. 2. Same in the contracted state and at rest, showing the segmentation of the body and development of young. 3. Pitcher-shaped Praehionns, furnished with two horny projections; a. mastax ; b. shell; c. cilia, rotating dise; d. foot. 4. Baker's Brachionns, with six horny sutre; these are retracted when the cilia are in action ; the letters relate to the same internal organs as in the former ; the ova sac seen filled with eggs. 5 and 6. B. ovalis, closed, and with cilia displayed.
lecch-like, that swim and creep like a leech ; (3) Ploìma, the scaworthy, that only swim with their ciliary wreath ; (4) Scirtopoda, the skippers, that swim with their cilia and skip with arthropodous limbs. These, again, are subdivided into fanilies. With such hardy creatures as Philodina, Adincta, Brachionus, ise., creatures to whom extremes of cold, heat, and drought are the ordinary conditions of life, nothing can be easicr to keep going throughont the year.

Mr. C. F. Rousselet, who has so thoroughly succeeded in mounting Rotifers with their cilia fully extended, recently exhibited at one of the evening meetings of the Royal Microscopical Society, London, no less than four hundred specimens in a uatural and perfect condition, the nervous system being seen more clearly from its snccessfnl staining throughout the body than in the living rotifer.

There is also a fanily of Rotatoria with a single rotatory organ, disposed around the margin of the case. This comprises at present a very small group. The Ecistes is a member of the family (Plate III., No. 69). A single ciliary wreath leads to the alimentary canal, and a pharyngeal bulb or mastax comprises the apparatus of nutrition. The visual organs are red, as in other rotifers, and the ovarium contains several ova, shown in No. 69. The envelope is a gelatinous transparent sheath, into which the animalcule can withdraw itself, its attachment to the bottom being by the end of the foot-like tail. The most interesting among this genus are the Floscularians. These creatures may undoubtedly be described as among the most beautiful and interesting of infusorial animals.

The Stephanoceros, " crowned animalcule," as it is termed, is about $\frac{1}{36}$ th of an inch in length, and enclosed in a transparent cylindrical flexible case, beyond which it protrudes five long arms in a graceful manner. These, touching at their points, give a form from which it derives its name. These arms are furnished with several rows of short cilia, which seizc the food brought within their grasp until it can be swallowed. In addition to the rotatory organs, they have short flexible processes, or cornu, attached to the outside of one or more of their lobes. The water vascular system consists of two canals arising from a small pyriform contractile vesicle, sitnated below the stomach. The ova, after leaving the ova sac, remain quiescent until their cilia are developed. Floscularians, like Melicertans, have a certain aftinity in form with Vorticellians and Stentors, and also with Campanularix, among polypes. Their cilia are less regular when in action than in other Rotatoria. When they retreat into their transparent cells they appear to fold themselves up. Their internal structure can be seen throngh the external case, and ova are observed enclosed in an ova sac ; when thrown oft they remain quiescent until the formation of their cilia. 'The whole family furnish interesting objects for microscopic investigation.

Melicerta ringens ("beaded Melieerta"). -Of all the Meliecrta, or "horny floseularia," this is the most beautiful. Its crystalline body is enelosed in a pellueid covering, wider at the top than the bottom, of a dark yellow or reddish-brown eolour, which gradually beeomes encrusted by zones of a variety of shapes, eemented together with a peeuliar seeretion that hardens in water. It derives its name from these pellets, which have the appearance of rows of beads. Mr. Gosse furnished an exeellent aceount of the architectural instinets of Melicerta ringens: "An animalcule so minute as to be with diftieulty appreciable by the naked eye, inhabiting a tube composed of pellets, which it forms and lays one by one. It is a mason who not only builds up his mansion brick by brick, but makes his bricks as he goes on, from substances which he collects around him, shaping them in a monld which he carries on his body.
"The pellets composing the case are very regularly placed in position; in a fine specimen, about the $\frac{1}{30}$ th of an inch in length, when fully expanded, as many as fifteen longitudinal rows of pellets were ebunted, which gave about thirty-two rows in all. As it exposes itself more and more, suddenly two large rounded dises are expanded, around which, at the same instant, a wreath of eilia is seen performing surprising motions.
"On mixing earmine with the water, the comrse of the ciliary current is readily traced, and forms a fine spectacle. The particles are hurled round the margin of the disc, until they pass off in front through the great sinus, between the larger petals. If the pigment be abundant, the eloudy torrent for the most part rushes off, and prevents our secing what takes place; but if the atoms be few, we see them swiftly glide along the faeial surfaee, following the irregularities of outline with beautiful preeision, dash round the projecting chin like a fleet of boats doubling a bold headland, and lodge themselves, one after another, in the little cup-like receptacle beneath. Mr. Gosse, believing that the pellets of the ease might be prepared in the cup-like receptaele, watehed the animal, and presently had the satisfaction of seeing it bend its head forward, as anticipated, and after a seeond or two raise it again ; the little cup having in the neantime lost its contents. It immediately began to fill again ; and when it was full, and the eoutents were eonsolidated by rotation, aided probably by the admixture of a salivary seeretion, it was again
bent down to the margin of the case, and cmptied of its pellet. This process he saw repeated many times in succession, until a goodly array of dark-red pellets were laid upon the yellowish-brown ones, but very irregularly. After a certain number were deposited in one part, the animal would suddenly turn itself round in its casc, and deposit some in another part. It took from two-and-a-half to three-and-a-half minutes to make and deposit a pellet."

Melicerta may be found in clear pools, mill-ponds, and other plaees through which a current of water gently flows. If a portion of water-weed be brought home and placed in a small glass zoophytetrough, and earefully examined with a magnifying power of about fifty diameters, a few delicate-looking projections of a reddish-brown colour will probably be seen adhering to the plant; these are the tubular cases of Melieerta, which, after a short period of rest, will be seen to be animals of $\frac{1}{12}$ th of an inch or more in length.

Porifera. Spongiadæ.

Sponges.-The term Porifera, or "canal-bearing zoophytes," was applicd by the late Dr. Grant to designate the remarkable class of organisms known as sponges, met with

Fig. 340.-Spongia panicca.
Bread-erumb Sponge, showing eurrents entering surface a, and leaving by oscules b. in every sea, and numbering about two thousand species, varying in size from a pin's head to masses several feet in height ; and weighing from a few grains to over a hundred pounds. Sponges assume an endless varicty of shapes, as eups, rases, spheres, tubes, baskets, branched-like trees, but often as shapeless masses. When living they are all eolours and all consistences, soft and gelatinous, fleshy, leathery or stony. A fuller knowledge of sponges was gained in 1825, when Dr. Robert (irant examined a fragment of living sponge under the microseope. On bringing it to the side of the glass cell in which he had preserved it, he beheld this living fountain pouring forth a torrent of liquid matter in rapid succession, and lic was at onee convinced that a current flowed out of the larger orifiees. He introduced a small portion of
fine elaalk, and saw particles driven into the interior, and pass ont again by different ways. To determine the eanse of the currents, it was necessary to make a eloser examination of the anatomy of the sponge. For this purpose he cut or peeled off thin sections, and saw that the whole substance was divided into flagellated ehambers, enclosing spherical and other bodies, and perforated by pores. Eaeh chamber proved to be about $\frac{1}{500}$ th of an inch in diameter, groups of them opening by a wider orifiee into a eommon spaee, or eanaliculus, and joining others to form eanals terminating in larger oscular canals. The walls throughout are lined with flat cells, but in the flagellated chambers the living eells are more or less eylindrieal, and each is provided at the free end with it whip-like appendage, or flagellum. Furthermore the upper margin was seen to be expanded into a thin hyaline collar, so that the whip appeared to have its origin in the centre of a basin or funncl. The currents of water traversing the body of the sponge are kept up by the movements of the flagella of the eollar-eells. These beat the water in the flagellated chambers into the rootlcts

Fig. 341. - A section of a flagellate chamber of a Fresh-water Spouge, showing collar-cells (Vosmacr). of the canals leading to the oscules. To replace this, water flows into the flagellated ehambers from the rootlets of the canals passing down from the groups of pores in the skin. The currents cutering the sponge bring in oxygenated sca-water and minute food particles, such as diatoms and infusorial organisms; the currents from the ascules eontain an exeess of earbonie aeid of waste products, resnlting from vital aetivity and indigestible remains. The eells lining the canals effect the exchange of gases, and take up food partieles.

Professor Grant's carefnl and instrnctive researehes were begno on the smaller kind of British sponges hanging down from rocks (Spongia coclitu), and on which he gazed for "twenty-five minutes, until obliged to withdraw his eyes from fatiguc." This sponge fixes itself
by a root ; and the currents enter throngh the stem and body, and leave prineipally by oseules placed on the branches.

At present too little is known as to the plysiology of digestion in sponges to permit of a definite statement on the subject. In specimens fed upon carmine the eollar-cells have been found loaded with granules; in others, again, the flat cells lining the subdermal eavities have been found gorged with colour gramles. From Bowerbank's monograph on the British Spongiadx (1864 and 1874) nothing of

Fig. 342.-An Ascon Sponge.
A. Magnified $\times 20$ diameters ; B. $\times 80$ diameters; C. Transverse section; D. Collar-cells, $\times 700$ diameters. The embryo, an extremely minute oval cyst, is furnisherd with a flagellum for swimming; in the third it assumes an amœboid form (Warne.) importance can be gained on the subject ; in faet, it relates almost entirely to the structure and organisation of sponges in their dried or preserved condition, and therefore is only of value for purposes of specific identification. One of the simplest of living sponges, the microscopic structure of which it is possible to trace, Ascetta mimordialis, is found on seaweeds in the Mediterranean. In its simple unbranehed condition it forms a minute white sace ahout one twenty-fifth of an inch in height, opening above by a wide round oscule and narrowing below to a stalk (Fig. 342). The walls are very thin and perforated by pores, through which the water passes into the interior. The walls of the sac are composed of two layers, an inner lining of collar-cells, and an outer layer consisting of a gelatinous matrix containing amoboid bodies and transparent threc-rayed spicules. These serve to support the walls and as a frame-work for the pores, as in all the sponges. By eliminating the spicular skeleton, and by supposing the tube to be more globular, the "olynthus form" will be obtained, which has been regarded as the hypothetical ancestor of all sponges. A canal system arises when the walls grow thick or form folds, or give off pouches or tubes. lirom these chamels arise
incipicnt in-current canals, hetween the inside or lumen of the folds and that forming the out-current camal system.

There is a common ciliated Sycon found on scaweed round the British coast ; it has the appearance of a white sac about an inch in lieight, with a crown of glassy spicules around the orifice. The vertical cavity of the sac is surrounded by a wall of closely-packed horizontal tubes, opening at their immer ends into the central cavity, but externally ending blindly. The central cavity of the sac is surrounded or lined with flat-cells, and the radial tubes with collar-cells, and the walls of the tubes are perforated. Here the spaces between and outside the densely-packed tubes are the in-current canals. In an equally common British sponge, Grantia, which forms small flat white bags, a rudimentary cortex covers the outer ends of the tubes. In Grantiopois, the cortex becomes quite thick; as the radial tubes in this species become more branched and the mesoderm thicker, so the passages or in-current canals bccome more complicated. Common silcious sponges develop in a different manner from the calcareous ones, namely, from a hollow conical sac open at the top and with a flat base ; the spherical flagellated chambers at a very early stage forming a mammillated layer in the walls. Plakina, one of the simplest silicious sponges, encrusts stones with a Heshy crust, consisting of a sac with a flat base attached to the stone in sucker-like fashion, and with the rest of the walls forming simple folds. 'The spaces between and outside the folds form the in-current, and those in the lumen of the folds the out-current, channels. Each of the flagellated chambers in the walls of the folds commmicates with the in-current spaces throngh several pores, and opens into the outcurrent spaces by one large pore, the currents of water passing out by the central osculc. Herc we have a general idea of the formation of all the commoner forms of sponges. In the more delicate species, as that of Vemus' flowerbasket, the cells are formed by a trellis work of large spicules of silica. Groups of cells congregate in the ground substance and secrete a notwork of cylindrical fibres and spicules, which, althongh they remain to a certain extent separate, arc always beautifully adapted for purposes of support. In addition to the support these afford, the skeleton spicules afford a means of defence against the attacks of small amimals. *

* R. Kirkpatrick, Warne, Op. Cit., pp. 532-3.

A fairly good idea will be gained of the internal structure of sponges from the section made of a Geodia Barretti, Fig. 34.3.

Remroduction.-As regards the modes of reproduction, both mate and female cells are found in the mesoderm. The male cells

Fig. 343. - Geodia Barvetti (Bowerbank).
A tangential seetion of geodia sponge exhibiting the radial disposition of the faseienli of the skeleton, and a portion of the mesoderm of the sponge, magnified 50 diameters; a. intermarginal eavities; \quad. a basal intemarginal eavity ; c. ova imbedded in the dermal erust of the sponge; d. large patentoternate spieula, the heads of whieh form areas for the valvilar bases of the intermarginal cavities : e, recurvo-ternate defensive and aggressive spienla within the smmmits of the intereellular spaees of the sponge ; f. portion of the interstitial membrane of sponge, erowded with minnte stellate spienla; g. prortions of the secondary system of external defensive spienla.
generally give rise by division of the muclens to masses of sperm atozoa, each of which possesses a conical head and a long vibratile filament. The ova appear as large round cells, and when conglomerated in masses, resemble those of Micro-gromia, which, after fertilisation, mondergo segmentation or division, first into two cells, and again dividing and sub-dividing, until a chuster or mass of cells results (as

PLATE XVI.

SKFLETONS AND SYICULA OF SPONGES.
seen in Fig, 343). The outer layer of the egg-shaped embryo beeomes more cylindrical in shape, and is now provided with cilia, and soon appears as an independent minute oval body. If a bread-erumb sponge be cut open in the autum, the embryo will be seen as bright yellow spots within the body-substance. By keeping speeimens in a vessel of water, the embryos will be seen to eseape from the oseules, and swim freely about with the broad end forwards. After twenty-four hours of independent existenee, the embryo remains stationary, and fixes itself by its broad end, whieh beeomes flattened out. By a remarkable transformation, the larger granular eells of the interior burst out and grow over the outer flagellate layer of eells, and the latter beeome the eollar-eells of the adult sponge. A minute sponge with one oseule results from the development of the fertilised ovum. An extensive erust with mumerous oseules may be regarded either as a eolony in whieh eaeh oscule represents an individual, or simply as one individual in whieh the growth of the body neeessitates the formation of new ehannels for the eonveyanee of food materials. The embryos of some of the fresh-water sponges (Spongillidæ) living in ponds, eanals, lakes and rivers all over the world, as soon as they become fertilised undergo segmentation, and form oval ciliated bodies, in appearance somewhat resembling the gastrula of Monoxenia, one of the simplest kinds of eorals. Fresh-water sponges are green in eolour, due to the granular bodies whieh erowd the eells near the surface of the sponge ; that this colour is not due to the formation of ehlorophyll is seen on keeping them in a shady plaee, when they become pale grey or yellowish-brown, and if kept quite in the dark they entirely lose all eolour.

A few sponges possess no skeleton whatever; exeepting the gelatinous ground substance; in some specimens the skeleton is mainly or entirely eomposed of foreign partieles of sand or the remains of Foraminifera. Others are eomposed of ealeium earbonate, and form the class Calearea, the spieules of whieh are white, and opaque in mass; but on plaeing portions in hydroehlorie acid, the skeleton is dissolved away with efferveseence, and the spienles are left behind transparent and glassy. A great variety is seen in the different species, as will be gathered from the few typieal forms shown in Plate XfII, and whieh even in their fossilised state remain unaltered, the siliea whieh enters so largely into their eomposition
being indestructible, the ealcareous matter alone beeoming separated in exposure to the aetion of air, or by boiling in hydrochlorie aeid. The only pereeptible differenee noticed is an inerease in transpareney, and this, on mounting them in Canada balsam, adds to their beauty when examined by polarised light.

Hyalonema, the "glass-rope" sponge of Japan, consists of a bundle of from 200 to 300 threads of trinsparent siliea, glistening with a satiny lustre like the most brilliant spun glass; eaeh thread is about eighteen inehes long, in the middle the thickness of a knitting-needle, and gradually tapering towards either end to a fine point ; the whole bundle eoiled like a strand of rope into a lengthened spiral, the threads of the middle and lower portions remaining eompaetly eoiled by a permanent twist of the individual threads ; the upper portions of the eoil frayed out, so that the glassy threads stand separate from each other. The spieules on the outside of the eoil stretch its entire length, eaeh taking about two and a half turns of the spiral. One of these long needles is about one-third of a line in diameter in the eentre, gradually tapering towards either end. The spirally twisted portion of the needle oceupies rather more than the middle half of its entire length. In the lower portion of the eoil, whieh is embedded in the sponge, the spieule beeomes straight, and tapers down to an extreme tenuity, ultimately beeoming so fine that it is scareely possible to trace it to its termination.

Within the mesodern, and in oseule, was notieed a deep brownishorange coloured shrunken membrane; this was traeed to a parasitie polyp. Sinee this was first observed on an early speeimen of the Japanese glass-sponge, the same parasite has always been found growing on and in all these eurious sponges. The surface of the stalk above the portion embedded in the mud is seen to be eorered with a warty erust of parasitie polyps. All the speeimens of Hyalonema in the European museums in 1860 lad their stalks overgrown with Palythoa, while many lad their bodies also eovered with another parasite, and whiel, fortunately for the sponge, did not form a sandy erust. The polyps, having no skeleton, dry up entirely, and leare behind no trace exeept the stain first referred to. Unlike a parasite, however, the polyps do not feed upon the juices and soft parts of the sponge, nor indeed do they
share its food, but simply settle upon the sponge and fecd upon any food that may chance to come within their reach.

The dredgings of the Challenger brought to the surface many entirely new forms of glass-sponges and from great depths. One of the most beatiful, known as Carpenter's glass-sponge (Pheronema), is composed of concontric lamina of silica deposited around a fine central axial camal. These form a ganze-like network throughout, but with no regularity of structure.

Clionce. - Not the least wonderful circumstance connected with the history of sponges is the power possessed by certain species of horing into substances, the hardness of which might be considered as a sufficient protection against such apparently contemptible focs. Shells (both living and dead), coral, and even solid rocks are attackerl by these humble destroyers, gradually broken up, and, no doubt, finally reduced to such a state as to render substances which would otherwise remain dead and uselcss in the cconomy of mature available for the supply of the neccssities of other living creatures.

These boring sponges constitute the genus Cliona of Dr. Grant. They are branched in form, or consist of lobes united by delicate stems, and after having buricd themselves in shells or other calcareous objects, preserve their communication with the water by means of perforations in the outer wall of the shell. The mechanism by which a creature of so low a type of organisation contrives to produce effects so remarkable is still doubtful, from the great difficultics which lie in the way of coming to any satisfactory conclusions upon the habits of an animal that works so completely in the dark as the Cliona celata. Mr. Hancock, in his valuable memoir upon the boring sponges, attribntes their excavating power to the presence of the multitude of minute silicious crystalline particles adhering to the surface of the sponge ; these he supposes are set in motion by ciliary action. In whatever way this action may be produced, however, there can be no doubt that these sponges are constantly and silently effecting the disintegration of submarine calcareous bodies-the shelly coverings, it may be, of animals far higher in organisation, and in many instances they prove themsclves formidable encmies even to living molluses, by boring completely through the shell. In this case the animal whose domicile it so unceremoniously invades has $n 0$ alternative but to raise a wall of new shelly matter
between himself and his mwelcome guest, and in this manner gencrally succecds in barring him out.

From a close examination of the structural and developmental characters of the Spongidece, it must be conceded that they belong rather to the flagellata Protozoa than to any other order. This was the view held by the late Professor Clark, and Mr. Saville Kcnt quite concurs in it.* Summing up the cutirc evidence adduced, scarcely a shadow of doubt is admissible concerning the intimate relationship that subsists betweon the Choano-flagellata and other flagellate Protozoa and that of sponges. The primary and essential element of the apparently complcx sponge stock is the assemblage of collared flagellate zooids that inhabit its interstitial cavities under various plans of distribution. Individually these collared zooids correspond structurally and functionally in every detail with the collared units of such genera as Codosiga, Salpingœca, and Protospongia. The collar in either case presents the same structure and functions, exhibits the same circulatory currents or cyclosis, and acts in the same way for the capture of food. The body contains an identical centrally located spheroidal nucleus or cndoplast, and a corresponding scries of rhythmically pulsating contractile vesicles. The developmental reproductive phenomena are also strictly parallel. Both originate as simple Amœba or simple flagellate Monads, exhibiting no trace in their earlicst stage of the subsequently acquired charactcristic collar. Both again after a time withdraw their collar and flagellum, and assume the amœeoid state ; then, coalescing, enter upon a quiescent or cncysted condition, and break up into a number of sporular bodies, and thus provide for the further existence and distribution of the species. The whole process again is much akin to that which obtains in the protophytic type, Volvox globator, which liberates from its intcrior free swimming gemmulcs that take the form of spherical aggregation of biflagellate danghter-cells. In their isolated statc, on the other hand, the swarm gemmules of the sponge stock arc directly comparable with the free swimming subsphcroidal colony stock of the flagellate infusoria Synura, Syncrypta, and Uroglena, or with the attached subspheroidal chnsters of Codosiga and Anthophysa.

[^42]Echinonermata, Hybho\%oa, Pohzoa, Helmanfoman.

CHAPTER III.

Zoophytes, Cœlenterata, Medusæ, Corals, Hydrozoa.

A study of the earliest growth of the Colenterata has shown that their internal eavities are nothing more than regular radiate out-growths of the internal structures. The result of this development is a eondition which does not ocemr again in the whole of the animal kingdom. There is a system of cavities all in open eommunieation one with another; no closed blood vaseular system, and no speeialised respiratory apparatus. Again, all the animals that eonstitute this large group are radiate in strueture, that is, when viewed from above they are typieally star-shaped, and if eut across, every horizontal section shows a symmetrical arrangement of the several parts around a centre. There are other radiate animals, as the Eehinoderms, but while in these five is the fundamental number of rays, in the Colenterata the rays are a multiple of four, six and upwards. The skeleton or framework of eaeh differs, and when the Coelenterata form ealcarcous struetures, these are quite different from the tests of the seaurchins ; and in all eases the anterior portion of the body is erowned with one or more eireles of tentacles, whieh remain perfectly flexible and flower-like. The most highly-developed of the free forms are the sea-anemones and the jelly-fish. These have no hard or caleareous skeleton whatever, but withal they are, in the opinion of

Fig. 344.-Gorgonia Nobilis.
naturalists and microseopists, the most beantiful objects among Zoophytes.

In spite of their varicty of forms, the Colenterata seem to be as ineapable of higher development as do the Echinoderms, and they have failed to make headway in fresh water, but it is not improbable that some of the simplest forms of the whole group may have given rise to higher animal forms, while the sea anemones, corals, de., being those deseendants of the primitive simple form, have retained the original type of organization almost unchanged.

Fig. 345.-Hydra viridis, adhering to a stalk of Anacharis alsinastrum.
The type of the group is the Hydra, a fresh-water polyp, commonly found attached to the leaves and stems of many aquatic plants, or floating pieces of stick. Two species are well known to mieroseopists, the H. viridis, or green polyp, and the H. vulgaris, somewhat darker in colour, probably dependent upon the nature of its food. The third, less common speeies, the H. fasca, is distinguished from both by the length of its tentreles, which, when fully extended, greatly exceed those of either of the before-mentioned. The freshwater group measures from one-eighth to the one-third of an inch in length, and form simple stocks of one, two or more branehes. They almost exactly resemble in form the polyps of the Hydraetinia, which are provided with a cirele of tentacles. When placed in a vessel of
water and left undisturbed they often attach themselves to the side， where they may be exmmed with a moderate power at leisme． They are then seen to spread out their tentaclos like fine threads， and scize upon any small creature that may come in their way，and by the same means eonvey it to a mouth capable of great extension． All Hydra possess stinging－eells，by means of which they paralyse their prey．Many Hydra attain to a large size，and shoot out long．

Fig． 346.
1，2，3．Hydra in varions stages of levelopment；4．Group of stcutor poly－ morihus，many－shapeel Stentor ；5．Ligglena ；6．Monads．
poisonous filaments ；they also possess smaller kinds of smooth cells， Whieh appear to be employed for an entirely different purpose， but for what is not positively known．Hydra usually multiply by means of buds，an ont－growth from the body，and these reman attached to the mother stalk for some time，often long enough to give rise to one or two smaller buds．Single eggs are also developed in the ectoderm bencath capsules，or wat－like prominenecs．The adult anmal can be cut to pieces，and from each piece anew individual will be developed．This method of reproduction was first tried
by the naturalist Trembley in 1739 , whose experiments in this divection cxcited the greatest interest among the maturalists of the middle of the last century. Iydra fusce in various stages of development is given in outline in Fig. 346.

In the polyps belonging to this family the body-structure for the most part consists of a homogencous aggregation of vesicular granules, held together by an interecllular sarcode, and eapable of great extension and contraction, so that these animals can assume a variety of forms and extend their body and tentacles until the latter become almost invisible. It was the rescmblance in this respect to the fabled Hydra that originated the namc. Its organ of prehension is termed the hasta; this consists of a sac or opening at the terminal end of the tentacle, within which is seen a savecrshaped vesicle, supporting a minute ovate body, which carries a sharp calcareous piece termed a sagitta or arrow. Although the fresh-water Hydra may be regarded as typical of this group of animals, marinc fauma furnish a far more extensive group in the corals, jelly-fish, and sca-ancmones.

A smaller group, the Ctenophora, although mombers of this sub-kingdom, have not yet found their true position; nevertheless they are interesting glassy, transparent creatures, cither shaped like apples, melons, or Phrygian caps, or clse forming bands of some considerable length; all are wonderfully transparent, with the single exception of the Beroe. These inhabit the open sea, and are only scen inshore when driven in by currents or strong wiuds. Their position in the water is usually more or less vertical, the mouth being turned downwards. The portion from which this group derives its name is the ribs, which are symmetrically arranged, and consist of rows of short transierse combs, each forming rows of cilia, which, as they wave to and fro, constitute a swimming or rowing plate, their activity in the water depending upon the will of the animal. They are also provided with an oral umbrella, and capturing filaments or tentacles with hair-like brauches. These tentacles, attached to the sides of the amimal, are eapable of crection or withdrawal into pockets. (ircat variety is seen in these accessory organs of locomotion ; for instance, the Cydippide (Plate NYII.) have only arms, but these are remarkable for their length, and serve for the purpose of eapturing food as well as for steering. The most

PLATE XVIT.

ZOOLHYTES, ASTHROIDS, NUDIBRANCHIS, ACALEPS, RCHINOIDS, CTENOLIIORA, TUNICATA, AND CIRUSTACEANS.
interesting, if not the most beantiful of the Ctenophora, are the Beroidas ; it is this family that bear a resemblance to the Phrygian cap (Plate XVII., e). The mouth is wide, but it appears to have no capturing tentacles, and yet their habits are carnivorous; they will even devour their own relations. Many of the genus are phosphorescont, and in place of stinging-cells have small spherical knobs beset with sticky globules, in which their food becomes entangled, and thesc arc apparently in constant use.

The Stinging Series, Cnidaria, comprise sea-ancmones, corals, jelly-fish among marine animals, and Hydra among the fresh-water Colenterata; and derive their name from a remarkably curious feature, the so-called stinging eapsules. These arc not only offensive, but also defensive weapons with all the animals belonging to this group ; the possession of which has converted the bell-like jelly. fish into a simple Cnidarian. The principal change is in the gelatinous layer between the outer wall and the imer digesting layer of the ectoderm. But without entering further into their structure and relations, the stinging-cells and batteries claim especial attention. These cells vary considerably in size without their characteristics being essentially changed. The protoplasm of the cell is modified into a tolerably firm substance, enclosing an oval or cylindrical resicle. Closely associated with this is a pointed process, standing up far above the level of the outer covering, known as the cnidocil. Within the vesiele is found, cither spirally rolled up or in an irregular tangle, a long filament or hollow tube, a prolongation of the vesicle, but turned outside in. This tube is more than twenty times as long as the cell is pointed at the tip, and beset with two rows of fine spirallyarranged barbed hooks. When the enidocil is touched or irritated, this filament is violently shot out, being then turned inside-out, like the fingers of a glove. So long as the thread remains rolled up within the vesicle the barbed hooks remain in their tube, but when shot out, they change to the outside. The rolled-up filament appears to be filled with some poisonous material, which is cjected when the tube is shot out, and where the point strikes a wound is inflicted, so that unless the prey is stronger than the attacker it camot escape. The greater the struggle, the larger the number of eapsules discharged in order to kill.

Polypomedusce.-Among the higher development of the stinging

Fig. 317.-The Stinging Capsules of Cnidaria.
1 and 2. Retracted filaments; 3. Partly protruled; 4. Fully putruded. Magnified $\times 600$. (Wame.)
group is the jelly-fish. The Siphonophora, as represented liy the Portugnese man-of-war, are in their tum the highest development of swimming-bolls, and exhibit many modifications and combinations of individuals. The tentacles of the Physalia, the best known, are stiff with batteries of stinging-eapsules, the sting of which is more like the shock of the electric current. The Challenger sommdings brought to light some remarkably interesting forms, and these have furnished much work for the microscope, as all their larval forms are extremely curious. Among the Hydromeduse there are many different life histories. Take the jelly-fish, the eggs of which have given up forming stocks, and are hatched out at once as Meduse. There are others, the eggs of which form stocks ; others, again, in which the sexual individuals do not swim away as jelly-fish. The last were at one time described under a new name, hecause of onc or two curious forms being taken creeping on the ground. This creeping Medusa (Cluvatella prolifera) has six arms, the tips of which are provided with true suckers, and on these it walks as on stilts, while from each arm a short stalk arises, the swollen end of which is beset with

Fig. 348. - Plumularit mimata. Doris luberculala scen clinging to a fucus. stinging capsules. It has an extensile month-tube, and feeds upon small crustacems found on seaweeds.

Among the forms that swim away as jelly-fish a very curious example is presented in Corymorphe mutans. These swim about for a time, and then firmly attach themselves by numerous thread-like appendages, forced into the sand, and where the young prepire for their next metamorphosis. As an example of the stocks of those representatives which do not swim away ats jelly-fish, take the beautifully-feathered, plant-like creatures found crect along the seashore, the Sortularia (Fig. 358, No. 12) and lhumutaia.

lig. 349. - Group of femate stock of Iydractimia cehinata.
a, a. Nutritive individuals ; b, b. Female individuals and grouls of egrgs. Highly magnilied.-(Wame.)

Plumuluria mimuta, Fig 348. Other members of these groups will be found in Plate IV., Nos. $95-99$.

In addition to the mutritive individuals, there are the egg-bearing ; these do not become free-swimming individuals. One small family is neither branched nor feathered-the IIydractinia echinata, found in the North Sea and on the Norwegian eoasts, where it attaches itself to the shells of gastropods, seleeting those inhabited by hermit erabs. The part of the stock eommon to all the individuals is the skin-like portion which adheres to the surfaee oi the shell. In some spiny processes are produced, and the nutritive eanals rumning down the stems of the polyps are eontinued into the membrane belonging to the stock, as seen in Fig. 349.

The nutritive individuals are distinguished by long tentaeles, mouths, and digestive eanals. The females have no mouths, and are supplied with food through the system of canals running to them from the mutritive males. These reproduetive members are furnished with stinging threads instead of tentaeles for the protection of their ova. The eiliated larve, in a very short time, swim off to found new eolonies.

The free-swimming jelly-fish (Fig. 350, and Plate XVII., c and d) belong to the order Seyphomeduse. These are eharacterised by their delicate

Fig. 350.-Medusie, Jelly-fish. colouring, and from the arrangement of their nervous system, which ean only be made ont by staining. Some new and eurious forms were dredged from a depth of more than 6,000 feet off the eoast of New Zealand, varying in size from an inch to twenty inehes; many having from four to eight or ten eyes arranged along the margin.

Authozoa.-From the free-swimming we turn to a group of permanently fixed polyp forms, the sea-anemones and eorals. The development of Honoxenia commenees with the egg; repeatedly dividing into many parts (Fig. 351, C, D, and E), by a process eommon to the animal kingdom, termed egg-segmentation, in this particular instance proceeding from an apparently hollow sphere, 1 , enelosing a single layer of eells, a . Fach cell sends out a long cilia, or whip-like process, r , by means of whiel the larva turus about and swins in the body fluid of the parent polyp. One half of the sphere
now becomes enfolded into the other half, H, and forms what is termed a gustrula, I, K. The gastrula stage of Monoxenia is of the

F゙ig. 351. -Stages in dererpment of Munorenw Derwinii, $\times 600$. - (IVarne.)
simplest kind, the larra forming a sace, with walls consisting of two layers, an outer, or ectoderm, and an inner, or endoderm. The
transition from the flat dish shape, H, to the sac with a narrow mouth is at onee clear, and the knowledge that all the Coelcnterates proceed from similar larve, and that all the complications of their various systems are developed from a simple gastrula, throws much light on their anatomy. During these transitions the endoderm, whose cells multiply, eontinues as an minterrupted lining to the stomaeh and its appendages, while the ectoderm yields the cutieular. elements.

A third intcrmediate gelatinons layer, the mesoglcea, arises between the two layers in whieh museles and conneetive interstitial tissuc appear. In the mesoglea of one species of coral calcification takes place ; this internal calcification has but a small share in the work of the great roek-making eorals, their most important ealcification being external. In Monoxenia, although the transition from the gastmla larva to the adult animal has not been seen, there can be no doubt as to how this is carried out, the transformations having been watehed throughout in other species. The larva attaehes itself with the end opposite the mouth, the cilia disappear, and after the mouth-tube has been formed by the folding in of the anterior end along the longitudinal axis of the body, and has thus become marked off from the stomach, eight hollow tentaeles rise round the mouth as outgrowths of the body cavity, or as direct continuations of the stomaeh.

Like all other corals, Monoxenia pcriodically multiply by means of eggs, whieh are formed either in the walls of the radiating partitions or septa, or along the free edges. These are ejected through the oral opening. As a rule, the polyps are either male or fernale ; but in stock-forming speeies individuals of the two sexes are often mixed. Monoxenia may be taken as the simplest type of the regularly radiate polyps ; in all the different organs being repeated in regular rings round a eentral axis; the month also is circular. From this interesting account, drawn by Hacckcl, of a simple polyp, it will be at once secn what kind of radiate animal it is that builds up the coral reefs. "No garden on earth ean match the gardens of the sea that circle the northern part of Australia. As the tide ebbs in azure sunset, coral-reefs peer out symmetrically arranged in beds and intersected by emerald pathways coursing through corals of all hues and tints fathoms deep in the ehamels."

In a growing polyp-stnck the individuals usually remain in organie comection ; that is to say, each first provides for itself and then shares its superfluity with others, sometimes by means of a eontinuous retieulated system of eanals perforating the caleareous substance which often separates the members of one stock from another. The whole colony may thus be physiologically one creature with many mouths. There are others that remain single, as the inverted pyramidal-looking bodies, Fungide, commonly called "Sea-mushrooms," fonnd in great variety. The colonr of the polypidom is white, of a flattened round shape, made up of thin plates

Fig. 352.-Sen-Anemones.

1. Actinia rubra, tentacles displayed and retracted; 2. Hcticictis bellis; 3. H. bellis, seen from above.
or seales, imbedded in a translucent jelly-like substance, and within is concealed a polyp; the footstalk, by means of which the animal is attached to the rock, is of a ealearcous nature (Fig. 352, No. 1).

IIexactinia (six-rayed polyps) are not limited to six rays, as the name given them may seem to imply; they are, in fact, very numerous in some of the largest and most gorgeous of the seaanemones. All are distinguished by their solitary mamer of life, their size, and their vivid and variedly beautiful colouring. The endoderm is firm, and when the animal withdraws its tentacles and shuts its body substance in, there is some difficulty in penetrating to the interior: It does not, however, seerete a ealearcous skeleton
inside or out, as do the true coral polyps. Among the Hexactinia the sea-anemone (Fig. 352) takes the first place.

These beautifully coloured ereatures are, for the most part, found attached to the spot selected by the laves ; a few species bore into the sand with the posterior part of the body, or build a sheath, which they inhabit. They are voracious feeders, and devour large pieces of flesh, and even mussel and oysters, sueking them in by means of their long grasping tentacles. Well-fed anemones ehange

Fig. 353.-Larve of Sen-Anemones, Actinite efficett, highly magnified.
their skin frequently, during which proeess they remain elosely retracted; the shed skin forms a loose girdle around the base. Actinia bellis not infrequently attach themselves to the shells of erabs and whelks, and are thus carried to pastures new.

On account of the ease with which anemones are kept in eaptivity, their mode of reproduction can be elosely observed. With but few exceptions they develop from eggs, and in the course of a few weeks are hatehed into ciliated infusorial larvæ, presenting most eurious and exquisite representations of jugs and jars, with cover licls (as seen in Fig. 353, Actinia effeeta). These evince the handiwork of a master hand in the ecramie art. They are, however, of so translucent a nature as to permit of the intomal structure
heing seen to eonsist of nerves and vessels, and which are rendered more apparent by staining. These settle down in a week or ten days, and then shed their cilia, the first tentacle appearing cluring the proeess of attachment.

In some species the young Aetinix are seen to pass through their whole development within the body cavity of the parent. Most anemones are provided with several eircles of more or less cylindrieal tentacles, and there are a few specially beantiful speeies which, besides tentacles of the usual form, have, either within or without the ordinary eirele of tentaeles, lobed or leaf-like taetile and seizing organs. These belong to the family of the beautiful Crambactis of the Red Sea. Below these grasping tentacles comes a eirele of thieker arms unlike the former, being spindle shaped. All the tentaeles of the sea-anemones are hollow with a fine aperture at the tip, through whieh, on elosing rapidly, it is seen to expel a jet of water.

True Corals.-It will have been noticed in the foregoing remarks that in the soft body-division of the Hexaetinia there are both single individuals and colonies joined together to form stoeks. The same diversity in this respeet will be found among corals proper, with this difference, that the skeleton-forming polyps, by combining, build up substantial structures in the most secure and adrantageous positions. Now it so happens that all the corals found about our coasts are generally small and solitary dwellers, one of the best known of which is the searlet erisp eoral, Flabellum, and is eharaeterised by the slit-like form of the mouth. Viewed sideways it resembles a small fan fastened along the edges, and just inside a row of fully developed tentacles is seen protruding. An interesting form of budding oecurs in these corals : the buds fall off, and in this budding condition the eoral might pass, and indeed has been described as a different speeies of Flabellum. The colour of the coral is a beautifully transparent red. Remarkable as the solitary eorals are, they are surpassed both in number and in form by those which form compound stoeks, that is to say, in which the buds do not fall off, but go on building up eoral islands and barrier reefs in the warmer seas. Some very few typieal forms only are given in the group accompanying, shown in Fig. 358.

A different kind of stock is developed in a number of forms,
some producing miny buds, as in the Madrepores, in which selected polyps spring up above the rest, their sides also becoming covered with small buds, each one of which is a living, feeding, coral animal surronnded by a crown of tentacles. These Madrepores play a very important part in the building up of coral recfs.

Another massive coral, the Astroides calycularis, has a different mode of growth, the tubes not being fused together. When seen standing out these yellowish-red polyps have been mistaken for small anemones. The larva of this coral leave the egre while still in the large chambered body cavity of the parent,

Fig. 35 4. Developmental stages of Larre, Astroides calycularis, $\times 40$.
where they swim about for a time, till they escape through the mouth. They are worm-like in form, and swim by means of cilia, which are thicker at the formost end. The mouth first appears after leaving the parent, but as they soon become exhausted by the effort they assume a contracted form, and attach themselves, as do anemones, by pressing the thicker end of the body against a rock, the whole contracting into a thick rom dise, while longitudinal furrows hecome visible at the npper part where the mouth sinks in. At the end of these furrows twelve tentacles appear. The aecompanying illustration shows the varions stages through which the larve pass in rapid suceession (Fig. 354) ; at the same time it has ahready commenced to secrete its calcareons skeleton.

This is not formed as a comnected whole but from a number of separate eentres of secretion formed hetween the polyp and the substance to which it has attached itself, and which become gradually fused into a perfect skeleton. A

Fig. 355.

1. Penuctule phosphworer; 2. Synapta chirodeta; 3. Anchorshaped spiculum and plate from the ectolern of same. section of the polyp at this stacke forms an interesting microscopical object.

The so-called eight-rayed corals consist of the one genus Thlipora, the members of which are few in number and not raried in fqum (Fig. 358 , No. 10). In the structme, however; of skeletons they are unique among extant corals. Each individual secretes a smooth-walled tube without calcification of the rertical septa. These tubes, like the pipes of an organ, stand almost parallel, and are united to form a stock by means of transverse platforms. The formation of buds does not appear to take plaee in this family.

Another of the eight-rayed eorals is Gorgoniidæ. These are permanently fixed to the spot on which they are found, and form a bnshlike growth, giving no idea of the living coral, as it rises in graceful branching colonies, in deep water, and represents a portion of Gorgonier nobilis with polyps expanded (Figs. $34 t$ and 358 , No. 9).
Other eorals present numerous other departures from the types we have been considering, but so far modified in form as that of the Sea-pen, Veretillum (Fig. 355), the stock part of which is smromnded by polyps eontinued down a portion of the eylindrieal stalk. The best known of the species is I^{\prime} 'mutulu phosphoret of the Mediterranenn.

Pematulicte.-'Ihis fimity derives its name from pemme, a quill.

Their spicula also resemble a penholder in appearance，shown in Kig．358，No．3．The polyps are without colour，provided with eight rather long retractile tentacula，beantifully ciliated on the inner aspect with two scries of short processes，and strengthened by these crystalline spicula，a row being carried up the stalk，together with a series of ciliated processes．The mouth，oceupying the centre of the tentacula，is somewlat angular．The ova lic between the membranous part of the pinne；these are globular，of a yellowish eolour；and by pressure can be made to pass through the mouth．Dr．Grant wrote ：－＂A more singular and beautiful speetaele could seareely be eonecived than that of a decp purple Pennutula phosphorea，with all its delicate transparent polyps expanded and emitting their usual brilliant phosphoreseent light， sailing through the still and dark abyss，by the regular and synchronous pulsations of the minute fringed arms of the polyps．＂

The spieula are seen to be a continuous series of cones fitting into each other．

Bryozoa，Moss－animals．

The exaet position in whieh the Bryozoa，or moss－animals，should be placed in the animal kingdom has not been finally determined． They were at one time assoeiated with corals；then with sponges； but，on further aequaintanee，it became cvident that they did not belong to either．Naturalists also elaimed them as Rotifers and Ciliata，but this claim met with no better reeeption．Sinee they appoar to have no settled classifieation，there ean be no objection to inking them onee more to eorals，as they apparently resemble these animals by always living in eolonies，the individual members of which are joined in a number of different ways to form stocks， the individuals themselves，however，being very much smaller than those of eorals proper．The advantage is that the strueture of the Bryozoans can be more readily studied，as many of them live in transparent chambers or cells，the walls of which，although somewhat firmly agglutinated together，are flexible enough to fold up，as the animals instantly withdraw their bodies and close up the top on the slightest alarm（Fig．356）．

The general structure of the Bryozoan individual，figured attached
by its footstalk to a stem of wood, consists of a mouth at the anterior part of the body opening into a muscular pharynx in the alimentary canal, together oceupying a considerable amount of space. The terminal portion turns upon itself towards the oral opening, its chicf attachment being a short strand of tissue termed the funiculns (shown in Fig. 358, No. 11). In all adults two masses of cells are found attaehed to the wall of the chamber; the upper yields the eggs, within the lower the male elements are developed. Moss-animals are hermaphrodite, fer-

Fig. 356.-Paludieella, tentaeles expanded and cell closed. tilisation being effeeted by the two elcments mingling together in the borly fluid. These are the essential points in the structure of the whole serenteen
liundred species. Among the larger eolonies a number of fresh-water genera are found attached to the roots and branches of aquatie plants, most of which, however, are ineonspienons. The beanty of these minute bodies ean only be seen muder the microseope. Many consist of delicate branehing growths, the Sea-mats (Flustra), for instance; others again appear as attractive lace eorals, between the open meshes of which multitudes of minute apertures erowned with tentaces are displayed. The several individuals of the genms Lepralia are arranged in rows, and further distinguished by the animals being developed only on one side of the stoek. The marvellous variety of forms presented by these small amimals is in a measure
determined by the partieular manner of their buddings. The greater number of fresh-water moss-mimals belong to the order Phylacto-

Fig. 358. -Typieal forms of Comals.

1. Fungia ugariciformis; 2. Aleyoninn, Cydonium Mutleri; 3. Cydonium, polyps protruding and tentacles expanded, others elosed; 4. A stoek viewed from alove ; 5. Meulrepore abrotunoite ; 6. Madrepore, slightly magnified, slowing oral opening; 7. Corallide; 8. Coral, polyps protruding from tells; 9. Gorgonia nobilis, with polyps expanded ; 10. Thubipora musica; 11. Tubes of same, with polyps expanded, one cut longitndinally to show interunl strneture ; 12. Sertularia, polyps protruded, and withdrawn into their polypidoms.
lemata, so ealled beeause the mouth is provided with a tongueshaped lid. The erown of tentacles is furnished with rows of cilia, and is horseshoe-shaped, the whole being surrounded at its base by an
integument forming a kind of enp, which is either soft or homy. Those belonging to the wandering types (Cristatella, llate $1 \mathrm{~V}^{\top}$., Nos. $95-98$) form flattened elliptical colonies, some of which ereep or move about on a kind of foot. A nervons systen pervades the mass of polyps, while in each scparate polyp a nerve ganglion is seen to be sitnated between the esophagns and the posterior part of the alimentary canal. The colony neree system regulates the morements of the stock.

There are many beantifully formed freshwater polyps deserving of more than a passing notice, as the slender Coryne (Coryne stauridia), found adhering to the footstalk of a Rhodymeniu (Fig. 359), about which it erecps in the form of a white thread. On placing both under the microseope, the thread-like body of the little animal appears eylindrical and tulnilar, perfectly transparent, and permeated by a central core, apparently cellular in texture, hollow, and within which a rather slow circulation of globules is perceived. The parent Coryne sends off numerons branches, the terminal head of which is oblong, cylindrical, and at the extreme end there are arranged four tentacles, long $\begin{array}{ll}\text { 1. Coryne stcurridict; } 2 . & \text { and slender, each being furnished with a } \\ \text { A tentacle detached and } & \text { nodular head. A magnified riew of one } \\ \text { magnificd } 200 \text { diameters. } & \text { detached is shown erect (Fig. 359, No. 2). }\end{array}$ $\begin{array}{ll}\text { 1. Coryne stauridict; 2. and slender, each being furnished with a } \\ \text { A tentacle detached and } & \text { nodular head. A magnified ricw of one } \\ \text { magnificd } 200 \text { diameters. } & \text { detached is shown ereet (Fig. 359, No. } 2 \text {). }\end{array}$ $\begin{array}{ll}\text { 1. Coryne stauridiat; 2. and slender, each being furnished with a } \\ \text { A tentacle detached and } & \text { nodular head. A magnified riew of one } \\ \text { magnificd } 200 \text { diameters. } & \text { detached is shown ercet (Fig. 359, No. 2). }\end{array}$ This polyp is much infested by parasites, vorticella growing on it in immense numbers, forming aggregated chusters here and there, individuals of the parasitic colony adhering to each other, and projecting outwards in every direetion.

Alcyonella, another fresh-water polyp, is found in the autumn of the year in all the London Docks adhering to picees of floating timber. A. stagnorum partakes of the character of a sponge rather than that of a polyp. It is usually found in gelatinous colonies, and when stood aside for a short time these put forth
a number of ciliated tentacles (shown in Fig. 360, magnified 100 (liameters).

The ova contained within the sac, and viewed hy transmitted light, appear as opaque spheres surrounded by a thin transparent margin; these inerease in thickness as the ora is developed, and such of the ora as lie in contact seem to mite and form a statoblast. A rapid current in the water aromed each animal, drawing with it loose particles and floating animalcules, is seen moving with some velocity as in other ciliated bodies ; and a zone of very minute vibrating eilia surounds the transparent margin of each tentacle.

Dr: Percival Wright discovered on the western coast of Ireland a new genus of Alcyonidx, which he named after the well-known naturalist Harte, Havter elegans (Plate IV., No. 86). This polyp is solitary, the body cylindrieal, and fixed by its base to the rock; it has eight ciliated tentacles, which are knobbed at their base and most freely displayed. It is a very beantiful polyzoon of a clear white colour, and when fully expanded stands three-quarters of an ineh high.

Lophopus crystallinus (Plate IV.,

Fig. 360.-Alcyonella furviatclla. No. 98) displays beautiful plumes of tentacles arranged in a double horseshoe-shaped series. When first observed these polyps resemble in many respects masses of the water snail ova, for which they are often mistaken. On placing these jelly-like masses into a glass trough with some of the clear water taken from the strean in which they are found, delieate tubes are seen to eantionsly protrude, and the beantiful fringes of cilia are quickly brought into play. The organisation of L. crystallinus is simple, although it is provided with organs of digestion, eirculation, respiration, and generation. The nervous* and musentar systems are well developed. This polyp inereases

[^43]both by bndding and by ova, both of which conditions are shown in Plate IV., No. 98. The ova are enclosed in the transparent case of the parent. In Lophopus and some other fresh-water genera, Cristatella, Plumatella, and Alcyonella, the neural margin of the Lophopore is extended into two triangnlar arms, giving it the appearance of a deep crescont.

Another family prosents a contrast: there is no lid to the month, and the tentacles are arranged in a circle on a diso. An important rise in organisation is found in the Gymuolæmata, especially in the lip-mouthed forms ; the individuals bolonging to this order vary in strueture and fulfil different physiological functions. There are structures known as zoæcia, stolons, avicularia, vibracula, and ovicells, some of which are merely modifiod individuals. The zorecia are the normal individuals of tho colony, fully developed for most of the functions of life ; the stolons have a much humbler function, but are indispensable -they are the root-like outgrowths of the stock, and serve for attaching the colony to foreign objects. The most remarkable arc those known as avicularia, so called because they resemble the head of a bird. This process acts as a pair of forceps, the large npper blade of which is very like the skull and uppor jaw of a bird, and the smaller lower blade (like the lower jaw) coustantly opens and shuts by means of a complicated arrangement of museles (shown in Fig. 361). These avieularia are movably attached by short museles to the neek, and are found near the entrance to a zoæcium. They turu from side to side, snapping in all directions, eatching at every particle of food that may come near ; at length the morsel is drawn into the mouth by the cilia on the tentacles. From this very peculiar structure the Chilostomata were originally named bird's-head corallines, then specifically shepherd's-purse corallines, Notamia bursaria. Equally interesting, again, are the vibracula, long thread-like structures, attached by short footstalks. These keep up a constant whip-like motion, the object of which is not quite clear. The ovicells, or egg receptacles, are found at the lower ends of the zorceia in the the branch, at the upper part of which it subdivides into branches, going to the ganglin of the internodes arising at this part ; and 3rd, of a rich nerrous plexns resting on the trunk, and connecting the ganglin just mentioned, as well as the basal ganglia of the individual polypides." For further account, ses paper in the "Micros, Jompn.", vol, i., New Series, p, 330,
form of shields, helmets, or vesicles. In Plate IV., Nos. 95 and 96 , a front and edge view of the statoblast is shown highly magnified.

Another sub-order consists of the Cyelostomata, or round-monthed Bryozoans, of which the Tubulipora is the typical form. The stocks are cup-shaped inerostations, the individuals radiating outwards, as in Plate IV., No. 92. Tubularia dumortierii is a very interesting form, the germinal bodies, statoblasts, being formed as

Fig. 361.

1. Notamia bursaria, slepherd's-purse Bryozoa; 2. Pulyp magnified and withdrawn into its cell ; 3. Portion of a colony of Hydroid polyps.
cell masses on the strand, or funiculus, which also maintains the stomach in its place. They are round or oval in shape, and brown or yellow in colour, and consist of two valves fitted one upon the other like watch glasses, as shown in No. 96. A number of other statoblasts are shown, Nos. 97,98 , and 99 . The edge ruming round No. 95 is seen to have barbed tips; the ring itself contains small air chambers, and is termed the swimming belt. It is, in fact, a perfect hydrostatic apparatus, giving support to the winter buds or statobasts on the surface of the water, The barbed hooks apparently act
as anchors, and by their means they catch on at points suitalble for their development during the coming spring. As soon as the time comes, the two halves split apart and the germinal mass emerges forth. Out of these winter buds and statohlasts asexually produeed individuals arise, which reprodnce themselves sexnally, their descendants again yielding winter germs. In short, an alternation of generations is a continually recurring process.

Brachiopoda.-Here again we have to do with an enigmatical class of arm-footed animals, of which the Lamp-shells may be regardert as typical. These hase remained

Fig. 362.-Lingula pyramidata. maltered from the earliest geological epoehs. Braehiopods are divided into two orders: those having shells without hinges, and those with shells hinged together. On the whole they possess less interest for the mieroseopists than many other animals, except in their earliest dcvelopmental stages of existence.

One of the most interesting of the hinge-class group, living chiefly near the shores of the warmer seas, is the Lingulidæ. The ralves are almost exactly similar, but are not hinged together, and have no processes for the support of the thiek fleshy spiral arms of the animals. In L. pyramidata, found around the Philippine Islands (Fig. 362), the stalk is nine times longer than the body. The animal does not attach itself by this, but moves about like a worm, making tubes out of sand, into which it can withdraw itself and disappear. The cilia at the mantle edge form a fine sieve, thus preventing foreign particles from entering the gills. Its internal stroncture possesses points of interest, and the parasitic growths covering the cartilaginous structure, miscalled is shell, are cmrions, and excite the attention of the naturalist.

Another bivalve so milike a crustacean, mong whieh it has hoen
placed, I may venture to describe among Lamp-shells. I refer to the barmacle (Lepas) generally met with covering the bottoms of ships. Those, as in the former genus, are more interesting to the microscopist in the carly stage of existence, and also for the curious parasites known to infest them. The barnacle protrudes throngh its two ralves six pairs of slender, bristly, two-branched filamentous limbs, which kecp up a constant sweeping motion, and whereby it secures its supply of food (Fig. 363). When first latched the young are in the Nauplius stage, being furnished with a median cye and three pairs of flagellated appendages. After enjoying a free life the larva moults and passes into a sccond stage, in which with its two eyes and compressed carapace (shown in Fig. 364) it so nearly resembles a Daphnia. Before these thoracic appendages cntirely disappear they first change places, and then each is scen to be provided with a sucker; by this means the larva fixes itself to its permanent restingplace, while a cement gland pours out a secretion that ghes it firmly to the point of attachment chosen. These Cirripedes are not true parasites, inasmuch as they do not extract nourishment from the body to which they are attached.

One species, the Proteolepas, is in the

Fig. 363.

1. Spat of oyster, some ciliated ; 2. Barnacles attached by footstalks. adult stage a maggot-like, limbless, shell-less animal found living within the mantle chamber of other members of the same order, while the root-headed Cirripedes (Peltogaster curvatus, as Fig. 364, No. 1) live parasitically upon higher crustaceans.

Eehinodermatr.-'This sub-kingdom includes the star-fishes, stonelilies, sea-urchins, feather-stirs, and sea-cucumbers, some of which hare been already alluded to, and are so well known that they need no lengthy description, while of the fossil sea-urehins of our chalk formations, the Pentremites and Crinoids, whose silicious remains are so abundant and so familiar to naturalists and geologists, but little remains to be said. They are chiefly interesting to the microscopist from their calcareous and silicious appendages, known
as spicula. In the sea-urehin, brittle-star, or feather-star, the onter body surface consists almost wholly of a deposit of ealcium earbonate, combined in the form of little plates built up into a rigid "test," whereas in the star-fish it usually forms a kind of scaffolding, between the layers of which there stretches a firm leathery skin. Among the sea-enemmbers, the living specimens of which present extraordinary variations both in form and charaeter, the deposit consists chiefly of small spieules which grate when the skin is cut with a knife. If a thin section of

Fig. 364.-Parasitic Barnacles.

1. Peltogastcr curvatus; 2. Nauplius larva of Parthenopea; x 200.

Plate IV., Nos. 89 and 90). minutest portion of an eehinoderm skeleton is readily recognised, even when fossilised, under the mieroseope. Even the species of the senelueumber can be determined by the shape of their spicnles.

Another notiecable feature in the radiate struetnre is that in many cases it gives to the anmal a star-shape, to whieh the names of starfish and brittle-star are given (see Plate IV., No. 91, and Plate XYII., f and n). The ordinary five-rayed star-fish is found everywhere around the English eoasts. This constant arrangement of organs holds good in the majority of the echinoderms; it can be detected in the

Holothurians, where, beside the feathery tentacles of the head, rows of shorter sucker-like processes will be found, which in some instances extend the whole length of the body, the fixed number of rows being also five in their internal organs. Hence these animals were formerly grouped moder Radiata. But if a sca-eucumber or sca-

lijor. 365.- Melusa-headed l'entacrinoid.
a. Crown and part of stem; b. Upper surface of body, the arms broken away, showing the food grooves passing to the eentral mouth.-(Warne.)
urchin be dissected, a marked distinction will be found between them, in one portion of the organism in particular: the intestinc is shnt off from the rest of the body-cavity, often coiling ronnd inside. Examine a star-fish or sea-urchin on the muder-surface of the rays, and, passing in five bands from top to bottom, a number of small cylindrical processes are seen gently waving abont; these lie in two rows with a clear space between them, and are
termed in conseguence rembulacrum. 'liney end in sucker-like discs, which enable the animal to attach itself, or pull itself against strong currents.

Jnst one other special feature shonld be noticed: radial canals pass along under the ambulacra, and join a ring-canal around the mouth, well supplied by nerve cells.

Fig. 366.

1. Transverse section of a branch of Myriapore ; 2 , Section of the stem of Virgularia mirabilis; 3, Spiculum from the onter surface of Sea-pen ; 4 , Spicula from Isis hippuris; 5, from Gorgoniu clongata; 6, from Aleyonium ; 7, and from Gorgonia umbracutum; 8, Caleareous remains of a Crinoid.

Crinoids (stonc-lilies), on the other hand, are formed of a scries of flat rings, piereed through by a narrow canal. The ossieles, as they are termed, are joined by ligaments passing through their solid substance and endowed with muscular power ; the central part serwes for the passage of blood-ressels, and is surrounded by a sheath of nervous tissuc that controls the movements of the stem, the latter being enerusted by a number of fine rootlets. The stems possess it limited power of bending. In the words of Professor Agalssiz, "The
stem itself passes slowly from a rigid vertical attitude to a curved or even a drooping position ; the cirri move more rapidly than the arms, and the animal uses them as hooks to catch hold of oljocets, and on account of their sharp extremities they are well adapted to retain their hold of prey." The rosy-feather star-fish is often found clinging to a tube of the Sabella worm ; the food of crinoids consists of foraminifcra, diatoms, and the larve of crustaceans. There are so many curions features in comection with the Echinodermata that my readers may with advantage consult "The Chullenger Reports" and Warne's "Natural History" on other points of interest.

Holothuroileu (sea-cucumbers) aro elongated slug-like creatures, the skin being in structure similar to that of the slug, with a comparatively small amount of calcareous matter. Usually this occurs in small spicules, which assume very definite slapes, as the anchors of Synapta (Plate IV., No. 87, and in Fig. 355). There are also rings of calcareous plates around the gullet, five of which have the same relation to the radial water-vessels as the auricles round the jaws of a sea-urchin, and which likewise serve for the attachment of muscles. These plates are seen in Plate VIII., Nos. 171 and 172 , as they appear coloured by selenite films under polarised light. Around the mouth in Cucumaria is a fringe of branched tentacles connected with the water-vascular ring; these appear to be used as a net to intercept floating organisms.

Correlated with the star-fishes is a small family based on the character of their pincer-like organs, called pedicellarix, on the surface of the test (shown in Plate IY., Nos. 93 and 94 , magnified $\times 25)$. Movable spines corer the surface of these echinoderms, varying in size from minute bristle-like structures to long rods. The pedicellarise are, it is believed, derived from the smaller spines, and two of them are mited at the base by muscles, slightly curved, and made to approach each other at their extremities. There is a gradual modification of this type through the whole series. Many uses havo been assigned to them, as the holding of food, as they have been seen to hold to the fronds of seaweed and keep them steady until the spines and tube feet can be bronght into action. The inner surface of the pedicellarize are known to be the most sensitive, and the blades close on the minntest object touching the inner surface. Beside these
peculiar bodies the surface of the skin has small tubular processes, and tubular fect with suckers at the end. At the extremity of each arm is a single tube-foot with an impaired tentacle, and above this again is a small cye coloured by red pigment.

Passing by many other points of interest in the Echinoida, the spines are seen to be attached to the test or shell by a ball and socket joint and well-arranged muscles, whereby the spines can be moved in any direction. The tubereles, however, do not corer the whole test, but are disposed chiefly in five broad zones extending from one pole to another. When a transverse section of a spine is examined by a medium power it is seen to be made up of a series of concentric and radiating layers (shown in Plate XVIII., Nos. 1 and 2), the centre being oceupied by reticulated structure and structureless spots arranged at equal distances ; these may be termed ribs or pillars. Passing towards the margin are other rows conveying the impression of a beautiful indented reticulated tissuc. Many of the spines present no structure, while others exhibit a series of concentric rings of successive growth, which strongly remind one of the medullary rays of plants. When a vertical section of a spine is submitted to examination, it is seen to be composed of cones placed one above the other, the outcr margin of each cone being formed by the series of pillars. In certain species of Echinus the number of cones is very considerable, while in others there are seldom more than one or two to be found ; from these, transverse sections may when made show no concentric rings, only the external row of pillars.

The skeleton of echinoderms contains but a small amount of organic matter, as will be seen on dissolving out the calcareous portion in dilute nitric or hydrochloric acids. The residuum structure will appear to be meshes or areolr, bounded by a substance having a fibrous appearance, intermingled with granulous matter; in fact, it bears a close resemblance to the areolar tissuc of higher amimals, and the test may be considered as formed, not by the consolidation of the cells of the ectoderm, is in the molluse, but by the calcification of the fibro-arcolar tissue of the endoderm. This calcifieation of a simple fibrous tissue by the deposit of a mineral substance, not in the meshes of areolre but in intimate union with the organic basis, is a condition of much interest to the physiologist; it presents an
example of a process which seems to have an important share in the formation and growth of bone, namely, in the progressive ealcification of the fibrous tissue of the periosteum membrane eovering of the bone.

The development of the sea-urehin from the fertilised egg first divides and then sub-divides, and in a short time the embryo issues forth with a small tuft of eilia, by means of which it swims off' freely. The larva, in its full development, measures about one millimetre in diameter, and is a curious and remarkable ereature.

The sub-kingdom Mollusca comprises some fifty thousind species, and fresh forms are being constantly discovered, the number of the aquatic genera being more than double that of the terrestrial species, for it matters not to what depth of oeean the dredge is let down, some new form is certain to be gathered. The Challenger expedition has enriched our knowledge of the decp-sea fauna to an enormous extent ; so much so, that fifty volumes have already been published deseriptive of animals brought to the surface. Nevertheloss, we are told that the great coast lines of South America, Africa, Asia, and parts of Australia have been but imperfectly explored for smaller kinds of Mollusca.

Molluses are soft-bodied, cold-blooded animals, without any internal skeleton, but this is compensated for by the external hardened shell, which at onee serves the purpose of bones, and is a means of defence, These bodies are not divided into segments like those of worms and inseets, but are enveloped in a museular covering or skin, termed the mantle, the special function of which in most species is the formation and secretion of the shell. The foot, which serves the double purpose of locomotion and burrowing in the sand or rock, is an organ partieularly characteristic of most molluses. There are many departures from this rule, as, for instance, in the group Chitonide, where the shell takes the form of a series of eiglit adjacent plates ; and in another, the Pholadidec, there are one or more accessory pieces in addition to the two principal valves. Some are bivalved, others univalved, and coneealed bencath the skin. All shells are mainly composed of earbonate of lime, with a sinall admixture of animal matter. 'Their microseopic examination reveals a great diversity of structure, as we shall presently see, and they are accordingly terined porcellaneons, matreous, glassy, horny, and fibrous. Most
molluscs have the power of repairing injuries to their shells; many exhibit an outer coat of amimal matter, termed the peristracum, the special function of which is to preserve the shell from atmospheric and chemical action of the carbonic acid in the water in which they dwell.

The shells of gastropods are enlarged with the growth of the molluse by the addition of fresh layers to the margin. In some species the periodic formation of spines occurs; a typical case will be found among Muricide. The varied colomrs of shells are due to glands situated on the margin of the mantle, and beneath the peristracum ; occasionally the inner layer of porcellancous shells is of a different colour to the outer, as, for example, in the helmet-shells (Cassis), much used by carvers of shell cameos. Light and warmth, as in the vegetable kingdom, are the great factors in the production of brilliant colours. In cold climates land smails bury themselves in winter time in the ground or beneath decaying vegetable matter, and in hot seasons they close up the aperture of the shells with a temporary lid, called an epiphragm. These exhibit great tenacity of life, as, for instance, in the Egyptian desert-snail, Helix desertorum. The reproductive system is in all cases effected by means of eggs. The ova are usually enclosed in eapsules, and deposited in masses, and the number of eggs contained in the squid and the whelk have been stated to be thirty or forty thonsind. The ora of mollusis may be gradually developed into the adult, or there may be a frecswimming ciliated larval stage, or a special larval form, as in the fresh-water mussel. Most are provided with a more or less distinet head; both cephalopods and gastropods are furnished with eyes. In land snails these are found placed on projecting stalks. In most cases the utility of molluscs far outweighs the injury occasioned by a few species, as, for instance, the Teredo, and the burowing habits of the Pholas and Saxicala, compact marble having been found bored through by them.

Mr. J. Robertson wrote me in 1866 :-_" Having, while residing here (Brighton), opportunities of studying the pholas dactylus, I have endeavoured during the last six months to discorer how this molluse makes its hole or erypt in the chalk-by a chemical solvent? by absorption? by ciliary currents? or by rotatory motions? My observations, dissections, and experiments set at rest contro-
versy on this point. Between twenty and thirty of these creatures have been at work in lumps of chalk ins sea water in a finger glass and a plan, at my window for the last thee months. The Plolus dectylus makes its hole by grating the chalk with its rasplike valves, licking it up when pulverised with its foot, forcing it up through its prineipal or bramehial siphon, and squirting it out in oblong nodules. The erypt protects the Pholas from Conferve:e, often fomd growing parasitically not only outside the shell buteren within the lips of the valves, thus preventing the action of the siphons. In the foot there is a spring, or style, which when removed

Fir. 367. -Hexabrauchus.
is fomed to possess great elasticity, and this seems to be the mainspring of the motion of the Pholas."

1 must pass by many gronps and orders to more aberrant types, represented by the maked-gilled orders, Opisthobranchiata and Nudibranchiata. These gastropods constitute a large sub-order of extremely beantiful molluses, remarkable in shape, and often brilliant in colour. The distinguishing chanacter of these typical forms consists in the peculiar nature and situation of their breathing orgens, which are exposed on the back of the animal or around the anterion part, and are not protected by the mantle. But the situation is raried, and the gills are sometimes plated on each side of the borly, respiration being effected by the eiliated surface of the whole.

For these and other reasons they have been placed in fonr groups. Nudibranchs are found in all parts of the world, and are most abindant in depths where the choicest seaweeds and corallines abound. Their fecundity is very great, as many as sixty thousand egors being deposited by a single female at one time. They are caten as a luxury where they most abomed.

In the Opisthobranchs the branched veins as well as the auricle are placed behind the ventricle of the heart. They differ from Nudibranclis inasmuch as they are usually furnished with a pair of tentacles and labial palpi, or an expansion of the skin like the veil of the larval form. To clearly understand the elaracter of the

lig. 368. - Longitndinal section of P/eurobrunchus aurantiacts, showing cirenlation and gills or branchie.-(Warne.)
internal organisation of these curious animals, the longitudinal section given in Fig. 368 must be consulted : f is the foot ; a the montl, covered above with the veil-like expansion, over which are the tentacles, c; the branchial veins, v, earry the blood to the gills, from which it flows into the heart at h. This disposition is the opposite of that which characterises the Prosobranchns. Another anatomieal pecenliarity, which may here be referred to, is the direct eommunication of the system of blood ressels with the surrounding medium; a characteristic common to most other molluses, and on whieh depends the changeable external appearance of the animal. In the illustration of Plenrobranchus here given, y indicates the opening of the duct which conveys water direet to the blood, and through which the blood vessels permeate the back and foot. Like the holes in the sponges, it can be filled or emptied at the will of the animal.

Although this, in the main, is the principle of the circulation in most of this order, one branch possesses $n 0$ special breathing organs, respiration being earried on throughout the maked skin of the body.

With regard to the Nudibranchiata, the group having the most symmetrical form is the extensive family Doridida, characterised by differences in the bramehix, the relative proportion of the mantle to the foot, and rariations in the radula and jaws. The general aspeet of the genus Doris, although drawn on a small seale, is represented in Plate XVII., Fig. b. The whole sub-order of Nudibranchs has become more generally known and admired since the publication of Alder and Hancock's monograph with its many attractive coloured illustrations.

These gastropods ean be kept alive for some time in a small aquarimm if the precantion is observed of often changing the water and adding a little fresh seaweed. Numerous curious microscopic forms of life may be found adhering to them.

Tunicata.-The most remarkable group of animals belonging to this sub-order are the Ascidians. They derive their name from the test or tunic, a membranous consistence, in which they dwell, and which often includes ealcareous

Fig. 369.-Aplysict dipilans. spieules. The test has two orifices, within which is the mantle. Few microseopie spectacles are more interesting than the circulation along this network of muslin-like fabric, and that of the ciliary movement by which the fluid is kept moving. In the transparent species, as Clavelina and Perophora, the eiliary movement is seen to greater advantage. The animals are found adhering to the broad fronds of fuci near low water-mark. They thrive in tanks, and multiply both by fission and budding. Two species are figured in Plate XVII., Figs. i and k, the zooids of which were found arranged in clusters, as represented.

Aplysizder (sea-hares), so ealled on aceount of a slight resemblance to a crouching hare. The body form is elongated with a partially developed noek and head, oral aud dorsal tentacles, and furnished beneath the mantle with a shelly plate to protect the branchie. The month is provided with homy jaws, and the gizzard is armed with spines, to prepare the food for digestion. The side lobes
are thin and large, and are cither folded over the back or inser in swimming. Fig, 369 is a rednced drawing of A. dipilens.

Ihe Jectinibranchs are known as violet sea-suats, Tanthinidec and scalariidre. The radula consists of mumerous rows of pointed teeth arranged in cross series, forming an angle in the middle. There is no central or rachidian tonth, and they have thin trochifom

Fig. 370 .-Ianthinis, Violet Sea-smail. - (Warne.)
The bubble b, drawn somewhat too large. is about to be joined to the anterior end of the float; c. Shell ; l. Float ; p. Foot; t. Head.
shells adapted for a pelagie life. They are mostly of a violet colour, from which they derive their name, the eolonr being more vivid on the muderside, which is tumed up towards the light when the animal is swimming noar the surface of the sea (Fig. 370).

The most interesting feature in comection with these oceanie smails is the curious float which they eonstruct to support their ceg-capsules. lt is a gelatinons raft, in faet, enclosing air-bubbles, which is attaclecl to the foot, the egge eapsules being suspended from its under-surface.

They are unable to sink so long as they are in comection with their Hoats, and are therefore often cast on shore during storms, and furnish an enilless series of mieroseopic specimens. The violet smails feed on various kinds of jelly-fish, and oceur in shoals.

Pomel Shails.-The threc fimilies, Limnoeidae, Physidic, and Chilinide, form a special group of the pulminate, sessile-eycd freshwater snails. The larger family of these belongs to the genns limnoea, having a compressed and triangular head with two tentacles and cyes placed at their inner base. They are prolific and gregarious, and their ova are enclosed in transparent gelatinons

Fig. 371.-Ova and young of Limnceres stagnatis.
capsules, deposited in continuous series, and firmly glued to submerged stems and leaves of aquatic plants. L. staynalis is common in all ponds, marshes and slow-rumning rivers of (reat Britain.

One of the species, L. trancatula, is the host of the liver-fluke so fatal to sheep. The fluke parasite passes one stage of its existence in the intestine of the pond smail.

Each ova-sac of Limnœa contains from fifty to sixty oval (represented in Fig. 371, at a). If examined with a low power soon after the eggs are deposited, they appear to consist simply of a pellucid protoplasmic substance. In about twenty-four hours a very minute yellowish spot, the mucleus, is discovered near the eell-wall. In another twenty-four homs the nucleus referred to is secu to have assumed a somewhat decper colour and to contain within it a minute spot-a nuelcolus.

On the fourth day the melens has changed its position, and is
enlarged to donble the size ; a slightly magnified view is seen at $\%$. On a closer examination a tranverse fissure is seen ; this on the eighth day divides the small mass as at c, and the outer wall is thickened. The embryo becomes detached from the side of the cell, and moves with a rotatory motion aromen the interior ; the direction of this motion is from the right to the left, and is always increaserl when smulight falls mpon it. The increase is gradual up to the eighteenth day, when the changes are more distinctly visible, and the ova crowd down to the mouth of the ova-sac, as at d. By employing a higher magnifying power a minute black spec, the future eye (e) and tentacles of the snail, is quite risible. Tpon closely observing it, a fringe of cilia is noticed in

Fig. 372.-Limuceus stagnalis (natural size). motion near the edge of the shell. It is now apparent that the rotatory motion first observed must have been in a great measure due to this ; and the current kept up in the fluid contents of the cell by the ciliary fringes. For days after the young animal has escaped from the egg, this ciliary motion is carried on, not alone by the fringe surrounding the month, but by cilia entirely smrromding the tentacles themselves, which whips up a smpply of nourishment, and at the same time acration of the blood is effected. From the twenty-sixth to the twenty-eighth day it appears actively engaged near the side of the egg, using force to break through the cell-wall, which at length it snecceds in accomplishing; leaving its shell in the ova-sac, and immediately attaching itself to the side of the glass its ciliary action recommences, and it appears to have adranced a stage, as at f. It is still some months before the embryo grows to the perfect form, Fig. 372 ; the animal is here shown with its sncker-like foot adhering closely to the glass of the aquarinm. A single snail will deposit from two to three of these ova-saces a week, producing, in the course of six weeks or two months, from 900 to 1,000 yomg.

The shell itself is deposited in minute cells, which take up a cirenlar position aromed the axis; on its under-surface a hyaline membrane is secreted. The integument expands, and at various points an internal colonring-matter or pigment is deposited. The
increase of the anmal goes on until the expanded foot is formed, the outer edge of which is romuded off and turned over by condensed tissne in the form of a twisted wire ; this encloses a network of small ressels filled with a fluid in constant and rapid motion. The course of the blood or fluid, as it passes from the heart, may be traeed through the larger branehes to the respiratory organs, consisting of branchial-fringes plaeed near the month; the blood may also be seen returning through other vessels. The heart, a strong musenlar apparatus, is pear-shaped, and enelosed within a pericardium or extremely thin and pellucid enveloping membrane. The heart is seen to be furnished with musenlar bands of eonsiderable strength, the action of which appears like the alternate to-and-fro motion occasioned by drawing out a band of indiarubber, and which, althongh so minute, are elearly analogons to the muscular fibres of the mammal heart; it beats or contracts at the rate of about sixty times a minute, and is plaeed rather far back in the body, towards the axis of the shell. The nervous system is made up of ganglia, or nervous centres, and distributed throughout the various portions of the body.

The singular arrangement of the eye cannot be omitted; it appears at an early stage of life to be within the tentaele, and eonsequently capable of being retracted into it. In the adult animal the eye is situated at the base of the tentacle; and although it ean be protruded at pleasure for a short distance, it seems to depend much upon the tentacle for protection as a coverlid-it invariably draws down the tentacle over the eye when that organ needs protection. The eye itself is pyriform, somewhat resembling the round figure of the human eye-ball, with its optic-nerve attached. In colour it is very dark, having a central pupillary-opening for the admission of light. The tentaele, which is cylindrical in the young anmal, becomes flat and triangular in shape in the adult. The tentacles serve in some respeet to distinguish species. In Limnoca they are, as I have said, compressed and triangular, with the eyes at their inner base. In Physa they are cylindrical and slender and without lateral mantle lobes. The development of the lingual membrane is delayed; consequently, the young mimal does not early take to a vegetahle sustenance : in place of tecth it has two rows of cilia, as before stated, which drop off when the teeth are fully formed. 'The lingual band
bearing the teeth, or the "tongue," as it is termed, consists of several rows of cutting spines, pointed with silicil.

It is a fact of some interest, physiologically, to know that if the young animal is kept in fresh water alone, without vegetable matter of any kind, it retains its cilia, and arrest of development follows, and it more slowly aequires gastric teeth, and attains to perfection in form or size. If, at the same time, it is eonfined within a narrow cell or space, it grows only to sueh a size as will enable it to move about freely ; thus it is made to adapt itself to the neeessities of a restricted state of existence. Some young animals in a narrow glass-cell, at the end of six months, were alive and well; the cilia were seen to be retained around the tentacles in constant activity, whilst other animals of the same brood and age, placed in a sitnation faronrable to growth, attained their full size, and produced yonng, which grew in three weeks to the size of their elder relations.*

My experimental investigations were further extended to the development of the lingial membrane, or tecth, of Gastroporla, as well as the jaw and radula. In Limnœa, the teeth when fully developed resemble those of Helix ; that is to say, in the fully grown animal are found several rows or bands of similar teeth, with simple obtuse cusps and a mueh suppressed eentral tooth. In the young snail a high power of the mieroseope is required to make them out. The dental band, however, in most Mollusea is disposed in longitudinal series, but varies a good deal in this respeet, as will be seen on reference to my several papers, with illustrations of upwards of a hundred different species, published in "Linnean Transaetions" of 1866, and in the "Mieroscopical Soeicty's Transaetions" of 1868. By way of example I may say, in the Pulmonata the lingnal band usually eonsists of a single median row, the laterals on each side being broad and similar. But in many other groups the teeth are arranged in three, fire, or seven dissimilar series. Taking Nerita as a type, the

* I lave ventmed to devote some considerable space to the development of the pond-suail, and for an obvious reason, that of making it perfectly clear to my readers that my microseopical investigations of Limmen, made in 1853, were published in the "Jommal of the Mieroseopical Socicty, "June, 1854, and republished in extenso in the several editions of this book, dating from the last mentioned period. Nevertheless, the fringe of eilia was, it appears, rediseovercd in 18i4, just twenty years after my paper was published. It is almost muecessary to add that Carpenter gravely errs in his statement "that the existence of the fringe of cilia in the embryo susil had been overlooked until 187t:"
broad teeth on each side of the modian are termed laterals; and the numerons small teeth on the ontside of the band, known as the plewre, are termed uncini.

Since the investigations of Loven into the lingual dentition of the Molhnsen, rarions observers hare stndied the subject, with great advantage to onr knowledge of the affinities of these animals. That these investigations have proved of value is shown by the light which has been shed on the true position of many speeies. When once we have ascertained the homology of a genus, whose relations were otherwise somewhat donbtful, it is surprising how other eharaeteristies, even of the shell, probably misunderstood before, coneur to bear out the affinities indieated by the lingual band. These tooth-bearing

1. Palate of Buccium undatum, common Whelk, seen muder polarisel light; 2. Palate of Doris tuberrulata, Sea-slug.
membranes, armed with sharp entting points, admirably adapted for the division of the food on whieh they feed, are most of them heautiful objects for the mieroseope.

The two ends of each longitudinal row of teeth are connected with mmscles attached to the npper and lower smfaces of cartilaginous eushions; the altermate contraetions and extensions of the museles cause the bands of teeth to work backwards and forwards, after the fashion of a chain-saw, or rather of a rasp, upon any substance to which it is applied, and the resnlting wear and tear of the anterior teeth are made good by a development of new teeth in the seereting sace in which the hinder end of the band is lodged. Besides the chain-saw-like motion of the band the lingual membrane has a kind of licking or scraping aetion as a whole. With the eonstant growth of the hand new teeth are developed, when the tecth on the
extreme portion of the land differ much in size aud form from those in the median line.

As I have shown in the papers ahready referred to, that as each row is a repetition of the first, the arrangement of teeth admits of easy representation by a numerieal formula, in which, when the uncini are very numerous, they are indicated by the sign s (infinity), and the others by the proper figure. Thus, $\infty \cdot 5 \cdot 1 \cdot 5 \cdot \infty$, whieh, in the genus 'Trochns, signifies that eaeh row eonsists of one median, flanked on both sides by five lateral teeth, and these again by a large number of uncini. When only three areas are found, the outer ones must be eonsidered the pleure, inasmuelı as there is frequently a manifest division in the membrane between them and the lateral areas.

Most of the Cephalopod molluses are provided with well-developed teeth, and they are, as we know, carnivorous. The teeth of the euttlefish, Sepia officinalis (Plate V., No. 111), resemble those of the Pteropoda, and have the same formula, $3 \cdot 1 \cdot 3$. Sepia are also furnished with a retraetile proboseis, and a prehensile spiny collar, apparently for the purpose of scizing and holding prey while the teeth are tearing it to pieees. In the squid Loligo (Plate V., No. 113) the median teeth are broad at the base, approach the trieuspid form with a prolonged aeute central eusp, while the uncini are much prolonged and slightly curved. The lingual band inereases in breadth towards the base, sometimes to twiee that of the anterior portion. This band, mounted dry, forms an attractive object for blaek-ground illumination.

In another family, that of the rock-limpet, Patella radiata, the lingual band (Plate V., No. 116) well serves to distinguish it from the better-known eommon limpet. It is furnished with a remarkable long ribbon, studded by numerous iows of strong dark-brown trieuspid teeth. The lingual membrane when not in use lies folded up in the abdominal cavity. The teeth of Aemæa are somewhat differently arranged (Plate V., No. 117) ; their formula is $3 \cdot 1 \cdot 3$.

T'estacella maugei, belonging to Pulmonifera, is slug-like in appearance, and subterranean in its habits, chicfly feeding on earth-woms. During winter and in dry weather it forms a kind of coeoon, and thus completely encloses itself in an opaque white mantle ; in this way it protects itself from frost and cold. Its lingual membrane

Tongues, etc., of Gastriropods.

Edmund Evnns.
Phate V.
is large, and covered with about fifly rows of divergent teeth, gradually diminishing in size towards the median row ; each tooth is barbed and pointed, broader towards the basc, and with an articulating nipple set in the basement membrane. A few rows are represented slightly magnified (1'late V., No. 121). Their formma is $00 \cdot 1 \cdot 00$.

The boat-shell, Cymbu olla, belonging to the Velutinidæ, formula $0 \cdot 1 \cdot 0$, or $1 \cdot 1 \cdot 1$. The lingual band (Plate V., No. 118) is narrow and ribbon-like in its appearance, with numerous tridentshaped teeth set on a strong muscular membrane. The end of the band and its comection with the museles at the extrenity of the eartilaginous eushion is shown in the drawing. The blueish appearance is produced by a selenite film and polarised light. In Scoponder ligniarius the band (Plate V., No. 119) is also narrow, but the teeth are bold and of extraordinary size ; their formula is $1 \cdot 0 \cdot 1$. This molluse is said to be eyeless. Pleurobranchus plumula belongs to the same family; its teeth are simple, recurved, and convex, and arranged in mmerous divergent rows, the mediaus of which are largest. The mandible (Plate V., No. 122) presents an exceedingly pretty tesselated appearance, and the ummerous divergent rows of teeth are trieuspid.

The velvety-shell, Velutina lavigata, formula 3 1 3. The teeth (Plate V., No. 108) are small and fine; medians reeurved, with a series of delieate dentieulations on either side of the central cusp, which is mueh prolonged: 1st laterals, denticulate, with outer cusp prolonged; 2nd and 3rd laterals, simple eurved or hookedshaped. The mandible (No. 109), divided in the centre, forms two plates of divergent denticulations.

The ear-shell, Huliotis tuberculutus, is a well-known beantiful shell, mueh used for ormamental purposes. The lingual band (llate V., No. 114), is well developed. The medians are flattenedout, recurved obtuse teeth; 1st laterals, trapezoidal or beam-like; uncini numerous, about sixty, denticulate, the few first pairs prolonged into strong pointed eusps.

The top-shell, T'urbo marmoratus. After the outer layer of shell is removed, it presents a delieate pearly appearance. Its lingtal band (No. 123) closely resembles Trochus; it is long and narrow, the median teeth are broadest, with five recurved laterals, and numerous
rows of uncini, slender and hooked. A single row only is represented in the plate.

C'yclotus trauslucidus, a fimily of operculate land-shells, belongs to the Cyclostomatidic. The teeth shown in No. 110, formula $3 \cdot 1 \cdot 3$, are arranged in slightly divergent rows on a narrow land ; they are more or less subquadrate, recurved, with their central cusps prolonged. Cistula catemuta, one of the family Cyclophoridee ; its band (No. 115) formula, 2 • 1 • .2. Its teeth resemble those of Littorina. The lingual band of Cyclostomatide points out a near alliance to the Trochide ; but this question ean only be determined by an examination of several species, when it may, perhaps, be decided to give them rank as a sub-order. They are numerous enough; the West Indian islands alone furnish 200 species.

The length of the lingual band, and number of rows of teeth borne on it, vary greatly in differont speeies. But it is among the Pulmonifera we meet with the most astonishing instances of large numbers of tecth. Limar muximus possesses 26,800, distributed through 180 rows of 160 each, the individual tecth measuring only one 10,000 th of an inch. Helix pomatic has 21,000, and its comparatively dwarfed congener, 11. absolutu, no less than 15,000 .

Structuve of the Shell of Mollusca.-hn my opening sketch of the sub-order Mollusea an idea may have been gathered of the general eharater of the shell covering of these animals. The simplest form of shell oeeurs in the rudimentary oval plate of the common shg, Limax rufius. It is embedded in the shield situated at the baek, near the head of the animal. In the Chitons, a small but singular group of molluses allied to the univalve limpets, we have all oroid shell, made up of eight segments, or movable plates, which give them a resemblanee to enormous woodliee. These have been regarded as forming a transition series-a link between one division and the other. The shell in by far the greater portion of all the molluses is developed from eells that in process of growth have become hardened by the deposition of calearous matter in the interior. This earthy matter consists prineipally of caleium carbonato deposited in a crystalline state; and in certain shells, as in that of the oyster (Plate XVIH., Fig. 8), from the amimal eell not having sutticiently

SECTIONS OF SHELL-STRUCJURE
controlled the mode of deposition of the earth particles, they have assumed the form of perfect rhomboidal crystals.*

The shell of the wing-shells, Pinna ingens (Plate XVIII., No. 7), is composed of hexagonal cells, filled with partially translucent calGareons matter, the outer layer of which can be split up into prism, like colnmns. Figs. 3 and 6 are horizontal sections of the Maliotis splendens, with stellate pigment in a portion of the section, and wavy lines, as in the dentine of the human tooth, and of I'erebratulata rubicuna, showing radiating perforations. Nos. 4 and 5 , sections of the shell of a crab, show pigment gramules beneath the articular layer and the general hexagonal strueture of the next layer.

Some difference of opinion has been expressed with regard to the formation of pearls, but it is now gencrally moderstood to be a discased condition. Pearls are matured on a nucleus, consisting of the same matter as that from which the new layers of shell proceed at the edge of the mussel or oyster. The finest kinds are formed in the body of the animal, or originate in the pearly-looking prart of the shell. It is from the size, roundness, and brilliancy of pearls that their value is estimated.

The microseope diseloses a difference in the structure of pearls: those having a prismatic collular structure have a brown horny nucleus, surrounded by small imperfectly-formed prismatic cells;

[^44]there is also a ring of homy matter, followed by other prisms, and so on, as represented in Fig. 374 ; and all transverse sections of pearls from oysters show the same successive rings of growtly or deposit.

In a segment of a transverse section of a small purple pearl from a species of Mytilus (F゙ig. 375), all trace of prismatic strncture has

Fig. 374.

1. A transverse section of a Pearl from Oyster, showing its prismatic strueture 2. A transverse section of another Pearl, showing its central cellular structure, with outside rings of true pearly matter. (Magnified 50 diameters.)
disappeared, and only a series of fine eurved or radiating lines is seen. This pearl consists of a beautiful purple-coloured series of regular laminæ, many of which have a series of concentric zones, and are of a yellow tint. The most beautiful seetions for mieroseopic examination are obtained from Scotel pearls.

Preparation of the Teeth and Shell of Mollusea for Microscomical Examinution.-The method of preparing lingual membranes of Mollusea is as follows: Under a dissecting mieroscope, and with a large bull's eye lens, ent open and expose to riew the floor of the
month; pin back the cut edges throughout its length, and work out the dental band with knife and foreeps. The band being detached, phace it in a watch-glass, and boil in caustic potash solution for a few mimates. Having by this process freed the tongue from its integuments, remove it, wash it well, and place it for a short time in a dilute acid solution, cither acetic or hydrochloric. Wash it well and float it upon a slide; with a fine sable brusle open it out flat, and remove whatever dirt or fibre may be adhering to it. Lastly,

Fig. 375.

1. Transverse section of a small Pearl from a Mytilus ; 2. Horizontal section magnified 240 dianeters to show prisinatic strueture and transerse strix.
place it in weak spirit and water, and there let it remain for a few days before mounting in formalin. Canada balsam renders them rather too pellueid, and the finer teeth are thereby lost.

The preparation of shell structure must be proceeded with with some amome of care and caution, or the delicate reticulated network membrane will be destroyed. If any acid solvent be used to remove the calcareons structure it should be much diluted, so that the action inay proceed slowly rather than hastily. In the young hermit-cral, for example, where the calcureous and membramous portions of the shell are contimons, and the calcium curbonate in
a relatively small proportion, a strong acid solution would entirely destroy the specimen. In the ease of nacreous shells the process of cutting and grinding must also be proceeded with with some amoment of caution. The operation should be examined as the process proceeds, and muder polarised light. Seetions of shell structure are usually mounted in Canada balsam. Under the heading Technique mueh useful information on this and kindred subjects will. be forund in the "Journal of the Royal Mieroseopieal Soeiety."

Annulosa, Worms, and Entozoa.

The Amnulosa of Huxley embraees the lowest grade of articulated animals, most of whieh are now grouped with Metazoa, while some writers place them in a sub-kingdom Vermes. It appear's to me then only possible to deseribe this heterogeneous group of wormlike animals among those which resemble eaeh other in eertain negative featmres, but not possessing any of the distinctive eharaeters of those previously described. There are numerous speeies among Entozoa, every one of which is of the highest interest to mankind in general, and to animal life as a whole. To these I shall devote some attention, from the wide-spread importanee attaeled to them. They are charaeterised by laving a soft absorbent body with little or $n o$ eolour, in eonsequenee of being excluded from light, living within the bodies of animals and absorbing their vital juiees, thereby inflicting a large amount of injury and death upon the whole vertebrate kingdom. They bear in this respeet a close analogy to parasitie Fungi in the nature of their destruetive action npon plant life, whieh I have fully diseussed in a previons ehapter.

The relations whieh obtain between parasites and their hosts are in all respeets conditioned by their natural history ; and without a detailed knowledge of the organisation, the development, and the mode of life of the different speeies, it is impossible to determine the nature and extent of the pathologieal conditions to whieh they give rise, and at the same time find means of proteetion against guests in every way so unweleome.

The mutritive system of the entozon must be regarded as in the lowest state of development, yet there are some among them of a higher grade, as will be seen as we proceed. All are remarkable
alike for their vast produetiveness and for their peeuliar metamorphoses. For example, the greater number of the T'enia begin their lives as sexless, encysted larva, and on entering their final abode, segments are suceessively added, until the worm has finally reached the adult stage. Again, the tapeworm of the cat las its origin in the eneysted larve fonnd in the livers of the mouse and rat. Another species of entozoa inhabit the stomach of the sticklebaek, and only attain their perfeet form in the stomachs of aquatie birds that feed exclusively on tish. Another infests the mantle of pond-snails, and through their agency, the embryos pass into the stomach of slieep.

An almost endless number of similar transformations take plaee in other genera. The simplest form among internal parasites is the Gregarinæ, formerly grouped among Protozoa. They eonsist of a simple limiting membrane, with a mass of granular matter enclosed and surrounding a nucleus (Plate III., No. 53). These parasites pass through a erystoid stage in the body of one of the lower animals, usually the earthworm, Lumbricus agricola. In the more mature organism an envelope, differentiated from the protoplasm within, can be made out (No. 54); this affords an indieation of greater differentiation in the subjacent layer of protoplasm. An anterior portion is in many eases separated by a constriction from the cylindrical or band-like body (No. 56). Gregarine multiply when encysted, and divide into a multitude of mimute pseudo-navicula, so named from their resemblance in slrupe to a well-known form of Diatomacer. When a young pseudonavicule escapes it behaves somewhat like an amoba, and if perchance it is swallowed by an appropriate host, it develops at once into the higher stage. The various forms are represented in Plate JII., Nos. 53-61. Miescher, in 1843, described suchlike bodies, taken from the muscles of a mouse. A good aecount of specimens obtained from the museles of a pig was published by the late Mr. Rainey in the "Philosophical I'ransactions," 1857. He regarded them as cestoid entozon. They have been described muder a variety of names, as worm-nodules, egg-sacs, eggs of the fluke, young measles, \&c. M. Lieberkühn earefully trieed the pseudohavicula after leaving the perivisceral cavity of the earth-worm; he found large numbers of small corpuscles, exhihiting amoba-like
movements, as well as pseudo-navicnle, containing granulos, formed in an encysted (tregarine. He imagines that these latter bodies burst, and that their contained gramules develop into the amobiform bodies which subsequently become (iregarinse.

Professor Ray Lankester made a careful examination of more than a hundred worms for the purpose of studying these questions, but he succeeded in arriving at no other conelnsion than that eertain forms may be the by-products of encysted Gregarinæ. The G. lumbricus is one of those forms whieh are unilocular. The resicle is not always very distinet, and is sometimes altogether absent ; occasionally it contains no gramules, sometimes sereral, one of which is generally nucleated. In other of these cysts a number of nucleated eells may be seen developing from the enelosed Gregarina, which gradually beeome fused together and broken $11 p$, until the entire mass is eonverted into meleated bodies, of ten seen in different stages of development, assuming the form of a double eone, as that presented by eertain speeies of Diatomacer. At length the cyst contains nothing but psendo-navieulæ, sometimes enelosing granules; these gradually disappear; and finally the eyst bursts. Encystation seems to take place mueh more rarely among the bilocular forms of Gregarine than in the unilocular species found in the earthworm and other Ammelids.*

Dr. J. Leidy published in the "Transaetions of the Philadelphia Soeicty," 1853 , the results of his examinations of several new speeies of Gregarinæ. He described a double membrane "within the parietal tunie of the posterior sae, this being transparent, colourless, and marked by a most beautiful set of exeeedingly regular parallel longitudinal lines."

Professor R. Lenekart is the latest writer on the parasites of animals, and to him we are indebted for a more systematic aceount of the whole group, and their life-history, than to any previous investigator. I can only attempt to give a mere ontline of the developmental stages of a few typieal forms of parasites, eommeneing with the eystic tapeworm, Tænia. These worms are ribbon-like in appearance, and are divided throughont the greater part of their length into segments, and their nsual habitation is the intestinal

[^45]cavity of vertebrate amimals. The anterior extremity of a tenoid worm is nswally called the head, and bears the organ by which the animal attaches itself to the mucous membrane of the creature which it infests. These orgins are either suckers. or looks, or both conjoined. In 'Tienia, four suckers are combined with a circlet of hooks, disposed around a modian terminal prominence. The embryo passes through certain stages of development-viz, four forms or changes: but the embryo itself is rery peculiar, consisting of an oval non-ciliated mass, provided with six hooks, three upon each side of the middle line. 'Tronia are found enclosed in various situations besides that of the alimentary eanal: the cye, the brain, the muscular tissues, the liver, dec, of animals. 'The following cystic worms are usually included in this gencra, C'ysticercus Anthocephulus, Cunurus, and T. Echinococcus. Plate IV., No. 100, shors ill adult specimen of the latter with rostellum suckers, and three successive segments, the last of which is the ova sac. The watervaseular system is represented coloured by carmine. This parasite infests the human body as frequently as many other species. My accurately-drawn figure is copied from Cobbold's "Introduction to the Study of Entozoa."

C'ysticercus fasciolaris is developed within the liver of white mice ; C'ysticercus cellulose in the muscles of the pig' hence we have the discased state of pork familiarly known as "measly pork." Shonld a lamb become infested with Trenia the final transformation will be different; within a fortnight symptoms of a disease known as "staggers" manifest themselves, and in the course of a few weeks the Conerus cevebralis will be developed within the brain. Von Siebold pointed ont the bearing of this fact upon the important practical problem of the prevention of "staggers." Others belonging to the same class of parasites are quite as remarkable in their preference for the alimentary canal of fishes. The Eehinorhynchus is dereloped in the intestinal canal of the flomeder, Trienophorus motulus in the liver of the salmon. 'Thus, hy careful and repeated observation with the microscope, a close comnection is found to exist between the cystic and cestoid entozoia.

The Echinococens (Plate IV., No. 101) infests the luman liver. These parasites are always found in cysts, and in closed cavities in the interior of the body. They are mited in fours by a very short
stalk or pedicle, common to the whole. By an increase of magnification the eontents of a cyst present the several structures represented in Fig. 376.

Eehinorhynchus, or spiny-headed threadworms, constitute a group of entozoa which undergo a metamorphosis hardly, perhaps, less remarkable than that known to take plaee in other Nematode worms. Leuekart instituted, in 1861, a series of experiments with the ova of Echinorhynchus proteus found parasitie upon the Gemmarus pulex. The ova of E. proteus resemble in form and strueture those of allied species. They are of a fusiform shape, surrounded with two membranes, an external of a more albuminous nature, and an internal

Fig. 376.-Cystie Discase of Liver (Human).
a. Cyst with Eehinocoecus enelosed ; b. detached hooklets from the head or Echinoeoceus, magnified 250 diameters; c. crystals fonnd in cyst, chiefly cholesterine: d. cylindrical epithelium, some enclosed in struetureless resicles; c. Puro-muculent granules, fat and blood corpuseles.
chitinous one. When the eggs reaek the intestine the outer of these membranes is absent, being in fact digested, while the immer remains intact until ruptured by the embryo.

The typieal Threadworm belonging to the order Nematoidea infest the intestines of children, and are a sonree of mneh suffering. The egg is elliptical, and contains a mass of gramular protoplasm, the external wall of which soon becomes marked out into a layer of cells. The mouth of the worm appears as a depression at the end of the hant head. When the muscular system and alimentary eanal are developed the embryo hatehes out, some few of which are free living forms; most of them lead a parasitic life. Their reproduction is enormous, representing thousands of eggs and embryos.

Of the non-parasitic species of thread-worm, the common vinegar cel, Anguillula,* affords an example. This is found in polluted water, bog-moss, and moist earth, as well as in vinegar; also in the alimentary canal of the pond-sinail, the frog, fish, \&c. Another species is met with in the ears of wheat affected with a blight termed the "cockle"; another; the A. glutinis, in sour paste. If grains of the affected wheat are soaked in water for an hour or two before they are cut open, the so called "ccls" will be found. The paste-cel makes its appearance spontaneously just as the pasty mass is turning sour; the means of securing a supply for microscopical examination consists in allowing a portion of the paste in which they show themselves to dry up, and laying it by for stock ; if at any time a portion of this is introduced into a little fresh-made paste, and the whole kept warm and moist for a few hours, it will be found to swarm with these wriggling little worms. A small portion of paste spread over the face of a Coddington lens is a ready way of viewing them.

Trichinu spiratis. - One of the smallest and most dangerous of all human internal parasites is T. spiralis, since it finds its way into the muscles throughout the human body. The young animal presents the form of a spirally-coiled worm in the interior of a minute ovalshaped cyst (Plate IV., No. 104), a mere speck seareely visible to the naked eye. In the muscular structure it resembles a small millet seed, somewhat calcareous in composition. The history of the development of Trichina in the human muscle is bricfly that in a few hours after the ingestion of infected pork, Trichina, disengaged from the muscle, will be found in the stomach: hence they pass into the small intestinc, where they are further developed. Continuing their migrations, they penetrate far into the interior of the primitive muscular fasciculi, where they will be found, in about three days after ingestion, in considerable numbers, and so far developed that the yomg entozoa have almost attained a size cqual to that of the full-grown 'Trichina (Plate IV., No. 105). They quickly advance into the interior of the muscular fasciculi, where they live

[^46]aud multiply in continnous series, while the surromeding structures as well as the muscular tissue mudergo a process of histolysis. The destructive nature of the parasite is very great.

The number of progeny produced by one female maty amomit to several thousands, and as soon as they leave the egg they either penetrate through the blood-ressels, or are carried on by the circulation, and ultimately become lodged in the musceles situated in the most distint parts of the body. Here, as already explained, they become encysted.

Professor Virchow draws the following conchnsions:-" 1 . The ingestion of pig's flesh, fresh or badly dressed, containing Trichine,

Fig. 3i7. Monads in Rat's Blood, stamed with metlyy violet, showing membrane under different aspects; blood-corpuscles, some crenated and others with stained discs (x 1,200).-(C'ookshank.)
is attended with the greatest danger, and may prove the proximate eause of death. 2. The Trichine maintain their living properties in decomposed flesh; they resist immersion in water for weeks together, and when encysted may, without injury to their vitality, be plunged in a sutticiently dilute solution of ehromic acid for at least ten days. 3. On the contrary, they perish and are deprived of all noxious influence in ham which has been well smoked, kept a suffieient length of time, and then well boiled before it is consmmed."

A more minute Filarian worm has been deteeted in the human blood-vessels, known as Filuria semtuinis hominis. This worm carries ou its work of destruction throughout the night. ; during the day it remains perfectly passive. It inereases rapidly, and produces swellings of the glandular structures of the body, somewhat after the nature of those characteristic of the Bombay plague, with a
slight difference, that after death the swellings are seen to be due to the rast accmmulations of the Pilaria sanmuinis bloeking the bloodvessels. The accompanying lig. 377 shows a similar infiltation of monads in the blood of rats dying of plague in Bombay.

Trematode IVorms. - In the order 'rematorla, to which the Huke belongs, the body is unsegmented, and to the naked eye smooth throughout, with a blood circulatory system, and two suctorial disces at the hinder end. There is a distinct digestive canal, usually forked, furnished with only one aperture, the mouth. The exeretory organs open out as in tape worms, and the male and female organs co-exist in the same individual.

The Fluke (shown in Plate IV., No. 103) is cone-shaped, and is the Amphistome conicum of Rudolphi. This parasite is eommon in oxen, sheep, and deer, and it has also been fonnd in the Doreas antelope. It invariably takes up its abode in the first stomach, or rumen, attaching itself to the papillated folds of the mucous membrame. In the full-grown, adult stage, it rarely exeeeds half an inch in length. It is certainly one of the most remarkable in form and organisation of any of the internal parasites.

The larger fluke (Fasciola hepatica) often attains to an inch or more in size. It is not only of frequent oecurrenee in all varieties of grazing cattle, but has likewise been found in the horse, the asss, and also in the hare and rabbit and other animals. Its occurrence in man has been recorded by more than one observer. The oral sucker forming the mouth leads to a short osophagus, which very soon divides into two primary stomachal or intestinal trunks, the latter in their turn sending off branches ; the whole together forming that attractive dendritic system of vessels so often compared to phant-renation. This remarkably-formed digestive apparatus is represented in Plate IV., Nos. 106 and 107, lusciola giganten of Cobbold, and should be contrasted with the somewhat similarly racemose charater of the water-vascular system. Let it be expressly noter, however, that in the digestive system the majority of the tubes branch out in a direction obliquely downwards, whereas those of the vascular system slope obliquely upwards. A further eomparison of the disposition of these two systems of structure, with the siane systems figured and deseribed as eharacteristic of the Amphistoma, will at once serve to demonstrate the important differences
which subsist between the several members of the two genera, if we turn to the eonsideration of the habits of l'asciola hepatica, which, in so far as they relate to excitation of the liver disease in sheep, acquire the highest practical importance. Intelligent cattle-breeders, agriculturists, and veterinarians have all along observed that the rot, as this disease is commonly ealled, is partieularly prevalent after long-continued wet weather, and more especially so if there have been a succession of wet seasons; and from this circumstunce they have very naturally inferred that the humidity of the atmosphere, coupled with a moist condition of the soil, forms the sole eause of the malady. Co-ordinating with these facts, it has likewise been notieed that the flocks grazing in low pastures and marshy districts are much more liable to the invasion of this endemic disease than are those pasturing on higher and drier grounds ; a noteworthy exception occurring in the ease of those flocks feeding in the saltwater marshes on our eastern shores. Plate IV., No. 106, Fasciolu gigantea : the anterior surface is exposed to display oral and rentral suckers, and the dendriform digestive apparatus injected with ultramarine; No. 107 shows the dorsal aspect of the speeimen and the multiramose charaeter of the water-raseular system, the ressels being injected with vermilion.

In their larval condition the Amphistoma live in or upon the body of the pond-snail. This we infer from the circumstance that the larvæ, or cercarix, of a elosely-allied speeies, the Amphistoma subclavatum, are known to infest the alimentary canal of frogs and newts, and have also been found on the body of the Planorbis by myself. The cercarix larvæ are taken, it is believed, by the sheep and the cattle while drinking. The earliest embryotie stage in which I have found the embryo fluke is represented at Fig. 378, No. 1. In the year 1854, whilst observing the habits of Limnoea and other water-snails, 1 brought home speeimens from the ornamental water in the Botanie Gardens ; upon these were diseovered thousands of minute thread-like worms, subsequently met with on other embryos, and at first taken to be simple infusorial animals, but upon placing them in a glass ressel these minute bodies were observed to detarh themselves and eommonee a free-swimming existence. A fringe of cilia was scen to surround the flask-shaped body (No. 1).

The study of these embryos throws a flood of light upon the
obseure history of Cercarize. After a short period of wandering, their embryos fasten upon the water-snail, and compel it to act as a

Fig. 378. Forms of Cercaria ; stages in the development of the Fhuke.

1. An infusorial embryo ; 2. a 'lom atod embryo having quite reeently eseaperl from the fger ; 3. embryo cercaria; 4. fully-formed cercaria, showing alimentary eanal and sueker-like head ; 5, eneysted form of same; 6. Cerceria furcalu, with the nervons system and forked tail displayed ; 7. in the aet of breaking up; 8. tall portion lialf an hour after division; 9. parasitic wom of another species of Trematoda. (Magnified from 10 to 25 diameters.)
wet-nurse, and prepare it for a further and higher stage of life. The earliest condition in which I have discovered them concealed abont the body of the water-snail is shown at No. 2; in appearance, a simple elongated sace filled with ova or gremes, and which in a short
time develop into the caudate worms alrearly spoken of their tails gradually attaining to the length of the mature cinbryos, Nos. 3 and 4, the latter being at full-grown Cercaria ephemera.

Diesing deseribed no less than twelve species of Cercariee, some of the most curious of which live on the puddle-snail, in colonies of thousands. All throw off their tails at the moment of changing into a fluke. On plaeing some Cercaria furcuta (Nos. 6 and 7) mader the microseope, they were seen to plunge abont in frantic attempts to escape from confinement. Suddenly 1 saw them shed their tails and their bodies divide into two parts, each half swimming about as vigorously as before, quite indifferent as to the severance, and apparently dying from exhaustion. Those represented in Nos. 6 and 7 have a highly-organised nervons system, forming a continnous circuit throughout the body and tail. The mouth is furnished with a sucker and hooklets, which ean be projected out some distance, while a digestive apparatus and ventral opening or sucker cam be differentiated. The tail is bifurcated and artieulated with the body by a sort of ball-and-socket joint, and when broken off, the convexity of one part is seen to accuratcly fit into the concarity of the other ; it lashes about this appendage with considerable dexterity, rarely attaching itself to any of the small aquatic plants.*

There is yet another Filarian worm, a pest to the poultry-Yard, the Gape-worm, Sclerostoma syngamus. This parasite is widely distributed, and is invested with speeial interest, since it produces disease, and kills annually thousands of young chickens, pheasants, partridges, and many of the larger kinds of wild birds. The worms find their way into the windpipe or trachere, through the drinking water, while in the embryotie or cerearian stage of existence, and their increase is so rapid, the birds quickly die of suffocation. The fomale gape-worm often attains to a considerable size, and when full grown resembles the well-known mud-worm of the Thames (Goretius arquticus). She measures full six-cighths of an inch in length, while the male only measures one-eighth. So insignificantly small is he that the female carrics him about tucked into a side pocket. The ova sac occupies at considerable portion of the internal body space, and is always found loaded with egges in all stages of development, numbering some five lumdred or a thousand. In shape these are oroid.

* "Cercaria parasitic on Limmua," " Jour. lioyal Micros. Soc. " 1870.

On cutting open the windpipe of chicken and partridges, I have found their trachere literally swarming with the gape-worm.*

A remarkible form of the Trematode worm is Bithareia luematobre of Cobbold, Distomia luematobium of other anthors (Plate IV., No. 10:). This genus of Huke, discovered by Dr. Bilharz in the human portal system of blood vessels, gives rise to a very serious state of disease among the Egyptians. So common is the occurrence of this worm, that this physician expressed his belief that half the grown-up population of Egypt suffer from it. Griesinger conjectures that the young of the parasite exist in the waters of the Nile, and in the fish which abound. Dr. Cobbold thinks "it more probable that the larve, in the form of cerearie, redir, and sporocysts, will be found in certain gasteropod mollusca proper to the locality." The anatomy of this fluke is fully described by Küchenmeister in his book on parasites, by Lenekart, \dagger and by Cobbold. The eggs and embryos of Bilharzia are peculiar in possessing the power of altering their forms in both stages of life ; and it is more than probable that the embryo form has been mistaken for some extraordinary form of ciliated infusorial animal, its movements being quick and lively. We cannot fail to notice the curious form of the male animal, and, mulike the Filarian previously described, it is he who earries the female about and feeds her. The whip-like appendage seen in the figure is a portion of the body of the female. The disease produced by this parasite is said to be more virulent in the summer months, probably owing to the greater abundance of cercarian larve at this period of the year.

There are also double parasitic worms, which may be described as a sub-order of Trematoda, differing very much from those previously described. These live on the gills of several species of fresh-water fish, the gudgeon and minnow, for instance. Among them is a most remarkable creature well deserving the name of Diplozoum paradoxum which has been bestowed npon it. It consists of two complete mature similar halves, each possessing every attribute of a perfect animal (1). Each of the pointed front ends has a mouth aperture,

[^47]and close to it two small sucking dises; while each individual has a separate intestine, consisting of a medinm tube and innumerable side-brauches. At the hinder end of the body are two suckers sunk in a depression, and proteeted by four hard buckle-shaped organs.

Fig. 379. - The double parasitic worm (Dıpiozuum paradurum).
The eggs are elongated, and provided at one end with a fine threadlike appendage (b). In this egge the young (c)-which at the time of latehing is only about one-hundredth of an inch-takes about a fortnight to develop. It is covered with cilia, has two eyes and two suekers; after quitting the egg, the larve are very lively and restless in
their movements, gliding about and then swimming off with rapidity. If unable to find the fish into which they aro destined to live, they grow feeble and perish, but if successful they grow into the Diporpa (d), which is flattened and lancet-shaped, and bears a small sucking dise on the under surface and a conieal excrescence on the back. After living in this state for some weeks, and gaining nourishment by sucking the blood from the fish's gills, the worms begin to join together in pairs, one speeimen seizing the conieal excrescence of another by its ventrical sucker; then, by a truly acrobatic feat, the second twists itself to the dorsal excreseence of the first, and in this state an inseparable fusion takes place between the suckers and the exerescences involved in the adhesion.*

In the group Vermes, the more highly-organised Annelida must be included. These, for the most part, live either in fresh or salt water. The Annelids are various, while the Planaria, a genus of Turbellaria, are very common in pools, and resemble minute leeehes; their motion is continuous and gliding, and they are always found crawling over the surfaces of aquatie plants and animals, both in fresh and salt water. The body has the flattened sole-like shape of the Trematode entozoa (Fig. 378, No. 9), the month is surrounded by a cireular sucker; this is applied to the surface of the plant from which the animal draws its nourishment; it is also furnished with a rather long proboseis, which is probably employed for a similar purpose.

Planariæe multiply by eggs, and by spontaneous fissuration in a transverse direction, each segment becoming a perfect animal. Professor Agassiz believes that the infusorial animals, Paramrecium and Kolpoda, are simply planarian larva.

Hirudinidæ, the leech tribe, are usually believed to form a link between the Annelida on the one hand, and the Trematoda on the other ; their affinities place them closer with the latter than the former. Although deprived of the characteristie setre of the Amelida, and exhibiting no sectional divisions, they are provided with a suckerlike mouth possessed by Trematoda, but they present no resemblance to them in their reproductive organs. On the other hand, in the arrangement of the nervous system and in their vascular system, the Hirudinida resemble Amelida. The head in most of the Amelida

[^48]is distinctly marked, and furnished with eyes, tentacles, mouth, and teeth, and in some instances with auditory vesicles, containing otolithes. The nervous system consists of a scrics of ganglia ruming along the ventral portion of the animal, and communicating with a central mass of brain.

Hirudina medicinalis puts forth a claim for special attention on the ground of services rendered to mankind. The whole of the family live by sucking the blood of other animats; and for this purpose the month of the leech is furnished with a number of strong horny teeth, by which they cut through the skin. In the common lecch threc rows of teeth exist, arranged in a triangular, or rather triradiate form, a structure that accounts for the pecinliar appearance of leech bites. The most inter-

Fig. 380. - Mouth of Leech. esting part of the anatomy of the leech to microscopists is certainly the structure of the mouth (Fig. 380). This is a muscular dilatable orifice, within which threc beantiful little semi-circular saws are situated, arranged so that their edges meet in the centre. It is by means of these saws that the leech makes the incisions whence blood is to be procured, an operation which is performed in the following manner. No sooner is the sucker firmly fixed to the skin, than the mouth becomes slightly everted, and the edges of the saws are thas made to press upon the tense skin, a sawing movement being at the same time given to each, whereby it is made gradually to pierce the surface, and cut its way to the capillary blood-vessels beneath.

In Clepsinidr the body is of a leech-like form, but very much narrowed in front, and the month is furnished with a prehensile proboscis. These animals live in fresh water, where they may often be seen crecping over aquatic plants. Their prey is the pond-snail.

Tubicola.-The worms belonging to this series of branchifcrous Annelida are all marine, and distinguished by their invariable habit of forming a tube or case, within which the soft parts of the animal can be entirely retracted. This tube is usually attached to stones or other submarine bodies. Externally it is composed of rarious foreign materials, sind, erystalline lodies, and the dehris of shells;
internally it is lined with it smooth coating of sarcode, sometimes of a harder consistency. 'The Tubicola generally live in societies, winding their tubes into a mass which often attains a considerable sizo ; only a few are solitary in their habits. They retain their position in their cuses by means of tufts of bristles and spines; the latter, in the tubicular Annelids, are usually hooked, so that by applying them to the walls of the ease, the animal is cnabled to oppose a considerable resistance to any effort made to withdraw it. In the best known family of the order (Sabellia), the branchice are placed in the hoad, and form a circle of plumes, or a tuft of branelied organs. Tho Serpulidec form irregularly twisted calcarcous tubes, and often grow together in large masses, when they seeure themselves to shells and similar objects ; other species, Terebellida, which build their cases of sand and stones, appear to prefer a life of solitude. The best known form is Terebella littoralis.* The curious little spiral shells seen upon the fronds of seaweeds are formed by an animal belonging to the Spirorbis.

If the animals be placed in a vessel of sca-water a very pleasing spectacle will soon be witnessed. The top part

Fig. 381. - Serpula with extended tentacles and body protruding from ealcareous case. of the tube is seen to open, and the creature cautiously protrudes a fringe of tentacles ; these gradually spread out two beautiful fanlike rows of tentacles, surrounded by cilia of a rich purple or red colour. These serve the double purpose of breathing and feeding organs. When withdrawn from its calcarcous case, the soft body is seen to be constructed of a series of rings, with a terminal prehensile foot by which it attaches itself.

Many Annelids are without tubes or eells of any kind, simply burying their bodies in the sand near tidal mark. The Arenicola, lob-worm, is a well-known specimen of the class; its body is so

* An interesting account of the formation of the tubes of Serpula is given by Mr. Watson, "Jour. Micros, Soe.," vol. 1890, 1. 685.
transparent that the eirculating fluids can be distinctly seen meder a moderate magnifying power. Two kinds of flnids flow through the vessels, one nearly colonrless, the other red ; the vessels throngh whiel the latter cirenlate are deseribed as blood-vessels.

Not very much interest attaches to the developmental stage of the Annelida. They issue forth from ova, and the embryo so closely resemble ciliated polypes, that competent observers have mistaken them for animals belonging to a lower class; a few hours' careful watching is sufficient to dispel a belief of the kind, when tho embryonic, globular, or shapeless mass is seen to assume a form of segmentation, and soon the various internal organs become more and more developed, eye spots appear, and the yomg animal arrives at the adult stage of its existenee.

Crustacea.

The crustaceans comprise a large assemblage of Arthropods, presenting great diversity of structure. Some of the parasitic species have become so simplified in organisation that they appear to present no relationship with the higher members of the class, yet it is eertain that all the speeies, whether terrestrial or aquatic, belong to the same stoek, and may have had origin in the same fundamental plan of strueture. Essentially, the body consists of it large number of segments, to each of whieh is attached a pair of two-branched appendages ; the external branch is tormed the exopodite and the internal the endopoditc. Five segments at the front end of the body unite to form a head, the appendages of the first two being sitnated in front of the mouth, and performing the offiee of feelers or antemne, while those of the remaining three segments are transformed into jaws, the first pair of jaws boing the mandibles and the following two pairs the maxillee. The rest of the appendages are varionsly morlified and to some are attached respiratory organs in the form of gills. Crustaecins are broadly divided from Centipedes, Millipedes, Insects, dec., by the presence of two pairs instead of onc pair of antema, and by the possession of branchial and not tubular (traehcal) respiratory organs. Arachnida and some other species are again widely separated. The majority of the young on lowing the egg ane quite
unlike the parent, and only acquires their detinite form after undergoing a series of changes. The earliest stage, which has been called the Nauplius, ahready referred to in comection with the barnacle, is a minute body showing no trace of segmentation, and provided with a single eye, and three pairs of swimming appendages, which become the two pairs of antemm and the mandibles of the adult. This stage is by 110 means of invariable oceurrence, but is chiefly characteristic of the lowest members, the Entomostracer, and is rare in the higher, Malacostraca. The typical crustaceans are shrimps, crayfish, de., so familiarly described by Huxley. The zora stage of the crab, a minute tramsparent creature, which undergocs several changes, swims about flapping its long jointed abdomen, like some of the Entomostraca, and the shrimp in particular. The larva of erayfish, the socalled glass-crab, is very peculiar and interesting. The sessile-cyed scries, in which the compound eyes are never mounted on a movable stalk, and to which the Isopoda belong, exhibits great diversity of structure as well as of habits and habitat. Some live in fresh water,

Fig. 382.-Male Gnathia, cularged. most are marine, while others live on land and take to a parasitic life.

This genus contains Gnathia, in which the mate and female are so dissimilar, that they are frequently reforred to as members of two families. In the adult male the mandibles are powerful and prominent, and the head is large, squared, and as wide as the thorax. In the fomale, on the contrary, the head is curiously small and triangular, without visible mandibles, and the thorax is much dilated. The creatures are about one-sixth of an inch long, and of a greyish colour, and the destruction they bring about is due to their habit of boring into timber below water mark. Fig. 382 represents an enlarged view of the male Ginathia. These erustaceans are vegetarians, and feed on wood. Other members of the group, known as fish lice, are much larger in size, and chiefly infest the cetacca, and bear in
addition two large eyes. By means of their powerful fore fect the Cymothordae attach themselves to both marine and fresh-water fish, showing a preference for the inside of the mouth of their host.

The birrfooted group Copepoda are free living, and the thorax bears four or five swimming feet; the abdomen is without appendages. The best known fresh-water form is Cyclops, the structure of which serves as a type of the order. The body is, as is well known to microscopists, broad in front and taper-

Fig. 383.-1. Cypris; 2. Cyclous; 3. Branchipus yrubei. ing behind, being thus, when viewed swimming, pear-shaped in outline. The dorsal elements of the head are fused to form a carapace, which bears a single evec, from which circumstance it derives its name. The eggs are carried by the female in a couple of ora-sacs attached to the last segment of the thorax, and so prolific are these creatures that a female will produce over four thousand million young. The young when hatehed is an oval Nauplius, which after two or three moults acquires the adult state. In the family of the Apodide we have an equally well-known erustacean, the Branchipus. In the Branchipodidec the body is also elongated, but there are no appendages to the abdomen, which consists of nine segments, while there are eleven pairs of thoracic appendages. The head shield is not developed backwards, and the large separated eyes are supported on distinct stalks. In the male the second anteme are converted into claspers. These crustaceans swim upside down (Fig. 383).

Cladocera (Duphniudue of Dr: Baird). -The water-flea (Daphtmiat pulex) may be taken as the best known example of the order. The body of this little active animal is narrowed in front, and at the posterior end, where the carapace is decply notehed, is the tip of the abdomen bearing the pair of rigid barbed seta from which the genus takes its name. At the front of the had is a large componnd eye and two pairs of branched phomed appendages, antemiae. The first
pair of these are small and simple. The jaws eonsist of the mandibles and the first pair of maxille, the second pair of maxille being obsolete in the adult. The thorax comprises five segments, each bearing a patir of leaf-like swimming limbs. The abdomen eonsists of three segments, and is destitute of limbs. The males are usually smaller than the females, and much rarer, being rarely met with before the end of summer.

Fgegs are laid both in summer and winter, and are passed into a brood-ponel, separating the upper surface of the thorax from the backward extension of the carapaee. Here the summer eggs hatch, but the winter set are enclosed in a kind of eapsule developed from the earapace. 'Ihis eapsule, termed the ephippium, is east off with the next moult of the mother's integ'ument (a proeess neeessary for the gradual growth of the erustacean), and falling to the bottom of the water, gives exit to the embryos, whieh hateh in its interior, and the young born from these "ephippial" eggs produce young, which in their turn beeome mothers. It appears, then, the winter eggs are enelosed in eapsules of more than usual hardness to enable them to withstand any degree of cold that might otherwise prove fatal to the parent. Dr. Baird found, on examining ponds that had been again filled up by rain after remaining two months dry, numerous speeimens of Daphnia and Cyclops quadricornis in all stages of growth.*

We learn also from his investigations that the Daphnia have many enemies. "The larva of the Corethra plumicornis, known to mieroseopical observers as the skeleton larva, is execedingly rapacious of Daphnia. Pritelard says they are the choiee food of a species of Nais ; and Dr. Parmell states that the Loehleven trout owes its superior sweetness and richness of flavour to its food, whieh eonsists of small shell-fish and Entomostraca." These ermstaceans abound in fresh and salt water. Artemis are formed exclusively in salt water, in salt marshes, and in water highly eharged with salt. Myriads of these Entomostraca are found in the salterns at Lymington, in the open tanks or reservoirs where the brine is deposited previous to boiling. A pint of the fluid eontains about a quarter of a pound of salt, and this eoneentrated solution destroys most other marine animals. During the fine days in summer Artemix may be ohserved

[^49]in immense nmmbers near the surfaee of the water, and, as they are frequently of a lively red colour, the water appears tinged with the same hue. The movements of this little anmal are peculiar: It swims about on its back, and by means of its tail, its feet being at the same time in eonstant motion. They are both oviparous and ovoviviparous, aceording to the season of the year. At certain periods they only lay eggs, while during the hot summer months they produee their young alive. In about fifteen days the eggs are expelled in numbers varying from 50 to 150 . As is the ease with many of the Entomostraca, the young present a rery different appearance from the adult animals; and they are so exactly like the young of Chirocephalus, that with diffieulty are they distinguishable one from the other. The ova of other speeies are furnished with thiek capsules, and imbedded in a dark opaque substanee, presenting a minutely eellular appearanee, and oceupying the interspaee between the body of the animal and the baek of the shell ; this is ealled the ephippinm. The shell is often beantifully transparent, sometimes spotted with pigment ; it eonsists of a substance known as chitine, impregnated with a variable amount of ealeimm earbonate, whieh produees a eopious efferveseence on the addition of a small quantity of a strong aeid to the water in which the shell is immersed. When boiled, Artemir turn red as their eongeners, lobsters. Their shells may be said to consist of two valves united at the baek, resembling the bivalve shell of a mussel, or simply folded at the baek to appear like a bivalve, but are really not so ; or they may eonsist of a number of rings or segments. The body of Cypris presents a retienlated appearanee, somewhat resembling eell strueture. Entomostraea should be nareotised and prepared for examination under the microseope as direeted by Mr. Ronsselet at pages 345, 346 .

[^50]Piate VI.
Fdmund Evans.

CHAPTER IV.

Arthropoda-Insecta.

Distinctive Churtcters of Insects. -The term Inseet, although originally and aceording to the meaning of the word eorreetly employed in a wide sense to embrace all those articulate ereatures in which the body is externally divided into a number of segments, ineluding; of eourse, flies, butterflies, beetles, hugs, spiders, seorpions, erabs, shrimps, \&c., is now by eommon consent used in a much more restrieted sense to apply only to such of these animals as have six walking legs. Inseets belong to a elass of Arthropoda, and are distinguished by having the head, ehest, and abdomen distinetly marked out and separable ; by having not more than three pairs of legs in the adult state; by having the leg's borne by the thoracie segments only; by having usually two pairs of wings; by the possession of traehere, or air-tubes, as respiratory organs; and by being provided with a single pair of antemne, or feelers. The insect elass is one exhibiting uniformity of type and strueture. Extreme variations are no doubt seen within certain limits, but these variations are sharply marked off from the groups we have been previously eonsidering. 'The examination of inseets may be pursued according to a defined order, and it will be found that no elass of animals will afford the mieroscopist a more wonderful field of observation and a greater varicty of interesting objects than that of the inseet tribes.

In the inseet, as in the ernstacean, the hard parts of the body form an outer and protecting eovering, and also serve for the attachment of museles. The casing, however, in insects is purely of a chitinous, or horny nature, and has in its eomposition only a trace of ealcium earbonate. Faeh somite, or joint of the body, is usually composed of six pieces; the upper, or dorsal half of caeh segment is
named the tergum, the lower half the stermm, the side pieces pleura, the sternum being further sub-divided into epimeral and espistermal pieces. The body as a whole consists of some twenty segments, of which five or six form the head, the thorax of three joints, while the alodomen may number from nine to eleven. The head segments are united to form apparently a single mass, and the appendages of this region are modified for sensory purposes, and also serve as cutting and masticatory organs. The appendages of the head, examined in order, will be found to consist of eyes, antennæ, or feelers, and organs of the mouth. The antennæ of inseets rarely exceed two in number, but these present great variations in form and size. In their simplest form they exist as straight jointed filaments, but in many insects they are forked, in

Fig. 384.-Vertical section of cornea of Eye of Fly. others club-shaped, while in others they mimic forms of vegetation, and for the most part are extremely interesting objects for the microscope.

The principal use of these antemne is that of organs of touch, but it is quite probable that they may subserve other functions, as of taste or even hearing. The eyes of insects consist of either a pair of ocelli, or of a great number, when they are termed compound eyes, formed of an aggregation of external hexagonal facets and lenses, and nerve filaments, all of which have a distinct connection with the mass of ganglia recognised as the brain, as will be seen in Fig. 384, a section of the eye of a fly. 'The number of facets varies very greatly in these compound eyes ; ants, for example, have fifty facets, flies two thousand or more, and butterflies as many. Dr. Hooke counted seren thousand, and Leuwenhoeck as many as twelve thousand in the eye of a dragon fly. The eyes of some insects are supported on short stalks or pedicles, but these are never movable, as, for example, in erustaeeans.

The organs of the mouth in inseets present a striking homology' or similarity in their fundamental strncture. Two chicf types of mouth are found. The hiting or masticatory, as in beetles, includes a labinm or upper lip, a pair of mandibles or lower jaws, a pair of
lesser jatrs or maxilla, which hear one or two pairs of palpi, and a lower lip or labimm, also with palpi. This latter and primitive condition of the labium is seen in Orthropterous insects and some Neuroptera. Other struetures oeeurring in those of the mouth are the ligula, this being sometimes divided, as in bees, into three lobes, of which the two outer are the paraglossa and the middle process the lingua or tongue. There is a second form of mouth, termed the suetorial. This is seen in Lepidoptera (butterflics), and is adapted for extraeting the pollen and jnices of flowers, and in whieh the palpi are greatly developed, and form two hairy pads or cushions, between whieh the proboscis is eoiled up when at rest. Thus we find in the Lepidoptera the same fundamental condition of month as in some Colcoptera. In Hymenoptera (wasps and bees), a variety of mouth is found which presents a combination of the masticatory with the suctorial types. The labium and mandibles exist as in the beetle, the maxillæ being developed to form long sheaths protecting the labium, which now takes the form of a tongue. In Hemiptera (bugs and their allies), the mandibles and maxillæ exist as sharp lancets, while the labium forms a protective sheath. In the Diptera (flies, gnats, dre.), the labium undergoes a great development, and forms a very prominent tongue, the other parts of the mouth being developed simply as sheaths to the labium. See Figs. 389 and 390.

The thorax or ehest of insects eonsists of three segments, named from before baekwards : the prothorax, mesothorax, and metathorax. The first bears the anterior pair of legs ; the mesothorax, the second pair of legs and the first pair of wings ; and the metathorax, the third pair of legs and seeond pair of wings. The last joints of the leg eonstitnte the tarsus or foot-elaws. The nervures of the wings are in reality hollow tubes, and are extensions of the spiracles, or respiratory apertures.

The museles of insects lie eonecaled beneath the integument ; they are not gathered into distinct bundles as in the higher animals, although they exhibit in many cases a striated or striped structure. This is well seen in some of the beetle tribe, the water-beetle in partienlar. In certain larve the muscles are execedingly eomplicated. Lyomnet found in the larva of the goat-moth, two hundred and twenty-cight muscles in the head alone, and in the whole body
n less than three thousand nine hundred and ninety-three. The muscular power of insects is, relatively to the size of the body, rery great. The flen, for instanee, leaps two hundred times its own height. There are beetles weighing a few grammes that will escape from a pressure of from twenty to thirty ounces.

Professor Schäfer infers that the structure of the wing-muscles of insects furnishes the key to the eomprehension of the more intricate museular strueture of vertebrates. The sareode element, however, is not made up of a bundle of rods, but of a continuous sarenus element, readily made out by staining with hæmatoxylin. This substance is then seen to be piereed by minute tubular eanals, and the longitudinal striation of muscle is due to this canalisation. The whole is connected and enclosed by a membrane of extreme delieaey.

The digestive system of insects varies with their habits and food. In Stylops, bee-parasites, and in young bees living on fluids, the intestine ends in a blind sac. There are three coats of structure throughout the digestive system The œsophagus or gullet is provided with a crop in flies, bees, and butterflies ; a true analogue of the gizzard in birds. There is in some respects a eurious likeness between the conformation of the digestive organs of birds and that of inscets. No trne liver, but salivary glands in the mouth have been made out the heart lies dorsally, and consists of a pulsating sae divided into eompartments, and the fluid flows through it towards the head, whence it eireulates freely to other parts of the body. Each traehea is an elastie tube formed of two delieate membranes, between which the spiral filament is eoiled up, and is of sufficient density to prevent the eollapse of the tube by the movements of the body. These tracheæ are distributed thronghout the musenlar tissue and the whole of the body. Thus the insect, like the bird, may be said to breathe in every part of the body, and is in this way rendered light and buoyant for flight. The air is admitted to the traehere by apertures termed spiraeles, which the insect can elose at will, and these are distributed to the number of eleven on each side of the body. The nervous system consists of a chain of ganglia or nerve-knots, which unite towards the head to form a single cord, as seen in the section made through the spider (Fig. 409).

The reproduetion of all inseets takes place by ova, and they are dieceons-that is, have two distinct sexes. In some few instanees, as that of Aphides, or plant-lice, we have the peculiar phenomenon of parthenogenesis, the process of reproduction being performed by imperfect wingless females. 'These bring forth living young ones, which begin to feed the moment they are born, and constitute a riviparous brood; in other eases females lay eggs, and the process proeeeds in the ordinary way, and nearly all the year round. The former is provided with a laneet-like beak for piereing and sucking the juiees of the leaf, and a pair of curious honey-tubes. Inseets geuerally undergo a transformation or metamorphosis in passing from the egg to the adult stage. While within the egg the body may be seen to beeome segmented, and in the eourse of time-in such insects as flies, bees, beetles, and butterflies - issue forth from the egg as larve, or caterpillars. This worm-like ereature makes for itself an investing ease or eocoon, in which it passes into the pupa stage of its existence. Within the pupa case a wonderful transformation takes plaee; the larval body being literally broken down by the process of histolysis, while its elements are rebuilt and transformed into that of the imago, or perfeet inseet. In grasshoppers, eriekets, dragon-flies, bugs, de., the metamorphosis is incomplete (hemimetabolie). Some few lower insect forms (liec, spring.tails, dec.) mudergo no ehange of the kind, and in no way differ from the adult exeept in size. These are termed ametabolie inseets. Others again, as the eoekchafer and gold beetle, pass three years in the larval stage. Development in all eases is arrested or retarded by cold. Reaumur kept a butterfly pupa for two years in an iechouse, and it exhibited no tendency towards a change until removed to a warm temperature.

From the short natural history of inseet life I have endearoured to sketch out, it will lave been surmised that inseets offer a wide field of research, and an almost endless number of objeets of interest for the mieroscope. The variety of material is great, and the strueture and adaptation of means to an end is of the most faseinating kind. Most eabinets abound in preparations grathered together with some care and mounted with all the skill at the command of the colleetor, affording, as a rule, as endless an amome of pleasure to the tyro as to the more practised ento-
mologist. It may be summerl, then, that to enter fully into a deseription of the several prits of insect structure wonld require a folume* of very large bulk, and occupy months and years. I will, therefore, take some points of interest in the structural characteristics of insects, and take them in the order in which they have already been bronght to notice. The head, eyes, and other appendages of these insects we are more or less acquainted with.

We will take for examination a typical member of Muscidx, a family embracing a large and varied assortment of species, among which the house-fly and the blow-fly are the best known forms. Musca domestica needs no description. An interesting part of the

Fig. 385.-A tangential or sicle section of Eyc of Fly, with palp or pads protruded. house-fly to the microscopist is the wonderful component parts of the head. On examination we find a couple of protuberances, more or less prominent, and sitnated symmetrically one on each side. Their outline at the base is for the most part oval, elliptical, circular, or truncated; while their emred surfaces are spherical, spheroidal, or pyriform. These homy, round, and naked parts are the cornere of the compound eye of the fly, and they are appropriately so temed, from the analogy they bear to the larger transparent tumics in the higher classes of ammals. They differ, however, from the latter, as when viewed by the mieroseope they display a large number of hexagonal facets, which constitute the medium for the admission of light to several hundred simple eyes. Under an ordinary lens, and by reffected light, the entire surface of one cornea presents a beantiful reticulation, like very fine wire ganze, with minute papilla, or at least a slight eleration, in the centre of each mesh. These are resolved, however, by the aid of a compomd microseope, and with it power of from 80 to 100 diameters, into an almost ineredible number (when compared with the space they occupy) of minnte, regular, geometrical hexagons, well defined, and capable of being compnted

[^51]with tolcrable ease, their exceeding minuteness being taken into consideration.

Fig. 386 represents a vertical section of the eye, showing the hexagonal fiaceted arrangement of cylindrical tubes.

In this section it appears to be questionable whether the nomal shape of the lenses is not round, assuming the hexagonal shape during the process of growth in consequence of their agglomeration.

Fig. 386. -. Section of Eye of Fly.
l. Lenses ; co. Cones ; pl. Pigment layer, consisting of rings round the rods; $r . r$. Rods; a. v^{1}. Air vessels between the rods; m^{1}. Nembrane on which the rods and air vessels rest; a. v^{2}. Shorter lengths of air vessels which form a layer above the first nerve junction ; $n . j^{1}$. First nerve junetion; m^{2}. Nembrane on which it stands ; A.v., A.v. Large air vessel surrounding the eye; $n \cdot j^{2}$. Second nerve junction; a, v^{3}. Air vessels ; op.n. Optic nerve ; b.n. Brain substan:e. (Magnified $\times 160$.)

The corneal surface cam be peeled off, and if earefully flattenced out and mounted it will be seen that cach lens is not a simple lens, but a double-convex compound one, composed of two plano-convex lenses of different densities or refracting power joined together.

Experiments made on the cyes of insects, and also of erustacee, show that in the insect a real and reversed image of external bodies is formed in each ommatidium ; it coincides with the intermal face of the erystalline cone in immediate contact with the retina. Athough small, the retinal image is distinct and subtends an angle of noarly forty-five. In the sime way in the erustacem, the crystalline lens forms on the retinula a reversed image, but the refractive
media have a longer fouss, and the retinal mombranc is not connected with the lens, the interval being filled up by a substance amalogons to the vitreous of vertebrates. In both calses it would appear that light does not act direetly on the rods; these latter can only recoive impressions through the intermediary retinal cells. The retinal images of arthropods, as might have been snmmised, are much less perfeet than those of the higher orders; on the other hand, their eyes seem to be better adapted for seeing objects in relief and the movements of bodies. The shyness of butterflies and moths is certainly an inherited instinct as

Fig. 387.
A. Vertical section of Ejc of Melolonthe vulgous, Cockchater'; 1. A few facets more highly magnified, showing facets and pigment layer. a protection against danger from their many enemies.

In the aceompanying Fig. 387, A is a rertical seetion of the eye of Melolonthe vulgans, the fanlike arrangement of the facets, together with the tramsparent pyramidal gathering of the retinal rods proeeeding towards the brain ; в is a few of the corneal tubes more highly magnified, the darker portion representing the pigment layer of the corneal tubes. In Plate VI., No. 133, the under surface of the head and mouth of the "Tsetse" fly, Glossince morsitans, is shown. The proboseis of this fly is long and prominent, and the antenne are peeuliar, inasmueh as the third segment is long, and produced almost as far as the flagellum, which is furnished with barbed hairs along its outer surfaee only. Although this fly barely equals the blow-fly in size, it is one of the greatost pests to the domestic eattle of Equatorial Africal. The palpi, although arising from two roots, are seen joined together when the fly is at rest, but when in the aet of piercing or sueking they divide and the sheath is thrown directly npwards. The palpi are furnished on their convex sides with long and sharply-pointed dark-brown setse or hairs, while the inner eoneave sides, which are brought into eontaet with the proboseis, are perfeetly smooth and fleshy. Three cireular openings seem to indieate the tubular nature of what in the houseHy is a floshy, expanded, and highly-doreloped muscular proboscis
(seen in Fig. 388 , J/usce domestice). The proboscis (labium) forms the chicf part of the organ, dilates into wonderful mascular lips, and enables the insect to employ the tongue as a prehensile organ.

Fig. 388.-l'roboscis of House-lly, Muser domestice. (The small citele indicates the oljeet about the natural size.)

The lips are covered with rows of minute sete, directed a little backwards and arranged rather closely together.

There are very many rows of these minute hains on catch of
the lips, and from being aranged in a similar direction are employed by the inseet in scraping or tearing delicate surfaces. These hairs are tests for the best of high powers. It is by means of these that it teases human beings in the heat of summer, when it alights on the hand or face, to sip the perspiration as it exudes from the skin. The fluid ascends the proboscis, partly by a sucking action, assisted by the museles of the lips themselves, which are of a spiral form, arranged around a highly elastie, tendinous, and ligamentous structure, with

Fig. 389.-Spiral structure of Tongue of House-fly, from a micro-photograph made with a Zeiss 16 mm , and apochromatic projection eye-piece $\times 150$. other retractile additions for rapidity and facility of motion.

The beantiful form of the spiral strueture of the tongue should be riewed under a high magnifying power; when it will be seen that 110 eontinuing spiral structure really exists ; each ring, apparently detached, does not extend quite round ; their action is that of sueking tubes. Fluids are evidently drawn up through the entire fissure eaused by the opening between the ends of the whole series of rings. It may well be pronounced a marvellous structure. The mounting of the tongue must be done with a considerable amount of eare to show this structure, imperfeetly represented in my woodeut.

These inseets are of some service in the ceonomy of nature, by their eonsumption of decaying animal matter, found about in quantities ordinarily impereeptible to most people, and that would not be removed by ordinary means during hot weather. It was asserted by Limens that three flies would consume a dead horse as quiekly as a lion. This was, of eourse, said with referenee to the offspring of such three flies; and it is quite possible the assertion maty be correct, since the young begin to eat as soon as hatehed, and a female blowHy will produce twenty thousand living larve (one of which is

Fig. 390. - Tongue, Proboscis, and piercing apparatus of Drone-fly
(Eristalis fenax).
represented in Plate VI., No. 141). In twenty-four hours, each will have inereased in weight two hundred times, in five days it attains to its full size, and changes into the pupa, and then to the perfect insect.

In the drone-fly (Eristatis tenax), the month organs are larger than in the house-fly, and differ in many respects. The tongue is split up for a eertain distance, and then again united, as represented in Fig. 390. The labium, mandibles, and maxillæ are eonverted into

Fig. 391.-Under-surface of a Wasp's Tongue, Feelers, \&c. (Seen within the circle is the tongue about life-size.)
well-developed laneet-shaped organs; these both pieree the skin of animals, and form tubes by which their blood may be sucked up. Next to the maxillary palpi a couple of laneets are seen to project out; these again are associated with two other instruments, one resembling in appcaranee a two-edged sword, and a peculiar one with pineers or eutting tecth at the extremity. It is very peenliar, and resembles an instrument used in surgery for enlarging the wound, and in this ease to increase the flow of blood. This remarkable compound piereing apparatus of the drone-fly is of exquisite finish, and must strike the observer with amazement, while it greatly transcends the work of human mechanism. The fleshy tongue itself projeets some
distanee from the apparatus described, and is furnished with setro or hairs, shorter and fewer in number than those of the honse-fly, and while its spiral strueture is not so fully developed, its retrator, museles, and ligaments are even more so.

The further development of the mouth organs must be looked for in other members of the inseet tribe, when it will be seen many assume a more or less modified form of structure, that, for example, in Hymenoptera (the bee and wasp), in whieh inseets the mouth

Fig. 392.

1. Sting of Wasp (Vespa vulgaris), with its muscular attachments and palpi for cleansing the apparatus; 2. Sting of Bee.
and tongue are divided into lobes whieh are used to extraet the neetary (as Limneus termed it) from the plants on whieh they feed. The tongue in most species is eapable of extension and eontraction.

In Fig. 391 the under-surface of the wasp's tongue is shown, together with its two pairs of antemm, and pair of brushes on cither side, for brushing off the gathered pollen and honey from the broad tongue. It is amply provided with museular strueture. The antemm, or feelers, are as eurious in form as they are delieate in strueture. Those of the male differ from those of the female.

Both the bee and the wasp are armed with an exceedingly venomons sting, as is well known. This structure takes the form of a welladapted meclanical contrivance, and is a weapon of offence as well as of defence. The sting consists of two barbed needle-points, of a sufticient length to pierec the flesh to some depth. From the peculiar arrangement of their scrrated edges their immediate withdrawal cannot take place, and it is this cireumstance, with the drop of poison injected into the open wound, that renders their sting of the most painful and irritating kind. The gland containing the poison is eontained in a minute sac situated at the root of the piercing apparatus. In Fig. 392 is shown the sting of the wasp and the bec.

Very many inseets are provided with instruments for boring into the bark or solid wood itself. The female Cynip

Fig. 393. - Female Gall-fly and Larva. bores into the oak-apple for the purpose of depositing her egg. The larva, when full grown, cats its way out of the nut, and drops to the ground, where it attains the form of the perfect fly (Fig. 393).

There are numbers of species living exelusively upon the leaves of plants, to which they do much damage by the excrescences or galls they form. Each tree seems to be infested by its own species of gall-mite, the so-called nail-gall of the lime being caused by a species named Phytoptus tibice. These galls take the form of a pointed column, standing erect on the upper side of the leaf. Galls of much the same structurc oceur in the sycamore, maple, elm, and various fruit trees.

The gnat (Culex pipiens) is furnished with a sting curionsly constructed (Fig. 394), and enclosed in a perfcetly clothed sheath corered throughont by scales or feathers. This is folded up when not in nse. The mouth is provided with i complete set of lancets for piereing the flesh; after having inflieted a severe womnd, it injects au acid poison through the proboscis. The seales of the gnat rary in structnre accordingly as these are found on the wing, the body, or the proboscis. A magnified wing is shown at No. 2, Fig. 394, and a magnified scale from the proboseis at No. 3. In Fig. 405, Nos. 3 and 5, more highly magnified wing and body seales are given. The proboscis is protected on cither side by antemme and feclers.

The giant-tailed wasp, Sirax gigas, is furnished with an even more cmrious mechanical boring apparatus (Fig. 395) than its eongeners. This is a boring oripositor, skilfully contrived for piercing the bark of trees, in which the insect deposits her eggs, and where the larva,

Fig. 394.

1. Hearl of Culer pipiens, female Gnat, detached from body; 2. Wing, showing nervature and fringed eilges; 3. Scale from Proboseis; 4. Proboseis amd Lancets. The retienlated markings on eael side of the head show the proportionale space occupied by the eyes.
when hatched, will find an ample supply of food to earry it throngh this stage of existence. The boring tube, it will be seen, is it perfect museular structure (c, c, a, and x) ; in short, it is an endless form of drill, well known to the meehanic, such as is employed in fine work for drilling holes. 'The females are of some size, and may
be surprised and taken in the aet of boring through the bark of the pine tree, for which they have a preference.

There is also a species of the broad-bodied saw-fly, Lyclu campestris. These bore the Swotch fir, and deposit their eggs. The larvie from these egrgs, when hatched out, feed upon the pine-needles, first spinning a fine web to conceal their work of depre-

Fig. 395.-Boring apraratus of Giant-tailed Wisp (Sirex gig(as): $\times 350$. dation. A better known saw-fly, Abraxas grossularicta, plays havoe among our gooseberry trees. The female is provided with a curious mechanical apparatus as an ovipositor, with which she cuts into the thicker under-leaf of the plant. This penetrating and cutting tool consists of a double-saw (Fig. 396) of elaborate construction, which when not in use is kept coneealed in a long narrow ease situated beneath the abdomen. It is further protected by two homy plates. The saws pass ont through a deep groove so arranged that the saws work side by side backwards and forwards, without a possibility of rumning out of the groove. When the eut is made, the four are drawn together and form a central canal, through whieh an egg is foreed into the leaf. The cutting edges of the saws are provided with about eighteen or twenty teeth; these have sharp, points of extreme delieaey, and together make a serrated edge of the exaet form given to the finest and best-made surgieal saws of the present day. In the summer-time the proceedings of the femate insect may be witnessed, and the method of using this eurious instrument seen, by the aid of a hand magnifier. These inseets are not easily alarmed when busy at work.

Before bringing my remarks on proboseides of insects to a conelusion, attention must be given to that of the honey bee (Apis nillifica), and its curious accessories. The mouth of bees exhibits a combination of the suctorial and the masticatory form of oral
apparatus. 'Thus the labial, or upper lip, and the mandibles, or large pair of jaws, are well developed, while the maxillæ, or lesser pair, are elongated to form a tubular organ, throngh which, together with the tonguc, the flower juices, "honey-dew," may be sucked up. The labinm, lower lip, is also rather prolonged, and the palpi, or organs of tonch, with which it is endowed form a uscful protective apparatus. The mandibles are employed by bees in the construction of their abodes, while the suctorial portion of the mouth is devoted

Fig. 396.-Saws of the Gooseberry-fly (Abraxas grossulleriata).
to the reception of nourishment and to prehension. The sting of the bee, already noticed, is in fact an ovipositor, the female alone being provided with this weapon as an egg-depositing organ, although better known as an aculeus or sting ; but it forms no part of the oral apparatns (as shown in Fig. 397). The proboseis itself will be seen to be curionsly divided ; the divisions are olegant and regnlar, beset with nnmerous sete or hairs. The two horny outside lanects are spear-shaped and partially set with short hairs; at the base of each is a hinge articulation ; this permits of considerable motion in several directions, and is much used by the busy insect for forcing open the more internal parts of flowers, thms facilitating the
introduction of the proboscis. The two shorter feelers are closely conneeted with the proboseis, and terminate in three-jointed articulations. The structure of the proboscis is so armaged that it cim be enlarged

Fig. 397.

1. Honey bee's tongue; 2. Leeg of worker bee. (The small circles show the objects about the natural size.)
at the base, and thus made to contain a greater quantity of the collected honey-dew ; at the same time it is in this eavity the nectar appears to be converted into pure honcy. The proboseis tapers off' to a little nipple-like extremity, and at its base is seen two slorter and stronger mandibles, from between which is protruded a long and
narrow lance-like tongue, the whole being most curiously connceted by a series of strong muscles and ligaments. The basal or first joint of the hind leg in the neuter or working bee is developed into an enlarged form of pocket, used by the inseet for conveying the pollen of flowers and the propolis to the hive. Indeed, both the tibia and the first joint of the tarsus are broadened out into plates, but the two sides of the plates are differently furmished. On one side is a thick coating of hairs, those on the tarsus taking the form

Fig. 398.

1. Fuot and leg of Ophion ; 2. Foot and leg of Flesh-fly ; 3. Fout and leg of Drone-fly, with pad or sucker appendage.
of a brush, evidently used for brushing out the pollen, as these special developments are not found on the hind legs of the drones or of the queen.

The wax used in the formation of cells is a sccretion that cxudes through certain portions of the body of the bee, sinec it is found in little ponches sitnated on the muder part of the body, but it is not brought home ready for usc. The walls of the cells are strengthened when completed by a kind of varnish, already referred to as the propolis, colleeted from the buds of poplar and lime trees, and this is spread over the walls of the eell by that wonderful pair of broad spatula, represented in the drawing.

Many interesting variations will be found in the legs and feet of flies, as well as in those of other orders of insects (Lepidoptera). One or two typical forms are represented in Plate VI., and in Figg. 398.

The tarsus, or foot of the fly (Fig. 398), consists of a decply bifid, membranons structure, pulvillus ; anterior to its attachment to the fifth tarsal joint, or the upper surface, are seated two claws, or "tarsal ungues"; these are frecly movable in every direction. These ungues differ greatly in their outlinc, size, and relative development to the tarsi, and to the bodies of the insects possessing them, and in their corering; most are naked over their entire surface, having however a hexagonal network

Fig. 399.-Sueker on the leg of Water-hectle. (The dot in the circle represents the object natural size.) at their bases, which indieates a rudimentary condition of minute scalelike hairs, such as are common on some part of the integument of all inscets. Flcxor and extensor muscles are attached to both ungues and flaps; the flaps are either corrugated or arranged on the ridge and furrow plan, in other cases they are perfectly smooth on their frce surface, whilc others are covered with minute scalelike hairs. The thickness of the divided membrane on the blow-fly does not cxeeed the $\frac{1}{2000}$ th of an inch at the margin ; they somewhat increase in thickness towards the point of attachment. Projecting from the flap are organs which have been termed "hairs," "hair-like appendages," "trumpet-shaped hairs." These are doubtless the immediate agents in holding on to a smooth surface, as that of glass, and are termed "tenent-hairs," in allusion to their offiee. The under surface of left forefoot of Musca vomitoria is shown with tencnt-hairs (Plate VI., No. 140) ; a and b are more magnified hairs, a from below, l from the side. No. 142 is the left forefoot of Amares communis, showing the under surface and form of tenent appendages, onc of which is seen more magnified at a; No. 143 , under surface of left forefoot, Ephydra riparier. This fly is met with in immense numbers on the surface water in sillt marshes. It does not possess
the power of climbing glass; this is explatined by the structure of the tencut-hairs ; the central tactile organ is also very peculiar, the whole acting as a float, one to each foot, to enable the fly to rest on the surface of the water ; a is one of the extermal hairs, No. 135, under surface of left forefoot of Cussidu vividis (tortoisebeetle), showing the bifurcate tenent appendages, one of which is given at a more magnified. These, in ground beetlos, are mot with only in malcs, and are used for sexual purposes. The delicacy of the structure of these hairs in the fly and the elastic membranous expansion of the foot are marvellous. When the fly is climbing, a minute quantity of some glutinous fluid is exuded, so that the tubular nature of the tenent-hairs hardly admits of a doubt.
"At the root of the pulvillus, or its under surface, is a process, which in some instances is short and thick, in others long and curved, and tapering to its extremity (Scatophaga), setose (Empis), plumose (Hippoboscidæ), or, in one remarkable example (Ephydra), closely resembling in its appearance the very rudimentary pulvillus with which it is associated. Just at the base of the fifth tarsal joint, on its under surface, there is present, in Eristalis, a pair of short, very slightly curved hairs, which point almost directly downwards."米

Tencnt-hairs are usually present in some modification or other. It is really difficult to name a beetle which has not some form of them ; the only one I yet know that seems to me really to possess nothing of the kind is a species of Helops, living on sandy heaths. I suppose the dense cushion of hairs on the tarsi to be for the protection, simply, of the joints to which they are attachod. I have detected them on the tarsal joints of species of Ephydra, and on the first basal tarsal joint of the drone of the hive-bee. A very rudimentary form of tenent-hairs is present on the under surfaec of some of the tree-bugs (Pentatomidx), which have in addition a large, deeply-cleft organ at the extremity of the tarsus; this appears to be a true sucker.

When walking on a rough sufface, the foot represents that of a Coleopterous insect without any tenent appendages. The ungues are always attached to the last joint of an insect's tarsus. 'They are not attached to the fifth tarsal joint of a Dipterous insect, neither are they attached to the fifth tarsal joint of a Hymenopterous

[^52]insect, but to the terminal sucker, which again, in this great order, is a sixth tarsal joint, membranous, flexible, elastic in the highest degree, retractile to almost its fullest extent within the fifth tarsal joint-a joint modified to an extraordinary degree for special purposes.

In plantula of Lucanus, with its pair of minute claws, the misues are hairs modified for special purposes ; and they have the structure of true hairs. The sustentacula of Epeira, the analogous structures on the entire under surfaee of the last tarsal joints in Pholcus, the condition of the parts in the hind limbs of Notonceta, in both its mature and earlier conditions, as well as in Sareoptes, Psoroptes, and some other Aeari, all may be cited in proof of this fact. The various orders of insects have, for the most part, eaeh their own type of foot. Thus there is the Coleopterous type, the Hymenopterous type, the Dipterous type, the Homopterous type, de. ; eael so very distinctive, that in critical instances they will sometimes serve at once to show to which order an insect should be referred. Thus, amongst all the Diptera, I have as yet met with but one subdivision which presents an exeeption to the strueture described. This exception is furnished by the Tipulidse, which have the Hymenopterous foot. With hardly an exception, then, I believe the form of foot described will be found universal among the Diptera.

It may be desirable to add a few words on the best plan of conducting observations on the fect of insects. Their action should be studied by placing the insect under the influence of chloroform. It is of advantage to carcfully preserve the parts examined, and for this purpose Deane's medium or glycerine jelly suits rery well; some of the more delicate preparations, however, can only be kept unchanged in a solution of ehloride of zine. The plan of soaking in caustie potash, erushing, washing, putting into spirits of wine and then into turpentine, and lastly into Canada balsam, is perfeetly useless, excepting in rare instances where points connected with the structure of the integument have to be made out. Of course, the parts should be viewed from above, from below, and in profile, in order to gain exaet ideas of their relations. The binocular mieroseope diminishes the difficultics which formerly had to be encountered, as by its aid many parts may be clearly viewed withont preparation of any kind.

Moths and butterflies supply the mieroscopist with some of the most beautiful objects for examination. What cam be more wonder-

lig. 400.

1. Antenua of the Silkworm-moth ; 2. Tongue of Butterlly ; 3. A portion of tongue hichly magnified, showing its museular fibre ; 4. Tracher of silkworm; 5. Foot of silkworm. (The small circles enelose eaeli objeet somewhat near the natural size.)
ful in its adaptation than the antenna of the moth (represented in Fig. 400, No. 1), with a thin, finger-like extremity almost supplying
the insect with a perfect and nseful hand, moved throughout its extent by a museular apparatus of the most exquisite construction. The tongue of butterfly (No. 2) is evidently made for the purpose of dipping into the interior of flowers and extracting the juices ; this act is assisted by a series of fine muscles. An enlarged view of a portion is given at No. 3 ; see Plate VI., Nos. 132 and 133, antemne of Vapour Moth.

The ineonceivably delieate structure of the maxille or tongues (for there are two) of the butterfly, rolled up like the trunk of an elephant, and capable, like it, of every variety of movement, has

Fig. 401.-Breathing aperture or spiracle of silkworm. (In the circle it is shown about the natural size.)

Fig. 402.-Magnified portions of the traehea of the Hydrophilus, showing spiral tubes,
been earefully examined and described by Mr. Newport. "Each maxilla is eonvex on its outer surface, but concare on its inner ; so that when the two are united they form a tube, haustellium, by their union, through which fluids may be drawn into the month. The inner or coneave surface, which forms the tube, is lined with a very smooth membrane, and extends throughout the whole length of the organ ; while that of each maxilla is hollow in its interior, apparently forming a tube 'in itself,' but this is not so ; the mistake has arisen from the existenee of large tracheæ, or breathing tubes, i_{1} the interior of the proboseis. In some speeies the extremity of the lanstellium is stndded externally with a number of minnte papillæ, or fringes-as in I'anessa atalanta-in whieh they become
small elongated barrel-shaped bodies, terminated by smaller papillie at their extremities. On alighting on a flower, the insect makes a powerful expiratory effort, by which the air is expelled from the interior air-tubes, and from those with which they are connceted in the head and body; and at the moment of applying its proboscis to the food, it makes an inspiratory effort, by which the eentral canal in the proboscis is dilated, and the food ascends it at the same instant to supply the vacuum produced ; and thus it passes into the mouth and stomach, the constant ascent of the fluid being: assisted by the action of the muscles of the proboscis, which continues during the whole time that the insect is feeding. By this combined agency of the acts of respiration and the museles of the proboseis we are also enabled to understand the manner in which the humming-bird sphynx extracts in an instant the honey from a flower while hovering over it, without alighting; and which it certainly would be unable to do were the ascent of the fluid entirely dependent upon the action of the muscles of the organ."

The trachæal or respiratory system of insects varics, or rather is found to exist in modified forms to suit their varied conditions of life. While in the larval stage the breathing apertures are seen to reeur at intervals on each side of the abdomen (as that of the silkworm, Fig. 401), thus ensuring a continuous supply of air to the eireulating fluids throughout the whole body. These spiracles are usually nine or ton in number, and consist of a membranous ring of an oval form. The air-tubes are exquisitely composed of two thin membranes, between which a delicate elastic thread or spiral fibre is interposed, forming a eylindrical opening and keeping the tube in a distended condition, thus mechanieally preserving the sides from collapse or pressure in their passage through the air, which otherwise might occasion suffocation. Fig. 402 represents the double spiral arrangement of a portion of a trachea of Hydrophilus, which ensures both elasticity and strength.

There are other points of interest confined to the water-beetle tribe, among the more striking of which is the foreleg of the Dytiscus marginalis. Here the first three joints of the tarsus are expanded into a broad surface, and fringed throughout with curved hairs. From the surface of these spring a number of short hairs, with eup-like dises at their extremities, one of which is seen highly magnified in Plate Vl.,

No. 142. These are so cmp-like in form that they have been hitherto deseribed as "suckers," but it is believed they are simply a special apparatus for the development of the hairs seen on the leg and foot of the beetle. Another curious example oecurs in the Gyrinus, or whirligig-beetle. 'The front pair of legs are of the ordinary kind, but the under pair are furnished with expanding paddles. The trochanter, femur, and tibia, are flat plates of a triangular shape, pointed at their outer angles, from which the apex springs. But the tarsus is jointed on the inner angle of the furthermost end of

Fig. 403.

1. Leg of Gyrinus, Whirligig, paddle shown expanded. 2. Paddle closed up.
the tibia, and eaeh of its four joints expands into a flat paddle blade. In the aeeompanying Fig. 403 one paddle is seen expanded, the other closed.

These paddles are adapted with mueh preeision to ensure the most. effectual application of the propelling power ; as the beetle strikes ont in the act of swimming, the membranous expansion deseribed enables it to move abont with great rapidity; upon the legs being drawn baek towards the body, the membrane eloses np, and thus offers no resistance to the water. The eyes are not the least eurious part of the merry little beetle : the upper seetion is fitted for seeing in the air, and is adapted to the upper or superion
part of the head; the lower portion, for seeing muder the water, being placed at a lower angle, a thin division only separating the two.

Wings of Insects. -These exhibit variety of form and structure, as well as of beanty of colouring. At an carly period the orders of inseets were mainly founded upon these interesting appendages.

Fig. 404.-Seales from Butterflies' and Moths' wings, magnified 200 diameters.

1. Scale of Morpho mencleus ; 2. Large scale of Polyommatus argiolus, azure blue ; 3. Hipparchia janira argiolus; 4. Pontia brussica; 5. Podura plumbea; 6. Small scale of azure blue.

The Orthoptera were the straight wings ; the Neuropterit the nerved; the Trichoptera the hairy wings ; the Coleoptera the cased or sheathed wings; the Diptera the two wings ; the Hymenoptera the married wings; and the Lepidoptera the sealed wings. A number of wings are small and membranous, and may be mounted dry for examination mader the microscope. Others are better seen momuted in benzol-balsim. The elytria, iridesecnt wing ceases of the diamond, and other beetles, as well as the wings of the more highly coloured butterflies, make pretty objects mounted dry for opetine
illumination by the Lieberkihn or reflector. The thicker homy cases of other members of the bectle tribe require long soaking, as described in a former chapter.

The wings of moths and butterflies are covered with scales or feathers, carcfully overlapping each other, as tiles are made to cover the tops of houses. 'Ihe iridescent varicty of colouring on insects' wings arises from the peculiar wayy arrangement of the scales. Figs. 404 and 405 are magnified representations of a few of them. No. 1, a scale of the Morpho menelaus, taken from the side of the wing, is of a pale-blue colour; it measures about $\frac{1}{120}$ th of an inch in length, and exhibits a series of longitudinal striæ or lines, between which are disposed cross-lines or other strixe, giving it very much an appearance of brick-work (better seen in Fig. 405, No. 1).

Fig. 405. - Portions of Scales, magnified 500 diameters.

1. Portion of scale of Morpho menclaus; 2. Portion of large seale of Podurer plumbea; 3. Seale from the wing of Gnat, its two layers being represented; 4. Portion of a large scale of Lepisma Saccharina; 5 . Body seale of Guat, magnified 650 diameters.

Polyommatus argiolus, azure-bluc (Fig. 404, Nos. 2 and 6), are large and small scales taken from the under-side of the wing of this beautiful blue butterfly; the small seale is covered with a series of spots, and exhibits both longitudinal and transverse striee, these should be clearly defined, and the spots separated by a quarter-ineh object-glass. No. 3, Ifimparchia janira, is a seale from the meadow-brown butterfly :
on this brown spots, having an irregular shape with longitudinal stria, are seen. No. 4, Ponticu brassica, eabbage butterfly, was at one time taken to be an excellent criterion of the penetration and definition of an objeet glass. It is seen to have a free extremity or brushlike appendage. With a fairly good power, the longitudinal markings appear like rows of small beads. Cheralier selected for his test object the seale of the Pontia brassica. Mohl and Schacht extolled Hipparchiu junira as a good test of penetration in an objective of moderate angular aperture. Amiei's test objeet is Navicula rhomboides, the display of the lines forming the test.

The Tinea vestianellu, clothes-moth, is furnished with unique seales. Small and destructive as this moth is, it suffers much from a parasitie mite, and from whiel it is unable to free itself.

The Podura seale (Fig. 405), with its delieate transparent membrane and euriously inserted "notes of admiration," as they

Fig. 406.-Podurac villosa, male and female, highly magnified. were ealled, was long believed to be an exeellent test objeet for the highest powers of the microseope, but I believe it is no longer regarded in that light: indeed, most inseet scales have deelined in the value and estimation of the skilled mieroseopist. This is in part due to the improvements wade in the objective. 'The high-angled glasses have cleared up obseure points in the struetural eharaeters of the minuter forms of life, and the seales of inseets are no longer found to be diffieult test objects for the modern objective of a Keiss or a Powell to resolve. Nevertheless, the seale of the Podura belonging to the order Thysanura, a eurious little inseet commonly known by the name of springtail, usually found living in most obscure plaees, and too sinall to attract attention, is not likely to be entirely thrust aside. The springtails (Collembola) are furnished on the under-side of the first abdominal segment with a curious tube or sueker, from the
orifiee of whiel glandular proeess a secreted viseid matter is protruded; they are remarkable also from the fact that in most of them no traee of a tracheal system has yet been discovered. The oyes when present are in the form of simple or grouped ocelli, the antenme mmber six joints, and the abdomen has but six segments, often only three. 'The forked tail is a curious proeess turned forward and attached to one of the tender segments and held in position under the body; when released it springs baek and bounds up to a very eonsiderable height. Fig. 406 represents Poclura villosa. There are several species, one of which (P. aquatica) is found floating in patches on pools of water on bright summer days.

Lepisma saccharime belongs to the same genus as lodura. This minute springtail derives its name from having been diseovered in old sugar-easks. It has a spindle-shaped body eovered with silvery seales, long used as test objects. The sides of the abdomen are furnished with a series of appendages with long bristle-like setæ, or hairs, at their extremities, The head is eoneealed under a prothorax, the antennæ are long, and the maxillary palpi are either five or seven-jointed, and very eonspieuons, to enable them to eut the dry wood on whieh they prineipally feed. The scales must be mounted under thin eover-glasses ; oblique illumination shows up some portions to advantage, while central light from an achromatio eondenser and a wide-angled objeetive renders their markings more distinet. Portion of a seale more highly magnified is shown in Fig. 405.

Egys of Insects (Plate VI., Nos. 124—139).-In form, eolour, and variety of design, the eggs of insects are more surprisingly varied than those of the feathered tribes ; but as from extreme smalliness they eseape observation, an aequaintance with their strueture is not so familiar as it might be. Although the eggs of the bird tribe differ mueh in their external eharacteristies, they closely resemble eaeh other while yet a part of the ovarian oval, and prior to their detalehment from the ovary. At one period of their formation all eggs eonsist of three similar parts:-1st. The internal nueleated eell, or germinal vesicle, with its maenla; 2nd. The vitellus, or yolksubstanee ; and 3rd. The vesicular envelope, or vitelline membranc. The germinal vesicle is the first produeed, then the yolk substance, which gradually envelops it, and the vitelline membrane, the latest
formed, incloses the whole. The chemical constituents of the egge are the same in all cases, albumen, fatty matters, and a proportion of a substance precipitable by water. The production of the chorion, or shell membrane, does not-take place till the ovum has attained nearly its full size, and it then appears to proceed, in part at least, from the consolidation over the whole surface of one or more layers of an albuminons fluid secreted from the wall of the ovichuct.

The embryo cell is so directly comnected with the germinal vesiele that at a certain period it disappears altogether, and is absorbed into the germinal jolk, or rather becomes the meleus of the embryo, when a greater degree of compactness is observed in the yolk, and all that remains of the germinal vesicle is one or more highly refracting fat globules and albuminoid bodies. Towards the end of the period of incubation, the head of the young eaterpillar is said to lie towards the dot or opening in the lid, termed the micropyle,* from its resemblance to a small gate, or opening through which the larva emerges forth as a butterfly.

The germinal vesicle is comparatively large and well-marked while the egg is jet in the ova-sac. By preparing sections after Dr. Halifax's method, \dagger we find that the germinal vesicle in the bee's egg is not situated immediately near or even below the so-called micropyle, but rather more to the side of the egg' just in the position which the head of the embryo is subsequently found to occupy at maturity.

The egg membrane, or envelope, of all the Lepidoptera is composed of three separate and distinct layers: an external slightly raised coat, tough and hard in its character, a middle one of united cells, and a fine transparent vitelline lining membrane, perfectly smooth and homogeneous in structure, imparting solidity, and giving a fine iridescent hue to the surface. The germinal vesiele is of a

[^53]proportionately large size for the egg, and its macula is at first single, then multiple. In the egg of the silkworm the onter membrane is comprised of an inner reticulated membranc of non-mucleated eells, in the outer layer the cells are arranged in an irregular cireular form, also non-nueleated, with minute interstitial setic or laairs projecting outward.

The outer surfaee of the egg-shell of C'occus Persicar is eovered by minute rings, of which the ends somewhat overlap. These rings are thonght to be identical in their character with the whitish substance whieh exudes through pores on the under-side of the body; it is more than probable that a succession of layers of rings fully aecounts for the beautiful prismatic hues they present riewed as opaque objeets under the mieroscope, and illuminated by Lieberkühn or side-condenser. This white substance, it should be observed, forms a part of the intimate strueture of the eggshell, and is in nowise affeeted by methylated spirit or dilute acids. Sir John Lubbock * states that in the greenish eggs of Phryganea, "the colour is due to the yolk-globules themselves. In Coecus, however, this is not so ; the yolk-globules are slightly yellow, and the green hene of the cgg is owing to the green granules, whieh are minute oil globules. When, however, the egg arrives at maturity, and the upper ehamber has been removed by absorption, these green granules will be found to be replaced by dark-green globules, regular in size, and about $\frac{1}{8000}$ th of an ineh in diameter, and whieh appear to be in no way the same in the yolk of Phryganea eggs." Another eurions fact has been noticed, whieh partially bears on the question of colour : the produetion of parasite bodies within the eggs of some inscets. In the Coecus, for instanec, parasitic cells of a green eolour oceur, "shaped like a string of sansages, in length about the $\frac{1}{2000}$ th of an inel by about the $\frac{1}{7000}$ th in breadth."

The eggs of moths and butterflies present many varying tints of eolour ; in speaking of this quality 1 do not restrict the term solely to those prismatic ehanges to which allusion has been made, and whieh are liable to constant mutations aeeording to the aeeident of the rays of light thrown upon them; but I more particularly refer to the several natural transitions of colomr, the prevailing tints of which are yellow, white, grey, and a light-brown. In some eggs

[^54]the jellow, white, and grey are delicately blended, and, when viewed with a magnifying power of about fifty diameters, and by the aid of the side-reflector (parabolic-reflector), exhibit many beautiful combinations. The more delicate opaleseent, or rather irideseent, tints appear on the eggs of insects, while those of the feathered tribes furnish no like example. The egg of the mottled umber moth, Evannis clefoliaria (Plate VI., No. 137), is in every way very beautiful. It is in shape ovoid, with regular hexagonal retionlations, each corner being studded with a knob or button ; the space within the hexagon is finely punctated, and the play of colours is exquisitely delicate. In this egg no micropyle ean be scen. The egg of the thorn moth, Ennomos erosaria (Plate VI., No. 138), is of an clongated bricklooking form, one end of which is slightly tapered off, while the other, in which the lid is plaeed, is flattened and surrounded by a beantifully white-beaded border, having for its centre a slightly raised reticulated micropyle. The empty egg-shell gives a fine opalescent play of colours, while that containing the foung worm is of a brownish-yellow.

The egg of the straw-belle moth, Aspillates gilvaria (Plate VI., No. 139), is delieately tinted, somewhat long and narrow, with sides slightly flattened or rounded off, and irregularly scrated. The top is convex, and the base a little indented, in which are seen the lid and mieropyle. The young worm, however, usually makes its way through the upper convex side: the indentation represented in the drawing shows the place of exit.

An example of those eggs possessing a good deal of natural colour is presented in that of the common puss-moth, Cerura vinula, a large spheroidal-shaped egg, having, under the microscope, the appearance of a fine ripe orange ; the micropyle exactly corresponds to the depression left in this fruit on the removal of the stalk. The surface is finely reticulated, and the natural colour a deep orange.
'I'he egg' of the mottled rustic moth, C'aradina morpheus (No. 124), is subeonical, and equally divided throughont by a series of ribs, which terminate in a well-marked geometrically-formed lid. The egg of the tortoisc-shell butterfly, Vanessa urtice (No. 125), is ovoid and divided into segments, the ribs tmming in towards the micropyle. The common footman, Lithosia campanule (No, 126), produces a perfectly globular egg covered with fine reticulations
of a delicate buff colour: The egg of the shark inoth, Cucullia umbratica (No. 127), is subconical in form, with ribs and cross-bars passing up from a flattened base to the summit, and turning over to form the lid. No. 136 is the egg of blue argus butterfly, Polyommatus argus. That of the small emerald moth, Jodis Vernaria (No. 134), is an egg of singular form and beaty-an oval, flattened on both sides, of silvery jridescence, and eovered throughout with minute reticulations and dots. It is particularly translucent, so much so that the ycllow-brown worm is readily scen curled up within. The lid or micropyle is not detected until the larva eats its way out of the shell. It should be noted that

Fig. 407. - Larve of the Hornhill emerging from eggs. the scries of eggs in Plate VII. are somewhat over-colourcd, and consequently lose much of their natural transparency. The eggs of flies and parasites also present much variety in form, colour, and construction. Many of their eggs are provided with a reritable lid, which opens up with a linge-like articulation. This lid is seen in the egg of bot-fly, Plate VI., No. 144, from which the larva is just escaping ; No. 146, egg of Seatophaga; No. 147, egg of parasite of magpic.* Still more remarkable in the delicate and beautiful forms are some of the parasitics which infest birds in particular: Plate VI., No. 145 , the egg of parasite of pheasant; No. 147 , that of the magpie, while that of the peacock is curiously interesting. In Fig. 407 the larve of the horn-bill are seen just about to emerge from their eggs.

The larve of most Hymenoptera are footless grubs, furnished with is soft head, and exhibiting but little, if any, advance upon those of Diptera (Plate VI., No. 141). In the satw-fly, however, the larva, instead of being as above described, a mere footless maggot, presents the closest resemblance to the eaterpillar of the Lepidoptera; it is provided with a distinct head, with six thoracic legs, and in most

[^55] Oct. 1867, in which other varicties of egres are given,
eases from twelve to sixteon pro-legs are appended to the abdominal segments.

One other conspicnous object represented in Plate VI., No. 128 , is the maple Aphis, also known as the leaf-insect, averaging in size about the one-fiftieth of an inch in length. Although recognised and deseribed muder the name of the leaf-inseet, nothing was known of its origin and history, with the exception of what the Rev. J. Thornton published in 185 2, and to whom we owe its re-diseovery on the leaves of the maple. Subsequently it attracted the attention of the Dutch naturalist, Van der Hoeven, who regarded it as the larval form of a species of Aphis, and named it Periphyllus. It has more recently engaged the attention of Dr. Balbiani and M. Siguoret, whose united investigations will be found in "Comptes Rendus," 1867. These observers assigned it definitely to Aphis. A brown species is also mot with during a great part of the year feeding upon the young shoots of the maple. The female produees two kinds of young, as do all the genus Aphis, one normal the other abnormal ; the first are alone eapable of reproducing their speeies, while the latter retain their original form, which is not changed throughout their existence. They increase so slowly in size that it may appear doubtful whether they eat, the mouth being rudimentary; they undergo no ehange; do not acquire wings, and their antemæ always retain the five joints peculiar to all young Aphides before the first moult. Neither are they all of the same colour, some being of a bright green, as represented in Plate VI., while others are of a darker, or brownish-green colour. The brown-green embryos differ from the adult female only in those eharacters analogous to all other species, and this chiefly ${ }^{\text {a }}$ with regard to the minute hairs, which are long and simple. In the green embryos, in the place of setex, the body is surrounded by transparent lamellæ, oblong in shape. These seales not only cover the borly, lut also the anterior portion of the head, the first joint of the antemec, and the outer edge of the tibice of the first pair of legs. The dorsal surface in these insects is covered with a mosaic of hexagonal plates, very closely resembling the plates of the cilrapace of the tortoise. In this particular my artist has fallen into a slight error. Another peculiarity is that the body is mueh flattened out, and looks so much like a seale on the surface of the leaf that it requires considerable practice, as well as quickness of sight, to detect
the young maple Aphis. One of the lamelle is seen highly magnified at c, and a tenent-hair at b. The antenne, tapering off towards the apex, are serrate on both edges, and terminate in a fine lancet (shown at a), with which it penctrates the leaf of the plant. Beneath the insertions of the antennee is a complex form of sucking mouth, and on either side of the head are two brilliant scarlet-coloured eyes.

Aphicles, as is well known, live upon the juices of plants, which they suck, and when they oceur in great numbers cause considerable damage to the gardener and farmer. Many plants are liable to be attacked by swarms of these insects, when their leaves curl up, they grow sickly, and their produce is either greatly reduced or utterly ruincd. One strikiug instance is pre-

Fig. 408.-Aphrophora spumaria, Cuckoo-spit.
a. The frothy substance; l. The pura. sented in the derastation caused by the hop-fly (Aphis humuli).

The Aphrophora bifasciata, common frog-hopper; is a well-known garden pest. The antenna of this insect are placed between the eyes, and the scutcllum is not covered ; the eyes, never more than two in number, are occasionally wanting. These pests are furnished with long hind legs, that enable them to perform most extraordinary leaping feats. The best-known British species is the cuckoo-spit, froth-fly (Fig. 408). The names euckoo-spit and frothfly both allude to the peculiar habit of the insect, while in the larva statc, of cnveloping itself in a kind of frothy sccretion, somewhat resembling saliva.

Arachnidce.-In this chass of insects, spiders, scorpions, and mites are included, all of which belong to a sub-chass of Arthropoda, and are appropriately placed between the Crustacea on the one hand and the Insecta on the other. The highest Crustaceans have ten feet, the Arachnida cight, and insects six. The Arachnidæ are wingless, have no anteme, and breathe by means of tracheal tubes, or pulmonary sacs, these performing the function of lungs. As a rule they have several simple eyes, have no proper metamorphosis, and they are essentially predaccous, the females being larger than the males. Most of the Arachnidre live on insects, and may therefore be regarded in the light of a friend to the florist and gardener.

The Epeira diudema is the best known member of the species; in summer spiders abound on every shrob, and spin out their wonderfnl webs from branch to brianch.

The body, seen in my illustration, Fig. 409, in section, consists of two parts; the formost is the eephalothorax, or head, upon which is mounted four pairs of eyes (two of which are seen in scetion), while to the thorax is attached eight jointed well-developed legs terminating in feet, with claws adapted for climbing and holding on.

Fig. 409.- A lengthways section through the body of female Epeiro cliculema. Explanation of referenee.-cy. Eyes ; p.g. Poisom gland ; ht. Heart ; in. Intestine, alimentary canal ; l. Liver ; r. Rectum or eloaca: dt. and sp. Diseharge tubes of spinuerets; o. Slit, or air opening ; ov. Ovipositor; ph. Pharynx; br. Brain ; thr. Throat, or gullet, filled with eggs ; un.l. Uuder lip ; m. Mouth ; f. Fang, or claw; j. Jaw. The gills, or breathing apparatus are situated at the air opening, o; and the silk glands are above this. (Magnified 20 diameters.)
The other half consists, of the abdomen, together with spinnerets and glands, which seerete the fluid out of which the web is spun, and this, although it hardens to some extent on exposure to the air, retains its viscid nature for the purpose of entangling its prey. The spimerets are the most interesting feature in the antomy of the Epeira (Figs. 410 and 411).

Five kinds of spimning glands are fonnd in spiders. The glandule aciniformes are those which consist of a proper tunica and an epithelium ; these exhibit in all parts the same reaction to staining agents. The glandulze pyriformes consist of a tunica proper and an epithelimm,
which in their lower paris (or those near the efferent ducts) stain more decply than the upper. The glandula impullacex and glandula tubuliformes have similar eoverings, the latter terminating in a large spool. 'the glandulio aggregatre have a wide and branched lumen, the efferent duct of which is provided with cells and an accessory piece, which draws out to a tip. All the glands have scercting portions, which serve as collecting cavities for the spimning material. The spools are two-jointed hasal and one-jointed accessory pieces. In addition to the five glands enumerated, there are also lobate and

Fig. 410.

1. Spinnerets of Spider ; 2. Extreme end of one of the upper pair of spiuncrets ; 3. End of under pair of spiunerets; 4. Foot of Spider ; 5. Side view of eye ; 6. The arrangement of the four pairs of eyes.
cribclleum glands; these are rariously distributed, and excrecise different functions, one set preparing the so-called moist filaments from the moist droplets, another spins the egg-cocoon, as nearly all spiders envelop their cggs in a covering of silken threads and store them up in some sheltered place awaiting the warm weather of spring to hatch them ont. The bag that holds the eggs is not one of the least curious efforts of skill and eare. The mother uses her body as a gange to measure her work, precisely as a bircl uses her body to gange the size and form of its nest. The spider first spreads a thin coating of silk as a foundation, taking care to have this circular by turning its body round during the process. In the same manner it spins a raised border round this till it takes the form of a
eup; it is at this stage of the work the female begins to lay her eggs in the eup, and not eontent to fill it up to the brim, she also piles up a heap as high as the eup is deep. Here, then, is a eup full of eggs, the under half eovered and proteeted by the silken sides of the eup, but the upper still exposed to the air and the cold. She now sets to work to cover this; the process is similar to the preeeding-that is, she weaves a thiek web of silk all round the top, and instead of a eup-shaped nest, like those of the bird tribe, the whole partakes of the form of a ball much larger than the body of the spider.

The eight legs and feet of the spider (one only is represented Fig. 410 , No. 4) are euriously eonstrueted. Each foot, when magnified, is seen to be armed with strong horny claws, with serrations on their undersurfaee. By this arrangement the spider is enabled to regulate the issue of its web from the spinnerets. In addition, a remarkable comb-like claw is provided for the purpose of separating eertain threads whieh enter into the composition of the

Fig. 411. - Spinnerets of Spider greatly enlarged. delieate web, so that everything is arranged and plamed in the most geometrieal order, while the mouth or jaws with their two morable poison-fangs eonvert the Arachnidæ into formidable and dangerous foes. The maternal industry and instinets of spiders, the ballooning habits of others, the cave dwellers, with their limited vision, eombined with an inereased delieaey of toueh and hearing, their disguise of feigned death when a strong enemy approaehes, are all of the most interesting charaeter.

One of the more remarkable, the Argyroneta apqutica (diving spider), weaves itself a curious little bell-shaped globule, whieh it takes with it to the bottom of the water, whither it retires to devour its prey. Notwithstanding its aquatie habits, this, like the rest of its species, is fitted only for aerial respiration; it therefore earries down, entangled amongst the hair's of its body,
a small bubble of air. This eontrivanee presents us with the earliest form of diving-bell.

Mites and Ticks constitute a group which for diversity of structure, number of speeies and individuals, and minuteness of size, has no equal. The typical genus of the family-Lxodids-being wholly parasitie in their habits, are so modified in organisation, so marked by degeneration, that some authors have proposed to remove them into a class by themselves. One leading eharaeter distinguishes the whole : the abdomen rarely presents a trace of segmentation, but is eonfluent with the cephalothorax, the fusion between the two being so eomplete that, as in the harvest spiders belonging to Palpatores, the

Fig. 412.
A. Alar spinipes, water mite seel from below; 1. Water Scorpion infested by Atax. anterior sternal plates of the abdomen are thrust far forward between the coxæ of the eephalothoraeie limbs. As in Araehnid\&, however, the mouth is adapted for sucking, but the jaws are often partially united, and form, with a plate termed the epristome and the labium, a beak. The mandibles are either pineer-like, or simply pointed at the tip, forming piereing organs; the palpi have their basal segments, or maxillæ, united, whieh form a eonspieuous plate, or hypostomes, constituting the floor of the mouth. These organs are often seen to be separated from the rest of the cephalothorax by a membranous joint, and eonstitute a kind of head, the capitulum. In most eases no triee of speeial respiratory organs ean be found. Another eharacteristie of value in separating tieks from harvest-spiders is that in the former the young undergo a metamorphosis in the course of growth, being hatched as six-footed larve, and aequiring later in life a fourtl pair of legs.

The Aearise inelude a number of families, all distinguished by the position of the respiratory stigmata and the form of the mandibles and palpi. In the velvety mites (Trombidiidic), the integument is soft and eovered with variously-eoloured fine hairs, and the legs are
adapted for walking, ruming or swimming. The latter live in freshwater ponds, ereeping orer the leaves of aquatic plants. The freshwater mites (Atax spinipes, Fig. 412) swim about freoly by means of vigorons strokes of their legs, whieh aet as oars. In the adult the body is more or less spherical, and usually of a bright red or greenish colour. The males of one species have a eurious blunt tail-like prolongation from the hinder end of the abdomen. The eggs

Fig. 413. - Ixodes ricinus or Sheep-tick (under surface). The small cirele encloses one life-size.
are laid in the spring on the stems of water plants, and the six-footed larve when hatched attach themselves to water-bugs (Nepa) or waterbectles (Dytisens) by means of a large sueker developed on the front of the head.

Of all the Acari, the best known and most troublesome are those belonging to the family Ixodide ; these infest the whole animal ereation. They are furnished with a long cylindrical beak, armed with reeurved hooks, formed of the two mandibles above and the long slender labium below. They have no eyes, nor apparently any dermaploptic sense, but there are various seemingly sensitive seta
distributed over the body and on the appendages. The whole of the mites will be found suitable objects for the study of development, as the process is slow and their eggs do not require much eare. The segmentation of the eggs differs; some of the cells are distinguished by their large nuclei, which stain feebly by carminc. During the cleavage of the egrg no division of the so-called yolk has been observed, bnt later on this breaks up into

Fig 414.--Mouth organs of Sheeptiek.
c. Capitulum ; d, c, f, g. Segments of palpi ; h. Labial process ; i. Spiny lseak formed of finsed mau-dibles.-(War'ne.) several minute pieces.

The accompanying Fig. 413 shows the under surfaee of the body and the month parts of the common English dog or sheep tick, Irodes ricinus, with its six formidable legs. The upper surfaee is shown in Fig. 415; the head (cupitulum) and mouth organs in Fig. $414, c, d$, e, f, g, together with the four segments of the palpi ; h the labial proeess armed with hooks forming the lower side of the beak, and i indieating the tips of the two mandibles forming the upper side, and projecting beyond the apex of the labium. By means of this beak, which is thrust to its base into the integument, the tick adheres firmly to its host, and in detaehing them care must be taken that the head is not left behind buried in the skin. This tiek is found in all stages of growth ; the females, gorging themselves with blood, swell up to the size of a pea, as seen in lig. 413 , but the male, formerly regarded as a distinct species, is of a much smaller size. In distribution these pests are almost eosmopolitan, and in tropical countries they grow to much greater dimensions, the females sometimes attaining the size of a large gooseberry.

The fimily of true mites is that of the Surcoptida; these are either free or parrasitie. They have no breathing organs; the palpi
are basally fused to the rostrim, the mandibles are pinecr-like, and the tarsi are often furnished at their tips with a sucker. The most familiar is the checse mite, Tyroglyphus, which feeds upon decaying matter.

Fig. 415.

1. Female Sheep-tiek; 2. Rat-tick ; 3. Head of Cat-flea ; 4. Larva of Flea. (The life size is given in circles.)

The well-known cheose mite attains to a size plainly visible to the naked eye, but when first hatched out from the egg (shown in its several stages of development in Fig. 417), requires a moderato amount of magnification. Its growth, however, is rapid,
and the young begin to feed as soon as they leave the eqge. The

Fig. 416.
Tyroglyphas. 1. Pediculus valgaris $\times 50$ diancters: 2. Acarus destructor under surface; 3. Sartoptes scabici, Itch-insect, magnified 350 diameters: 4. Demodex follidulorum from the hmman skin in various stares of growth, from the egg upwarts, magnified 400 diameters. (The small eireles cnelose the objects of the natmal size.)
body is partially covered over by seta, or hairs, and the feet temminate in hooklets, as seen in the full-grown acarus. The
mandibles are cutting, but as a rule they prefer soft and partiallydeeayed kinds of food. It also feeds upon dimarged flour, sugar, and other domestic articles. The Dermestes lardarius, one of the minute beetle tribe (Fig. +18), commits even greater depredations

Fig. 417.-The Cheese Mite, Acarus domesticus, seen in its several stages of development.
arnong insect and other collections during the larval stage of its existence.

Birds suffer much from mites living parasitically upon them belonging to Sarcoptidre ; these likewise infest mankind, and give rise to a discase known as the itch (Fig. 416, No. 3). This malady and the irritation aecompanying it are caused by the mite excavating tumels under the skin. In these the eggs are laid and hatehed, and the young then start burrowing on their own account ; their burrows are traced as whitish lines on the surface of the skin.

Fig. 416, No. t, Demoder folliculorum, is another remarkable parasite found beneath

Fig. 418. -Dermestes larclarius: larva, pupa, and imago. (Natural size.)
the skin; this is msually obtained from a spot where the sebaceons follieles or fat glamls are abmudant, such as the forehead, the side of the nose, and the angles between the nose and lip. If the part where a little black spot or a pustule is seen be squeezed rather hard, the oily matter there accumulated will be forced ont in a
globular form. This minute mite is less than one-fiftieth of an inch in length; if it be laid on a glass slide, and a small quantity of glycerine added to eanse the separation of the harder portions,

Fig. 419.

1. Parasite of Turkey ; 2. Aea:us of common Fowl, under surface; 3. Parasite of Pheasant. (The small circles enclose each about life size.)
the parasite in all probability will float ont, and, by means of a fine-pointed pencil or brush, ean be transferred to a clean slide and mounted in Canada balsam. An allied species is found in the skin of dogs suffering from mange.

The Stylopidr are remarkable parasites, living upon the bodies
of wasps, bees, and bugs, and present a type of strncture quite distinct from beetles or the ticks described. The male (Xenos pectiir, Fig. 420) is a wingea insect with coarsely faceted cyes, large fan-shaped wings, extremely small inconspicnous elytra, the two first thoracic rings short, while the metathorax is elongated and covers the base of the abdomen, and the hind legs are placed a long way behind the middle pair. The female, on the other hand, is a grob-like creature, without legs, wings, or eyes ; she never leaves the body of her host, and from her eggs active little larvo develop and get carried into the nests of bees and wisps.

Mites are very mmmerous, differ in form, and are interesting objects under the microscope. The body of the common flea (Fig. 421) is divided into distinct segments, those abont the thorax being separated. Although apterous, the flea has the rudiments of four wings in the form of homy plates on both sides of the thoracic segments. Its mouth consists of a pair of sword-shaped

Fig. 420.-Xenos pockii. 1. Malo ; 2. Femaic. mandibles, finely serrated ; these, with a sharp, penetrating, needlelike organ, constitute the formidable weapons with whieh it pierces through the skin.

The neek is distinctly separated, and the body covered with scales, the edges of which are beset with short sete ; from the head project a short pair of antenno, below which are a proboscis and a lanee-shaped cutting apparatus. On cach side of the head at large compound eye is placed; it has six many-jointed powerful legs, teminating in two-hooked claws ; a piair of long hind legs are kept folded up when the insect is at rest, which, in the act of jumping, it suddenly straightens out with great muscular force. The female flea (Fig. 421) lays a great number of eggs, sticking them together with a glutinous secretion ; the flea infesting the dog or eat glues its eggs to the roots of the hairs. In abont four days the eggs are hatched out, and a small white larva or grub is seen criarling about, and
feeding most actively. J'late V1., No. 141, is a magnified view of one envered with short hairs. After nine or ten days the larva assumes

lig. 421.

1. Female Flea; 2. Male Flea. ('The small eireles enclose fleas of about life size.)
the pupa form ; this it retains fom days, and in nine days more it becomes a perfect flea. The head of the flea found in the eat (Fig. 415, No. 3) somewhat differs in form from that of the species infesting the human being; its jaws are furnished with more formidable-looking
mandibles, and from between the first and second joints behind the head short strong spines project.

Two small and obscure groups of the mites and ticks have been associated with the latter, but for no better reason than that their

Fig. 422.

1. Parasite of Eagle ; 2. Parasite of Vultmre ; 3. Parasite of Pigeon, Sarcoutes patumbinus. (The cireles enclose each about life size.)
affinities are unknown. The first of these are the Tardigrada, or bear animalcules, which comprise microscopical animals living in damp, sandy, and mossy places ; the body is long and oval in shape, and possesses four pairs of bud-like miointed appendages, cach tipped with claws : the last pair of legs project from the hinder part of the
body. The mouth is much subdued, and only a trace of jaws is found as a pair of stylets ; there appear to be 110 organs of respiration or circulation, and, unlike what obtains in all true Arichnida, the sexes are united in cach individual. These curious infusorial creatures have been found by myself in an infusion of cow manure.

Injurious Insects.-In describing some of the more interesting points in comection with insect lifc, I have only quite incidentally refcred to the destructive habits of the larger number of insects and the ravages annually inflicted, chiefly by the smaller parasitical tribes, upon our cultivated crops of all kinds.

Here we have a wide ficld of research open to the microseopist, whose investigations must be carricd out systematically, day by day, and for which a moderate power will cffcetually serve his purpose.

Therc arc some ten or twelve species of injurious inscets that attack the hop plant. By way of example, I will select one of the least known among them, the hop-flea, or bectle (Haltica concinna). This is sufficiently minute to require the aid of the microscope, and very closely rescmbles the turnip-flea proper, H. nemorum. Under the microscope the former will be seen to differ considerably. Its colour is brassy, whereas the colour of its congener is dusky or black, and its wing-cases arc striped. They both have wonderful powers of jumping. H. concima has a curious toothed formation of the tibia, with a set of spines, while the tibia of the turnip-flea is without any curve. It presents other points of difference. The hop-flea is, in fact, a winged beetle, and passes the winter in the perfect state under clods, tufts of grass, or wecds outside the hop-plantation, and here it lays its cggs. In the carly spring the larre are hatched out as a little white maggot, which immediately makes its way to the hopplant and burrows into the young leaves and feeds mpon its tissues. Here we have an insect taken at random from among thousands of others of the most destructive kinds which amually destroy crops of enormous value to the nation.

InJections, ETC.

Plate VII.

CHAPTER V.

Vertebrata.

'Ine most complicated condition in which matter exists is where, under the influence of life, it forms bodies with a structure of tubes and cavities in which fluids are incessantly in motion, and producing continuous changes. These have been rightly designated "organised bodies," because of the various organs they contain. The two principal classes into which orgmised bodies have been divided are recognised as vegetable and animal. It was Bichat who taught that our animal life is double, while our organic life is single. In organic life, to stop is to die; and the life we have in common with vegetables never sleeps, and if the circulation of the fluids within the animal body ccases for a fow seconds, it ceases for cver. In the vertcbrate body, however, the combination of organs attains to the highest development, in striking contrast with that of the class we have previously considered, the Invertebrata, the animal kingdom being divided into Vertebrates and Invertebrates.

The Vertebrata are distinguished from all other animals by the circumstance that a transverse and a vertical section of the body exhibits two cavities completely separated from one another by a partition. A still more characteristic feature separates the one from the other ; it is the specialisation of the chicf nervous centres, and their peenliar relation to the other systems of the body.

The dorsal cavity of the body contains the cerebro-spinal nervous system, the ventral, the alimentary canal, the heart, and usually a double chain of ganglia; these pass under the name of the sympathetic systom. It is very probable that this sympathetic norvous system represents, wholly or partially, the prineipal nervous system of the Amnulosia and Mollusca. In any case, the centrial parts of the corebro-spinal nervous system-i.e., the brain and the
spinal cord-would appear to be mrepresented among invertebrate animals. Likewise, in the partition between the cerebro-spinal and visceral tubes, certain structures which are not represented in Invertebrates are contained. During the embryonic condition of all Vertebrates, the contre of the partition is occupied by an elongated cellular cylindrical mass, the notochord, or chorda dorsalis. This structure persists throughont the life in some Vertebrata, but in most it is more or less completely roplaced by a jointed, partly fibrous, cartilaginous, and bony vertical column. All vertebrate animals have a complete vascular system. In the thorax and abdomon, in place of a single perivisceral cavity, in communieation with the vascular system, and serving as a blood-sinus, there are one or more serous sacs. These invest the principal viscera, and may or may not commmicate with the exterior, recalling in the latter case the atrial cavities of the Mollusca. In all Vertebrata, except Amphioxus, there is a single valvular heart, and all possess a hepatic portal system, the blood of the alimentary canal never being wholly returned directly to the heart by the ordinary veins, but being more or less completely collected into a trunk (the portal vein), which ramifies through and supplies the liver.

With reference to one other point of importance, the development of the ova of Vertebrates, these have the same primary composition as those of other animals, consisting of a germinal vesicle containing one or more germinal nuclei, and included within a vitellus. But as this forms a part of general anatomy, and as my object is simply the investigation of the fundamental and microscopical structure of animal organisms, I shall not further pursue the morphologieal part of the subject, especially as so many excellent text-books are within reach of the student who desires to fully acquaint himself with precisc information.

Notwithstanding, then, the apparent diversity in the structure of the vertebrate and the invertebrate and the various tissues of which animals and vegetables are constituted, microscopical research has satisfactorily demonstrated that all textures have their origin in cells : in fact, when the formative process is complete, the amimal cell is seen to consist of the same parts and almost the same chemical constitucnts as the typical cell of the plant-namely, a definite cellwall enclosing cell contents, of which the nature may be diverse, but
the eell melens is precisely the same and is the actual sont and origin of all formative activity. The cell and nucleus grow by assimilation or intersnsecption, that is, hy inflowing of nutrition among all parts, the new replacing the old, yet maintaining its original structure and eomposition. That which was once thought special to animials is now found to be common to both plants and anmals: they are found to be alike fundamentally in internal structure, and in the discharge of the mysterions processes of reproduction and of nutrition, although the latter forms a convenient line of separation. Life in plants goes on indefinitely; cuttings may be taken without injury to their vigour and duration of life. The same may be said of some of the lower forms of invertebrate life; for example, the hydra, the anemone, and some other well-known animals, may be ent up, divided into several parts, each one of which will form a new animal, provided a nucleus be inelnded in the section. Nevertheless, the organisation of the amœba and the hydra is as complete for its purpose as that of man for his, and the evidence of continuity forbids the drawing of lard and fast lines, as was formerly done between the two kingdoms, the animal and vegetable. The amount of similarity or agreement in the organisation of animals is varions. Animals indeed differ from each other in slight points only, for the diseovery of which the mieroscope mnst be brought into requisition. Living matter in its carlicst stage and simplest form appears to the naked eye as a homogencous structure, but when placed moler the highest powers of the mieroseope, it is seen not to be so.

But perhaps the most marked feature of the age has been the increasing attention given to the study of the lower forms of life, using their simpler structures and more diffuse phenomena to elucidate the more general properties of living matter. To understand life we mist anderstand protoplasm. Of this there can be no doulat, as we have seen in a previons chapter that a whole family, the Monera, consists of this simple living, microscopie, jelly-like substanee, which has not even begun to be differentiated, as in the amoobi, which has as yet no special orgems, and every speek hecones a mouth or it stomach, and which ciun be turned inside out-and shoot out tongues of jelly to move and feel with. "Reproduction is the facnlty most characteristic of life, and sharply distinguishes the organie
from the inorganic." It is, then, the corpuseles of protoplasm, called eells (cellule), which have so much interest for the physiologist, and these, like the eytords, may form independent organisms, which are then termed mieellular. Again, cells form other cells, and a multicellular organism results, and goos on increasing in geometrical progression. In the Vertebrata the cell retains its characteristic spheroidal shape, as seen in Fig. 423 , and undergoes division ly virtue of its living protoplasmic mass.

Epithelial Cells.-All free surfaces of the human body, both internal and extermal, are to a very considerable extent covered by epithelium cells. These cells are everywhere the sime, but with

Fig. 423.

1. Newly formed cell structure ; 2. Division of the nucleus; 3. It changes its situation in the eell; 4. Subdivides and breaks up; 5. Cell-walls increase in thickness ; 6. Branch out into stellate cells ; 7. Two cells coalcsce ; 8 and 9. Become multicellular.
modifieations in shape and arrangement. Epithelial cells are nucleated and always joined by their surfaees or edges, without, on the cxternal surfaces, the intervention of eomneetive tissuc.

There are four essential varieties :-1. Tesselated; 2. Columnar; 3. Spheroidal; 4. Ciliated; in all of whiel the mucleus remains remarkably uniform in its characters, is either round or oral, and flattened out, measuring $\frac{1}{6000}$ th to $\frac{1}{4000}$ th of an ineh in diametcr. They are insoluble in acetic acid, colourless, or slightly tinted by the structure with which they are in contaet, and usually contain one or more nueleoli with a few minute irregular gramules, as represented in Fig. 424.

The simplest and most commonly distributed variety is the tesselated, known also as the scaly, squamous, parement, and

ANIMAL I'LSSULS.
flattened epithelimm, always armonged in single layers, lining serous earities, many parts of the mucons membrane, and the interior of duets and blood vesscls. Upon the external surface of the body it occurs in superimposed latyers, forming the "stratified cpidermis." T'o obtain specimens of lamellar epithelium it is only necessary to colleet a little saliva, or pass a glass slide over the lining membrame of the eheek, cover it with a thin cover glass, and examine it with a $\frac{1}{4}$-ineh objeetive. Parement epithelium is the elementary structure of hair, mails, and horn.

Columnar epithelinm exists upon the mncous membranc of the stomach, on the villi of the intestines, and in the several canals. It occupies either a vertieal or horizontal position, and may be detached

Fig. 424.
No. 1. Pavement epithelium, taken from an internal membrane ; 2. Columnar epithelium, from the intestine of a rabbit, showing eentral fat globules, and at str a fine ciliated border"; 3. A so-called "goblet"-cell.
in rows, as shown in Plate XIX., No. 2, a section taken from the intestine of a rabbit. This variety, when more highly magnified, as in Fig. 424, is seen to eonsist of elub-shapod nucleatcd eells, the thicker end being turned towards the surface. The protoplasm of the cell is gramlar, and the presence of mimte vacuoles and fatty glohules oceupy a great part of the space. The nucleus is now scen to eontain a fine network. At times the onter end of the eell is distended, as in Fig. 3. This form of eolumnar epithelium (known as the "goblet" eell) presents a close and remarkable resemblanee to the cilio-flagellate "collared" infusorial monad in its extended "wine-glass" form.

Spheroidal epithelium is confined to the closed cavities of the body,
and in the internal structure of the ducts of secreting glands. The cells are, for the most part, circular, although some are flattened out at the sides in which they are in contact with each other (Plate XIX., No. $1 u$). Specimens of this form may be taken from the interial surface of one of the lower amimals with a scalpel. The collected matter must be placed in a drop of distilled water and examined with a high power.

Ciliated epithelium is characterised by the presence of those fine hair-like filaments (cilia) attached to the free surface of the cell. During life, and for some time after death, the cilia are scen to retain their constant waving motion. The cilia all move in one dircetion and rhythmically, thus giving rise to the appcarance of a succession of undulations. Ciliated epithelium is found lining the mucous membrane of the air passages and nasal ducts, and whereror it is necessary to urge on a secretion by mechanical means, ciliated epithelium exists. Speeimens for examination are easily obtained from the oystcr, and with carc will show the characteristic motion. A portion of a gill scparated from the molluse will live on for a considerable time if kept in a little of its natural secretion. The paramecix, rotifcra, and all the ciliata, are furnished with cilia as a means of locomotion and obtaining sustcnancc. By snipping off a small picce from the gills of the mussel, always accessible to the mieroscopist, and covering it orer with thin glass to prevent evaporation of the animal juiecs, its cilia will continne to work for hours.

Lymph and Blood, Fig. 425 B, a a.--There are other cells in the animal body which possess a certain amount of resemblance to those confined to the more superficial structures-i.e., the lymph, chyle, and bloorl. These fluids present in one respect a physical uniformity of composition, and a resemblance in the size of their characteristic corpuseles. Chyle contains besides the eorpuseles of lymph, a quantity of minute gramules which imparts a white colour to the flnid. Intermixed are oil globules, free nuclei, and sometimes in few red blood dises. Chyle may he had for microseopic examination by squecamg a little juice from the lymphatic gland of a sleep just slaughtered.

Blood Corpmestes or cells vary eonsiderably in mammals, birds, reptiles, and fishes. Fig. 102 (page 143) is a microphotograph of il drop of blood magnified :3,500 times; and Fig. 425, A, shows both red and white
dies drawn to sate, magnified 1,200 diameters. The red corpuscles of human blood are distinguished by their clearly defined outlines and dark centres. Each die is biconcave in form, and hence the whole surface cannot be foenssed at the same time. When the circumference

Fig. 425. -Human Blond Corpuscles and Crystals.
A. a a. Red blond corpuscles lying flat on the warm stage ; b b. in profile ; ce. armuged in rouleanx ; d. cremated; c. rendered spherical by water; i. lentobytes and white amoeboid corpuscles ; B. Blood discs of fowl, red and white, others seen in convexity and with a nucleus. Blood Crystals. - c. Hematin from human blood; 1. H:cmatoidin; f. Hæmiu; F. 'l'etrahedral ; G. Pentagonal ; 11. Octahedral crystals from blood of mouse.
is well ilhminated the centre is dark, but by bringing the objective nearer to the object, the concavity of the die is brought into focus. It generally happens that blood corpuscles, on being first drawn, run together, and present the appearance of rolls of coins; or they may be scattered about over the field. There is a considerable difference in the form of the dives; they are circular in all mammals,
except the eamel, dromedary, and llama, these being oval. In profile blood corpuscles are biconcave, their investing membrane is homogeneous and clastic, and will readily move along the smatlest capillary vessels. There is no trace of a nucleus in the blood-dises of the adult Mammalia, while in size they bear no proportion to the bulk of the animal in whose blood-vessels they circulate. The corpuscles of Mammalia in general are like those of man in form and size, being either a little larger or smaller. The most marked exception is the blood of the musk-decr, in which the corpuscles are of extreme smallness, about the $\frac{1}{12000}$ th of an inch in diameter. In the elephant they are large, about $\frac{1}{2700}$ th of an inch in diameter. The goat, among common animals, has very small corpuscles, but they are, withal, twice as large as those of the muskdecr. In the Menobranchus lateralis they are of a much larger size than in any animal, being the $\frac{1}{350}$ th of an inch; in the proteus, the $\frac{1}{400}$ th of an inch in the longest diameter; in the salamander, or water-newt, $\frac{1}{600}$ th ; in the frog; $\frac{1}{900}$ th ; lizards, $\frac{1}{1400}$ th ; in birds, $\frac{1}{1700}$ th ; and in man, $\frac{1}{3200}$ th of an inch. Of fishes, the cartilaginons have the largest corpuscles; in gold-fish, they are about the $\frac{1}{1700}$ th of an inch in their longest diameter.

The large size of the blood dises in reptiles, especially in the Batrachia, has bcen of grcat service to physiologists by enabling them to ascertain many particulars regarding structure which could not have been otherwise determined with certainty. The value of the spectroscope in the chemical examination of the blood has been already referred to. See page 252.

White corpuscles or leucocytes (Fig. 425 , I) differ materially from the red. They are large, spheroidal, finely granular masses of about $\frac{1}{2800}$ th of an inch in diameter. In a cubic millimetre of human blood there are about 10,000 white corpuscles. They have a lower specific gravity than the red, have no cell-wall, and their substance mainly consists of protoplasm. The internal granular appearance is now belicved to be due to a fine intercellular network having small dots at the intersections of the web. In the meshes of the net a hyaline substance is interspersed. They possess one or more nuclei ; these are seen on the application of a few drops of acetic acid. When examined in a perfectly fresh state, especially if the glass slide be placed on the warm stage of the microscope, they exhibit a spontaneous
change of shape, amoeba-like, sneh movements being aeeordingly tcrmed amoboid. The movements referred to eonsist in the protrusion of processes of protoplasm which are retraeted and other proeesses protruded as represented (lig. 425, I). Both in human blood and in newts thcre are colourless eorpuscles which contain coarser granules than others ; these are called gramular eorpuseles. Some are shown near the amceboid bodies. The white eorpuseles are readily found in various tissues of the body, as in the lymphatic glands. In inflammatory liseases these leucocytes pass through the walls of the eapillaries into the tissucs, and form morbid products, pus-cells.

Seetions of blood dises are made by dipping a fine needle in a drop of blood as it cxndes from a prick of the finger and drawing thin lines aeross the glass slip, allowing time to dry, and then entting the lines across in all direetions with a razor. The loosened portions should be removed with a eamel's-hair brush.

In birds, the blood dises are oval in shape and possess a nucleus, shown in Fig. 425 B , in the blood of the fowl; this is rendered more apparent on adding a drop of acetic acid. The blood of fishes is also oval and nucleated, rather more pointed than that of birds. In reptiles generally the red blood discs arc large, oval, melcated bodies, the white eorpuscles still prescrving their invariable circular form and granular appearance. In the salamander and proteus the dises attain to their greatest size. In the former they measure $\frac{1}{700}$ th of an inch, and in the lattcr $\frac{1}{400}$ th.

Blood Crystals.--In addition to the elements described, the blood contains various erystalline forms, represented in Fig. 425, C to H . In eonnection with the miero-spcetroscope (p. 253), the speetra of certain blood erystals are given ; although varying in different animals, sufficient uniformity prevails as to render them charaeteristic. The erystals are formed when a little blood is mixed with water on the slide, allowing a short time for erystallisation. Ncar the edge of the eover-glass, where crystals begin to form, they arc more distinet, but a high power is required for their examination. In human blood the erystals are prismatie ; in that of the guinca-pig; tctraliedral ; in the blood of the monsc, oetahedral. Other forms may be obtained by the aid of chemical reagents.

In human blood there arc at least three distinet forms of crystals : Hamatin is formed in normal blood, is made visible on the addition
of a little water to blood, or by agitation with ether, so as to dissolve the cell-wall of the blood corpuscles, and allow the contents to escrape. A drop of blood will furnish crystals large enough to be secn with a moderate power. Humatoitin crystals are abnormal products, found in connection with eertain diseased conditions. These erystals are scen as represeuted at D. Humin crystals must be regarded as artifieial ehemical products, the result of treating blood with glacial acetic aeid ; the acieular crystals at E, reddish-brown in colour, are artifieially produeed.

Basement Membrane-Connective Tissue System.-Conneetire or areolar tissue is present almost throughout the whole of the human

Fig. 426.

1. White fibrous or non-elastic tissue ; 2. Yellow fibrous elastic tissue.
body, and serves to conneet the various organs with one another, as well as to bind together the several parts. The museles are surrounded by a connective tissue sheath; this penctrates into their substance, and binds together fascieuli and fibres. The same tissue is present in the skin and the mueous membranes; it also forms a sheath for the arteries, voins, and norves. It is plontifully supplied by blood-vessels, and nerves pass throngh its substance. Mieroseopically, four different elements can be elearly made out :-l. Conncetive tissuc cells or corpuseles; 2. White fibrous tissue; 3. Ycllow fibrous tissue ; 4. Ground substanee.

On examining the comective tissuc cells of young animals, various
cells will be seen with fine granular contents, together with nuelei, lying in spaces in the ground substance, some branched, others flattened or romided. Even tissues supposed to be homogencous in structure, are on staining seen to have connective tissue cells, such as those represented in a scetion of the comea of the cye (see p. 31). In this ease the comective tissue cells are termed corneal corpuseles ; the branched cells, it will be noticed, are united by branches.

The cells in the fibrous tissue of tendons are square or oblong, and form continnous rows. White fibrous tissuc is distributed throughout the animal body, but in a varicty of forms ; it is found in the skin

Fig. 427.

1. White fibrous tissue lining the interior of the egg shell, with the calcium carbonate removed by immersion in hydrochloric acid; z. White fibrous tissue, from the sclerotic coat of the eyc.
and other membranes, and in all parts where strength and flexibility are necessary. The structure of white and yellow fibrous tissues is shown in Figs. 426 and 427.

White fibrous tissue presents silver-lustre bundles, running for the most part in parallel directions through and over the museles and tendons. For examination under the mieroscope, obtain a fragment of frosh meat cut in the longitudinal direction ; place it in water, and tease it out with needles as directed in a former ehapter. The smallest fragment will suffice for examination under a quarter or onc-sixth inch objective. These filaments are exceedingly mimete, measuring $\frac{1}{3000}$ th to $\frac{1}{2500}$ th of an inch in diameter, and do not interlace through the bundles, although they interseet each other occasionally. Transverse sections may be made by drying a piece of tendou until
it becomes suffieiently firm to sut with a razor or microtome, and mounted as a permanent specimen. From the eut ends of the fibres small dark points will be seen, especially in the denser strueture of the tendons ; these are termed "comective tissue eorpuscles."

Yellow elastic fibrous tissue is remarkable in contradistinction to the white for its clasticity and capability of extension. It is found on the coats of blood-vessels, between the vertebral arehes, and in quadrupeds it forms a strong elastie band, extending from the oeeiput, thronghout the spines of the vertebra, and ewabling the animal to support the head in the pendent position, without muscular exertion. These fibres ean only be separated from eaeh other with diffieulty, and their elasticity is shown by a tendeney to curl up. These yellow fibres are somewhat eoarser than the white, and they remain unaffeeted by acetic acid of the ordinary strength. Elastic tissuc is a constituent of the skin, mneous, and serous membranes, and of the areolar or eellular tissue.

In order to microseopically examine this strueture, take a small portion of the strong ligament of the neek of the ox, place it as before in water, and tease it out with needles ; plaee a fragment ou a glass slip, eover with a thin eover-glass, and submit it to a high magnifying power. Transverse sections made as direeted in the ease of white tissue will be seen to be hexagonal in form.

Adipose Tissue.-Fat is found in many situations in the animal body, and on examination is seen to consist entirely of resieles, distributed through a delicate membrane of eonnective tissue, shown in Plate XIX., Nos. 4 and 5. On pressure, the cireular or oral form of the cells becomes polyhedral; oceasionally the fatty aeids in the interior of the vesicles erystallise, and give rise to a star-like appearance. For the examination of adipose tissue, take a portion of the mesentery of any small animal-a monse, or rat.

Retiform Tissue.-Adenoid, or retiform tissue, consists of a delieate network of comeetive tissue corpuseles, joining their branches together. This forms the stroma or framework of lymphoid tissue. It is fomd in eomection with all the lymphatie glands, spleen, de. Plate XIX., No. 3, ab, shows small sections of a lymphatie, together with eapillary vessels.

Muscular Fibre.-There are two rarieties of musenlar fibre in the body-i.e., striated, and non-striated. The striated is formed
in minseles attached to bony strinetures, as those of the arm and leg, and in some of the soft structires, as the tongue, palate, oesophagus, in short, all muscles under the control of the will. Striped musele is of a dull red colone and marked with peculiar longitudinal furrows on its surfice. Voluntary musele consists of:-1, a comnective tissue sheath ; 2, faseiculi ; 3, fibres and sareolemma; 4, dises, fibrilla and sarcous elements. These are shown in connection with other tissues in Plate XIX., Nos. 11 and 12, and also in Fig. 428 (1, 2, 3).

In Plate XLX., Fig. 11, the museular fibre taken from the tongue of a lamb shows the continuity of the upper portion with the

Fig. 428.

1. Muscular fibre broken across, the fragments comnected by the comnective tissue membrane $\times 100 ; 2$. Fibre broken up into irregular distinct hands: a few blood corpuscles distributed about $\times 200$; 3. A fasciculus of muscular fibre from leg of pig $\times 600$.
eomective tissuc membrane. In Fig. 12, a branching-out bundle of muscular fibre, taken from the upper lip of the rat, is seen to end in stellate eomneetive cells. The delieate homogeneons sheath that binds the fibres together is termed sarcolemma. This is readily seen in prepared muscle of the frog and water-beetle, less plainly in man. Each muscle is provided with a sheath of commeetive tissue; this surromeds it, binds the faseieuli together, and supports the bloodvessels; it is ealled the perimysium, and sends fine prolongations in between the fibres, termed endomysium. The intervals seen on high amplification between the dark strice are ealled Kruse's membrane. On breaking up the striated strueture it is resolvable into fibrilla and furthermore into dises.

Among mammalia the pig furnishes the best examples of muscle fibrilla ; among insects the water-beetle and the thoras of the housefly. A power of 600 or 800 diameters is required to separate the fibrillæ. Blood-vessels are well supplied with striated muscle, but none of their minuter branehes penctrate the sareolenma. The involuntary or non-striated variety of muscular fibre exists in all parts of the body where movements oceur independently of the will, also in the eiliary muscle and the iris of the eye, as well as in the middle eoats of the arteries. Non-striated fibres are pale in colour,

Fig. 429.

1. Vertical section of epidermis; 2. Pigment cells from a lower layer of cutis.
prismatic in shape, and easily flattened by pressure. In size, they vary from $\frac{1}{7000}$ th to $\frac{1}{3500}$ th of an inch in diameter, and are marked at short intervals by oblong corpuscles.

The Integrment or Skin consists of epidermis or cuticle, dermis, corium or eutis vera, sweat-glands, nails, hairs, sebaceous glands, and numerous nerves and vessels. The epidermis forms a protective covering over the whole surface of the body, and is moulded on to the surface of the corium bencath, covering the ridges, depressions and papillæ. It is made up of three prineipal layers : the lonny layer or stratium corneum, the most superfieial, this eonsists of layers of flattened eells, which are without a nucleus ; the stratum lucidum, composed of layers of mucleated cells, more or loss indistinct in seetion ; the rete mucosum or malpighian liyer ; is composed in its upper part of layers of "priekle cells" and its inferior of
a single stratum of columnar cells. Pigment is principally found in the lowest layer; Fig. 429.

The gradations of colour in the skin are due to the gramular contents of the pigment cells. This is seen on stecping sections ent from the skin of a negro in chlorine; the colour is discharged. In Plate N1‥, No. 13, the pigment cells of the choroid coat of eye are shown. Here the pigment is darker in colour, and its function

Fig. 430. - Vertical section of skin and subentaneous tissues, showing the sweat-glands and fat-globules, ducts passing upwards to the epidcrmis or external cuticle. Magnified 250 diameters.
is the absorption of light and the prevention of disturbing effects occasioned by circles of dispersion.

The Dermis, or true skin, consists of an interlacing network of comnective tissue, yellow clastic tissuc corpuseles, vessels, and nerves. There are also small muscular fibres in comection with the hair follicles, and beneath the subentancous tissues eontain an abuudant supply of fat adipose tissue. Numerous ridges are seen on the surface, especially on the palm of the hand and sole of the foot, caused by rows of little elevations of the cutis vera, termed papillae. These are more or less conical, and contain a capillary loop, nerve,
and toueh eorpusele, which serve to increase the sensitiveness of the part, lodging a touch corpusele in a favourable position for receiving sensations of touch, Fig. 430.

Sweat glands are situated in the subeutaneous tissuc, and consist of fine tubes, whieh form the duct (seen in the section, Fig. 430); these are continnous with a blind extremity, coiled up into a ball onesixticth of an inch in diameter, and surrounded by a plexus of eapillaries to form the gland (Fig. 431, No. 2). Between the layer of columnar cells and the limiting membrane is a layer of non-striated musele, and beneath the rite mucosum there are several layers of polyhedral cells, and an external and internal limiting membrane;

Fig. 431.

1. Blood vessels of papillæ supplied to cutis; 2. Perpendicular section through the scalp, with two hair-sacs ; a. epidermis; b. cutis; c. museles of the hair follicles.
the epithelium of the duct is at its mouth continuous with the epithelium of the epidermis.

Nails consist of a root and body, the lunular of which is the whitish portion of the body near the root, where the skin bencath is less vaseular than any other portion of the finger. The nail closely resembles the epidermis, and consists of hard and thin layers of eells on the surface, and round, moist cells bencath. Posteriorly the nail fits into a groove which lodges its root. The part to which the nail is attached is known as the nail-bed. The stratified appearance produced by the coalescence of the eclls, and their lying over each other, is shown in Plate VII., No. 149, the toe of the mouse ; while the special arrangement of tissue is better seen under polarised light (Plate VIII., No. 174).

Mairs eonsist of a shaft and root. The shaft is eylindrical, and covered with a layer of imbrieated scales, arranged with their edges
upwards. The substance of the hair cousists of fibres, or elongated fusiform eells, in which nuclei are seen. There are present in some hairs (Fig. 432) small air spaces or lacume. In the coarser hair of the body there is a pith (medulla), occupied by smatl angular cells and fat gramules.

The root of the hair is seen to dilate that it may fit more firmly into the skiu hair-follicle. The latter consists of two coats, an outer

Fig. 432.

1. Single Hair-root and Shaft; 2. Vertical soction, showing fibrous character of the hair together with coloming matter, external edges serrated ; 3. Transverse section of humau hair, medullary substance, and central pith.
and an inner, continnous with the epidermis, and this is called the root sheath. The onter portion consists of three layers, formed of comective tissuc, blood-ressels, and nerves. The inner, or epidermie, coat comes away when the hair is pulled out, and hence is ealled the root shouth. This again is made up of two layers, the outer of which corresponds with the horny layer, and is composed of flattened cells. The bulbous root of the hair is comected with the papilla. In the eat the tactile nasal hairs are very large. Small bundles of
involuntary muscular fibres comnect the corimm with the root, so that in contracting they elevate or expand the hair.

The hair of the lower animals presents a diversity of structure, especially on the outer surface, and with reference to the arrangement of the scales. The hair of the Indian bat, for instance, consists of a shaft invested with erectile scales, placed at regular intervals; these stand out from the shaft, as in Jig. 433, No. 1. This form

Fig. 433.

1. Jointed hairs of Indian hat; 2. Hair of flying-fox, showing imbricated seales; 3. Hair of mouse, showng pigment layers ; 4. Hair of a small bectle (Dermestes). $\times 250$.
of seate varies considerably in the different species of these animals, and a portion of hair near the root is nearly divested of seales. Many of the scales are not mulike those of certain of the insect tribe, seen in that of Dermestes, No. 3, while the hair of the mouse has a series of transverse imbricated scales arranged as tiles on a honse, dne to aceumulated pigment. Hairs taken from various animals form interesting objects of study for the microscope, as ahready noticed. Other hairs are shown in Fig. 43t. No. 1 is a transverse section of a hair from the ant-cater ; the central part consists of
air-eells, the outer of a grammar pith. No. 2 is a transverse section of hair of peeeary, with a diversified arrangement of the eortical envelope, sending outward a set of radial prolongations and air-eells;

Fig. 434.

1. Hair of ant-eater ; 2. Hair of peceary ; 3. Hair of elephtant ; 4. Hom of Rhinoceros.
this kind of structure is also found in the quills of the poreupine. No. 3 is a transverse section of a hair of the elephant, which shows a eombination of a number of tubes united together, somewhat resembling the arrangement of the hoof-horn of some of the rnminants, and the denser horny growth on the snout of the rhinoccros, No. 4. The enrious modification of these horny structures is seen in the horns of other animals, and which may be likened to a bundle of hairs. On making a transverse section, as in Fig. 434, and submitting it to polarised light, on rotating the amalyser, the dark eentral spot shown is roplaeed by a bright

Fig. 435.--Fish Scale (Sole). one with a play of eolours due to the interferenee of light (Plate VIII., No. 178). The seales of fish are also of interest (Fig. 435). These have been shown to afford an merring guide in the
elassification of fishes and in the examination of their fossil remains. As a class of objects for the mieroseope, they are found to be both eurious and beautiful. l'late VIll., No. 176, is a scale of the grayling, seen moder polarised light.

Of the harder outgrowths of the dermal structures, the teeth afford the chicf example among animals. The rough anatomy of the tooth in mankind consists of a crown, that projects from the gum ; a root, or fangs, fixed in a socket of the jawbone, and a short intermediary neek. Each tooth is supplied with an artery and nerve,

Fig. 436. - Sections of Human Molar Tooth (magnified 50 diameters).

1. Vertical section ; 2. Horizontal section.
and has a central eavity filled with a soft, vascular, sensitive substance, the pulp. On making a vertical section of a tooth, we recognise the several structures in the order of, pulp, erusta, petrosi, dentine, and enamel. A section through a human molar tooth (shown in Fig. 436) will convey some idea of the arrangement of the denser struetures referred to above.

Blandin was the first to demonstrate that teeth are developed in the mucous membraue, similar to that of hair and nails. Teeth are formed in grooves of the mucous membrane, and subsequently converted into closed saes by a process of involution, and their final adhesion to the jaw is a later process. It is very generally conceded that teeth belong to the maco-dermoid, and not to the periosteal, series of tissues ; that, instead of standing in close relation
to the endo-skeleton, they are part of the dermal or exo-skeleton; their true analognes being the hair; and some other epidermie appendages. Huxley proved that, although teeth are developed in two Ways, they are mere varieties of the usual mode in the amimal kingdom. In the first, whieh is typified by the mackerel and the frog, the pulp is never free, but from the first is inclosed within the eapsule, seeming to sink down as fast as it grows. In the other, the pulp

Fig. 437.

1. Seetion of a eusp of the posterior molar of a elild. The inner outline represents it before the addition of aeetic aeil-the outer afterwards, when Nasmyth's membrane g is seen raised up in folds; f. the enamel organ ; c. the dentine; the eentral portion being filled with pulp. 2. Edge of the pulp of a molar eusp, showing the first rudiment of the dentine, commeucing in a perfeetly transparent layer between the nuelei of the puly and the membrana preformativa. 3. Nasmyth's membrane detaehed from the snbjaeent enamel by aeetie aeid. 4. Stellate-cells of the enarnel organ. 5. Tooth of frog, aeted on by dilute hydroehlorie aeid, so as to dissolve out the enanel and free Nasmyth's nembrane. The struetnre of the dentine c is rendered indistinet. At the base, Nasmyth's membrane is continued over the bony substanee at z, in whieh the nuelei of the laeunæ are visible. (After Huxley.) 6. Deealeified tooth-strueture; a. the dentine; b. enamel organ ; c. enamel ; d. Nasmyth's membrane.
projects frecly at one period above the surface of the mueous membrane, becoming subsequently included within a capsule formed by the involution of the latter; this oceurs in the human subject. The skate offers a sort of intermediate structure.

The enamel forms a continuous layer, and invests the erown of the tooth; it is thickest upon the mastieating surfaec, and decreases towards the neek, where it usually terminates. The external surface of the enamel appears smooth, but is always marked by delieate elevations and transvorse ridges, and covered by a fine mornbrane
(Nasmyth's membrane), containing calcareous mattcr. This mombrane is separable after being subjected to hydrochloric acid; it then appears like a network of arcolar tissuc, shown in Fig. 438, No. 6 ; Huxley's "calcified membunu," which commence at the pulp cavity, and pass up to the enamel.

Czermak diseovered that the eurious appearances of globular conglomerate formations in the substance of dentinc depend on its mode of calcifcution and the presence of earthy material ; and he

Fig. 43S.-Tooth Structure.

1. Longitudinal seetiou of superior canive tooth, exhibiting general arrangement, and contour markings, slightly magnified; 2 and 3. Portions from same, highly magnified, showing the relative position of bone-cells, cementum at 2, dentine fibres, and commencement of enamel at 3 ; 4. Dentine fibres deealeified; 5. Nasmyth's membrane separated and the calcareous matter dissolved out with dilate aeid ; 6. Cells of the pulp lying between it and the ivory ; 7. A transverse section of enamel, showing the sheaths of fibres, contents removed, and magnified 300 dianeters.
attributed the contour lines to the same causc. Contour markings vary in intensity and number; they are most abundant in the root, and most marked in the crown. Vertical scetions exhibit them the best; as Fig. 440, No. 1. In preparing a speeimen, first make the section accurately, then decaleify it by submersion in dilute hydroehloric aeid ; dry it and momet in Canada balsam ; place the specimen in the hot chamber for some time to soak in the fluid resin before it cools. The white opacity at the extremity of the contour markings gives the appearance of rings to the tooth-fang.
"The tooth-substance appears," says Czermak, "on its imner surface, not as a symmetrical whole, but consisting of balls of various
diameter, which are fused together into a mass with one another in different degrees, and in which the dentine tubes in contact with the germ cavity terminate. By reflected light, der\%-ground illumination, one perecives this stalactite-like condition of the imer surface of the tooth-substance very distinetly, by means of the varied illumination of the globular elevations, and by the shadows which they cast." To see this structure to advantage the preparation should be made from a tooth root, the growth of which is not complete. With such preparations, the ground-sulstance of the last formed layer of the tooth-substance is seen to be, at least partly, in the form of globular masses, fused together with those of the penultimate layers.

The cementum is the cortical layer of osseous tissue, forming an outer coating to the fangs, which it sometimes cements together. Its internal surface is intimately united with the dentine, and in many tecth it would appear as if the earliest determined arrangement of the fibres of the dentine started from the canaliculi, as they radiate from the lacunæ in the ecment. The interlacunar layer is often striated, and exhibits

Fig. 439.--Transverse section of Tooth of Pristis, showing orifices of niedullary canals, with systems of radiating fibres (tubuti) analogons to the Haversian canals in truc bone. a laminated structure: sometimes it appears as if Haversian canals were running in a perpendicular direction to the pulp eavity. The canaliculi frequently rum out into numerous branches, connceting one with another, and anastomising with the ends of the dentine fibres. The thick layers of eement which occur in old teeth show immense quantities of aggregated lacunæ of an irregular and clongated form.

Compact Tissues, Cartilage and Bone.-Cartilage is a bluish or yellowish-white, semi-transparent, clastic substance, without vessels or nerves, and surrounded by a membrane, termed pericondrium, of a dense fibrous nature. That kind, however, known as articular cartilage, receives a layer of epithelium from the synovial membrane, but this is confined to marginal portions, in consecpuence of the central wear which occurs as soon as the parts are subjected to friction, during the movement of the limbs. Cartilage covers the ends of all bones in apposition to form joints, and thus lessens
the effects of concussion. Besides the ordinary kind of eartilage, temporary and permanent, there are two modifications of the tissue, confined to certain portions of the body: cellular cartilage, composed of cells lying close together, in a mesh formed of fine fibres ; and fibro-cartilage, cells distributed in a matrix of fibrous tissuc.

Examined with a low jower, cartilage appears to be homogencous in structure, studded over with numerous round, oval, oblong, semilumar, and irregular-shaped corpuscles, as seen in Plate XIX., No. 8, a vertical section of animal cartilage, arranged in columns, and condensed at the lower surface previons to its conversion into bone. The greatcr opacity of this portion is owing to the

Fig. 440.

1. Cartilage from a monse's ear closely resembling vegetable tissue $\times 200$; 2. Cartilage from rabbit's ear, with nucleated cells embedded in matrix; 3. Cartilage from the end of a humau rib $\times 300$.
increase of osscous fibres, and the multiplication of oil globules, and the intercellular spaces becoming filled with ressels. No. 9 shows a small transverse section of the same, with a further change of the cartilage cells at a into bone cells, and at b with the characteristic camaliculi and lacumæ. No. 7 further shows a section of the large tendon fixed to the back of the hed of the foot, near the juncture of the tendo-Arehillis with the cartilage. For the examination of these several changes a high power is necossary, and for the purpose picces taken from the ox may be casily obtained from the butcher, and fine sections cut with a razor parallel to the surface.

The better specimens for microscopical examination are those taken from very young anmals, in whom the ossific process is still incomplete. In order to cxamine cellular cartilage, the car of the
monse should be taken and just dried sufficiently to enable fine sections to be cut by the mierotome transversely (Fig. 440).

Cartilage forms the entire skeletou of a certain number of fishes, as the skate, lamprey, lay, shark, de., the eclls of which are embedded in a matrix of granulaw matter; which has been properly termed intereellular. The nearest approach to ossification of cartilage in fishes is that of the cuttle-fish; in this stellate eells are freely distributed, as shown in Fig. 441, No. 3.

White fibro-cartilage oceurs between the bodies of the vertebre as a connecting medium. In this kind the cells are more widely

1

2

3

Fig. 441.

1. Cartilage from the head of the skate, cells filled with nuclei; 2. Cartilage from frog, oblong eells with mnelei ; 3. Cartilage from euttle-fish, with stellate cells, $\times 200$.
distributed, specimens of which may be taken from the eentral portion of au interarticular disc of any animal. The oval or cireular corpuseles will be secu surrounded by an abundauce of fibrous tissue.

An aequaintance with the degencuation of the textures with which we have been dealing may be of serviee to the student, as he may; in the course of his examination, meet with an abnormal condition altogether different to those deseribed. The process of degencration is usually a slow one, except in the case of fatty infiltration, an example of which is furnished by the fatty degeneration of the liver in Strasburg geese. Muscutar tissue is very prone to fatty degencration, and fatty heart is often met with. Calcarcous
degeneration of the museles, ligaments, and cartilages, as well as morbid deposits, are not at all uncommon in these structures. In Plate XIX., No. 9, a small section is given of an enehondroma, and in which the round or ovoid cells of the cartilage are seen degenerated and converted into granular masses of a calcarcons nature. Fig. 442 is a somewhat more highly magnified section of a calcareous or morbid growth, taken from a human subject in which a morbid growth was

Fig. 442. - Cartilage taken from a diseased finger, in which both cartilage and bone were in a state of degeneration. seen to be gradually destroying the bone and cartilage cells.

Bone.-Bone is a hard unyielding structure, and which in the vertebrata forms the skelcton of the adult. It is the framework for the support of the soft tissues of the body, and forms various carities for the reception of important organs, as the brain, spinal cord, eyes, heart and lungs, and acts as levers for the action of the museles and joints. The partial clasticity of bone is seen in the ribs, and the rebound when the skull is clropped on the ground. Bone consists of earthy and animal matters intimately combined ; the removal of either, however, does not destroy the form of the bone, if the process of separation be carefully conducted. The earthy eonstituents may all be dissolved out by hydrochloric acid, but the form of the bone is preserved in its minute particular, and in this state sections may be cut for mieroseopieal examination. If allowed to become dry it shrivels, and assumes the density of horn. The interior of a bone is of a spongy or eancellated structure, particularly at the ends. The outer portion of the bone is more dense than the internal part. The study of bone shoukd commence with sections of the softened structure. Directions

VERTLEBLATA, BONE STRUCTURE.
for making sections of bone arc given in the chapter on Practical Mieroscopy.

The intimate strueture of bone will be studied in comnection with Plate XX. Two scries of lamelle may be demonstrated in bone after maccration in aed, a larger system surrounding the medullary eamal, and a smaller surrounding the Haversian eanals, both of whieh are seen in Nos. 1 and 2. In maeerating bones, the lamelle of the layer coneentrie system may be peeled off in layers; these are seen to be pierced with fine apertures, ealused by the canalieuli. In some parts larger apcrtures are seen through which bundles of fibres pass, pinning, as it were, the several layers together; these are the perforating fibres. The outermost of the layers, boing near the periosteum, the membranc eovering the bonc, are termed periosteal layers; the imermost, being elose to the canal, are ealled medullary layers. No. 1 is a transverse seetion of a flat bone, the elaviele, and it shows the Haversian eanals, varying in size from $\frac{1}{2000}$ th to $\frac{1}{2} \frac{1}{00}$ th of an inch in diameter, the largest being near the medullary eanal. In shape they are round, oval, or oblong, aeeording to the line of scetion. Eaeh canal is surrounded by rings, none of whieh are complete, and rumning one into the othcr at various parts. Under a higher power, those irregular shaped bodies termed lacunæ, with fine radiating fibres, are seen to be smaller eanals, eanalieuli.

By means of this complete and intricate distribution of the canals of the Haversian system, the mutritive fluids pass into the most compact parts of the osscous tissue. Longitudinal sections of the long bones show these canals as continuous branching-out cells.

In many of the lower animals the bony strueture differs from those of man, as will be scen in Plate XX. No. 3 shows a transrerse seetion of the femur, or leg-bone of an ostrieh, magnificd ninety-five times, in which the Haversian canals are mueh smaller and more numerous, and many of them run in the transverse direetion. No. 4, again, is a transverse section of the humerus, or fore-arm bone of a turtle (Chelonia mydas). This exhibits traces of Haversian canals, with a slight tendency to a concentrie arrangement of bonc-eells around them, the bone-cells being large and numcrous, and occur, for the most part, in parallel rows. In No. 5, a horizontal section of the lower jaw-bone of a eonger-ed exhibits
a single plane of bone-eells arranged in parallel lines. There are no Haversian eanals present, and when this specimen is contrasted with that of No. 4, it will be notieed that the eanaticuli given off from each of the bone-cells of this fish are very few in number in eomparison with that of the reptile. No. 6 is a section of a portion of the cranium of a siren (Siven lacertina), remarkable for the large size of the bone-eells, and of the canaliculi, whieh are larger in this animal than in any other yet examined; and as in the preceding specimen, no Haversian eanals are present. No. 7 is a seetion of bone taken from the exterior of the slaft of the humerus of a Pterodaetyle; this exhibits the elongated bone-cells eharacteristie of the order Reptilia. No. 8 is a horizontal section of a seale, or flattened spine, from the skin of a Trygon, or sting ray; this exhibits large Haversian eanals, with numerous wavy parallel tubes, like those of dentine, eommunieating with them. This speeimen shows, besides wavy tubes, numerous bone-cells, whose eanalieuli commumieate with the tubes, as in dentine.

The following points may be noted with regard to the several seetions of bone deseribed. That of the bird, for instance, contrasted with that of the mammal, exhibits the following peeuliarities: the Haversian eanals are more abundant, mueh smaller, and often run in a direction at right angles to that of the shaft, by which means the coneentrie laminated arrangement is in some eases lost; the direetion of the eanals follows the curve of the bone ; the boneeells are much smaller and more numerous; while the number of eanalieuli sent off from the eells is less than in those of mammals. No. 3 is the average length of a bone-eell of the ostrich, $\frac{1}{2000}$ th of an ineh, in breadth $\frac{1}{6000}$ th.

In the Reptilia, the bones may be either hollow, eaneellated, or solid; and their speeifie gravity is less than that of birds or mammals. The short bones of most of the ehelonian reptiles are solid, and the long bones are either hollow or eaneellated ; the ribs of the serpent-tribe are hollow, the medullary earity performing the offiee of a Haversian eanal; the bone-eells are aeeordingly arranged in eoncentrie eireles around their eanals. The rertebra of these animals are solid; and the bone, like that of eertain birds, is remarkable for density and whiteness. When a transverse seetion is taken from one of the long bones, and eontrasted with
that of a mammal or bird, the differenec will be notied ; there are very few, if any, Harersian canals, and these aro large ; and at one view, in the section, No. 7, the canals and bone-cells are arranged both vertically and longitudinally. The bone-cells aro remarkable for the great size to which they attain; in the turtle they are $\frac{1}{37} \frac{1}{5}$ th of an inch in length, the canaliculi aro extremely numerous, and are of a size proportionate to that of the bone-eell.

In fishes a greater variation oceurs in the mimute structure of the skeleton than in cither of the three preceding classes. A rave structure is that of the sword of the sword-fish (Istiophorus). In this, Haversian canals and a concentric laminated arrangement of the bone are found, but no bonc-cclls. The Haversian canals, when they are present, are of large size, and very numerous, and then the bone-cells are, generally speaking, either absent or but few in number; their place being occupied by tubes or canaliculi, which are often of a very large size. The bone-cells are remarkable for their graduate figure, and the canaliculi derived from them are comparatively few in number. In a thin section of the scale of an osseous fish, the cells lie nearly all in one plane, and the anastomoses of the canaliculi are more distinctly seen ; in the hard scales of many, as the Lepidostens and Calicthys, and in spines of the Siluridæ, the bone-cells are well differentiated. In the true bony seales comprising the exo-skelcton of cartilaginous fishes the bone-cells are seen in great numbers.

Now, if we proceed at once to the application of the facts which hare been laid down, and make a fragment of bone of an extinct animal the subject of investigation, it will be found that the bonc-cells in Mammalia are tolerably uniform in size ; and if we take $\frac{1}{2000}$ th of an inch as a standard, the bone-cells of birds fall below that standard; but the bone-cells of reptiles are much above either of the two preceding, while those of fishes arc essentially different, both in size and shape, and are not likely to be mistaken for one or the other ; so that the determination of a minute yet characteristic fragment of fishes' bone is a task casily performed. If the portion of bone does not exhibit bonc-cells, but presents either one or other of the characters indicated, the task of discrimination is equally easy. We lave now the mammal, the bird, and the reptile to deal with. In consequence of the very great size
of the cells and their canaliculi in the reptile, a portion of bone of one of these animals can readily be distinguished from that of a bird, or a mammal. The only difficulty lies between these two last; but, notwithstanding that on a cursory glance the bone of a bird appears very like that of a mammal, there are certain points in their minnte structure in which they differ ; and one is the differcuce in size of the bone-cells. To determine accurately, therefore, between the two, we must, if the section be a transterse one, also

Fig. 443.

1. A portion of the web of frog's foot, spread out and slightly magnified to show distribution of blood-vessels; 2. Is a portion magnified 250 diameters to show the ovoid form of the blood dises in a vessel, beneath which hexagonai nucleated epithelium cells appers.
note the comparative sizes of the Haversian canals, and the tortnosity of their course ; for the diameter of the canal bears a certain proportion to the size of the bonc-cells, and after close examination the cyc will readily detect differences.

Arteries and Veins.-The circulation of the anmal frame is maintained by arteries, veins, and capillaries. The arteries are clastic and contractile tubes; these convey the blood from the lieart to the capillaries. The larger arterics are exceedingly clastic, but feebly contractile on accomnt of the musenlar tissuc in their walls. The veins ramify throughout the body, are more numerous than the arteries, and of greater capacity. They usually accompany the
arteries and correspond to them in structure, the larger veins possessing semi-lunar valves; these project into their interiors, and thus prevent the regurgitation of the blood. They have four coats, consisting of areolar tissue, yellow fibres combined with muscular fibres, and white fibrous tissue, two layers of yellow fibres arranged longitndinally, and a single layer of epithelial cells. Intermediate between the arteries and reins there are execedingly fine tubes, termed capillaries, in which the arteries terminate, and from which the veins arise. These are composed of a fine homogencous membrame, with here and there a nueleus. The capillary circulation of the blood is readily seen in the tail of the newt and the foot of the frog; Fig. 443 .

A network of eapillaries conveying blood to the lungs, and ramifying throughout the structure, is shown in Fig. 444, and in Plate XIX., No. 6, the termination of a capillary of a bloodvessel in the fat-eells of the human body. Plate VII. illustrates the distribution of the arteries and veins to various parts of the animal body. This coloured plate, however, is designed to show the value of injected preparations in the delineation of animal structures. By

Fig, 44.-A network of capillaries. thus artifieially restoring the blood and distending the tissues, a much better idea is obtained of the relative condition of parts, the appearance presented by the crectile papillæ, \&c. In the section of foot of mouse (No. 149), the bone is seen surrounded by its vascular supply, arterial and venous; in No. 150 , the papille of the tongue is distended and seen ereet; in No. 152, a vertical section of the fungi-form papillæe on the tongue of cat, with capillary loops passing into them, is demonstrated; in No. 151, the rectical section of brain of a rat, the vascular supply is shown; No. 153 , the malpighian turfts (eircular bodies) and arteries ramifying about the structure ; in No. 154, the vertical section through the intestine of the rat, shows villi (arteries and veins) surmounted by epithelimm, and supported on a layer of the mucous membrane;
in No. 155 , the vascular supply sent to the roots of the whisker of the nose of the mouse ; in No. 157, a tangential section eat through the several textures, the sclerotic eat and retina of the eye of a cat is clearly made out although not highly magnified; again, in No. 156, the beautiful vascular arrangement of the internal gill of the tadpole could scarcely be so strikingly illustrated in any other way; while in the central, No. 158 , the vascular system throughout the whole of the body of a fully developed tadpole, with the way in which the blood is carried from the remotest part of the tail to the heart, and sent to the gills, the brain, \&e., it is quite unnecessary to enlarge upon. These are seen under a low power,

Fig. 445.
but for the purpose of studying the basement membrane, together with the intimate association and termination of the nerves aceompanting the arteries and veins, it is absolutely neecssary to resort to a staining process, and cutting fine sections with the microtome. Small portions of a nerve may be cut off with fine seissors, teased out with needles, and a drop of arctic acid added to render the sheath more transparent; in a few seconds the eomective tissue corpuscles will be brought into view. For the mieroseopical examsnation of nerve-fibrillec take a small section from the log of a frog, and tense it out in blood serum or white of egg. In size the fibrilla gary, even in the same nerve, from the $\frac{1}{12000}$ th to the $\frac{1}{1500}$ th of an inch in diameter.

To show the circulation of the blood in the frog's foot, and without causing the animal pain or much inconvenience, it is better to
enclose it in a black silk bag, and draw out the foot as shown at a a a, Fig. 445 . The bag provided should be from three to four inches in longth, and two and a half inches broad, shown at $b l$, having a pieee of tape, c c sewn to each side, about midway between the month and the bottom, and the mouth itself eapable of being elosed by a drawing-in string, d d. Into this bag the frog is plaeed, and only the leg whieh is about to he examined kept ontside ; the string $d d$ must then be drawn sufficiently tight around the small part of the leg to preveut the foot from being pulled into the bag, lnit not to stop the eirculation ; three short pieces of thread, f f $f f$, are now passed around the three prineipal toes ; and the bag with the frog must be fastened to the plate a a by means of the tapes $c c$. When this is aeeomplished, the threads $f^{\prime} f f$ are passed either through some of the holes in the edge of the plate, three of whieh are shown at $g g g$, in order to keep the web open ; or, what answers better, in a series of pegs of the shape represented by h, eaeh having a slit, i, extending more than halfway down it; the threads are wound round these two or three times, and then the end is secured by putting it into the slit i. The plate is now ready to be adapted to the stage of the microscope : the square opening over whieh the foot is seeured must be brought over the aperture in the stage through whieh the light passes from the mirror.

The tadpole eireulation is readily seen by plaeing the ereature on its baek, when we immediately observe the beating heart, a bulbouslooking cavity, formed of delieate, transparent tissue, through whieh the blood altemately enters by one orifiee and leaves by a more distant exit. The heart, it will be noticed, is enelosed within its pericardium, this being the more delieate part of the ereature's organisation. The binoeular mieroscope should be used for viewing the eireulatiou. Passing along the eourse of the great blood-vessels to the right and left of the heart, the eye is arrested ly a large oval body, of a more complicated structure. This is the imner gill, formed of delieate, transparent tissue, traversed by arteries, and a network of blood-vessels. It is ahmost unneeessilry to say the tadpole has a respiratory and circulatory system resembling those of fishes.

In nearly all fish the heart has but two cavities, an auricle and ventricle; the blond is returned by the veins to the auricle, passes into the ventricle, and is then transmitted to the gills, where, being
exposed to the air contained in the water, it beeomes deprived of earbonic acid, aerated, and rendered fit to breathe. In the reptile we find a morlification of plan. The heart has three eavities, two auricles and one ventricle; by this eontrivance there is a perpetual mixture in the heart of the impure carbonized blood which has already eireulated through the borly, and flows into the ventricle from the right auricle, with the purer acrated blood returned from the lungs, whieh flows at the same instant into the ventriele from the left auricle.

For the purpose of subscquent observations the tadpole should be seleeted at a period in whieh the skin is perfectly transparent, otherwise the appearanees already described of the form and situation of the heart, and the three great arterial trunks (proceeding right and left), will not be clearly made out. The anatomical arrangement of the vessels will be scen to be elosely connected with the corresponding gill, the upper one (the cephatic) rumning along the upper edge of the gill, giving off, in its eourse, a braneh whieh aseends to the mouth, with its accompanying vein; this is termed the labial artery and vein. The cephalie artery continues its course around the gill, until it suddcnly eurves upwards and backwards, and reaehes the upper surface of the head, when it dips down between the eye and the brain.

It must not be supposed that this ean be made out in the average tadpole, the obstacle to whieh is the large coil of intestines, usually distended with dark-eoloured food. This must first be reduccd by making your tadpole live on plain water for some days. Plate VII., No. 158, affords a view of the vessels obtained under the influenee of low diet, and whereby we arc enabled to trace the eourse of the three large arteries. The third trunk, traversing the lung, is seen to emerge from the lower edge and deseend into the abdomen to form the great abdominal aorta. A small half-starved tadpole shows the heart beating and the blood circulating, but the latter is quite colourless, not a single red globule visible anywhere. The leart is a eolourless globe, the gills two transparent ovals, and the intestines a colourless, transparent eoil. Through the empty eoil the artery is seen on either side leaving the gills, and conrerging towards the spine, and uniting to form the abdominal aorta, the large central vessel eoloured red in the figure. After the aorta has supplied the
abdominal viscera, a prolongation, or caudal artery is seen deseending to the tail, the all-important organ of locomotion in the tadpole. This artery, entering the root of the tail, is imbedded deeply in the flesh, whence it emerges, and then continues its course, closely accompanied by the vein, to within a short distance of the cxtremity, where, being reduced to a state of extreme fineness, it terminates in a capillary loop, composed of the end of the artery and the beginning of the vein. The artery, in its course, gives off branchcs continnally to supply the neighbouring tissuc. The blood-current in the tail is often scen, even in the main artery or vein, to be sluggish. This occurs independently of the heart, which will contimne to beat as nsual ; it happens, bccause the cireulation in the tail depends very much on the motion of the organ. When this is suspended (as in the confined tadpole under the microseope), the blood moves sluggishly, or stops, till the tail regains its frcedom and motion, when the activity of the current is restored.

Having traced the arterial system which conveys the blood from the beart to the extremities, we will now note its return by the veins back again to the heart.

The caudal vein rims near the artery diming the greater part of its comrse, with its stream of blood towards the heart. This stream is swollen by perpetual tributaries from numerous vessels. As the vein approaches the root of the tail it is inclined towards the artcry, and diverges from it at the point of entering the abdomen. Here it approaches the kidncys and sends off branches, while the main trunk continues its comrse onward ; and, passing upwards behind a coil of intestine, it approaches the liver, and rmms in a curved course along the margin of that organ. The blood is now seen to enter the vena cava by several chamels, that converge towards the great vein as it passes in close proximity to the organ. Beyond the liver the vena cava continues its course mpwards and inwards to its termination in the sinus venosus or rudimentary auricle of the heart. This termination is the junction of not less than six distinct venous trunks, incessantly pouring their blood into the heart. The cirenlation in the fringed lips forms a most complicated network of vessels, out of which proceeds a vein corresponding to the artery already traced. This deseends in a direct course till it joins the principal vein of the head, which eorresponds to the jugular in the mammalia.

Thus it will be seen the blood is driven by the heart into each inner gill through three large blood-vessels, which arise directly from the truncus arteriosus, and may be called the afferent vessels of the gill. In Plate VII., No. 156, an enlarged view of a gill is shown.

On closer examination "each internal gill or entire branchial organ is seen to consist of cartilaginous arches, with a piece of additional flumework of a triangular form, stretching beyoud the arches, composed of semi-transparent, gelatinous-looking material. These form the framework of the organ and support upon their upper surface the three rows of crests with their vascular network, and the main arterial and venous trunks lying parallel to and between them. The three systemic arteries arising, right and left, from the truncus arteriosus, enter each gill on its cardiac side, and then follow the course of the crests, lying in close proximity to them. The upper of these branchial arteries runs alone on the outside of the upper crest, and another branch leaving the trunk and passing into the network of the crest, whence a returning vessel may be traced carrying back the blood across the branchial artery, and to a vessel lying close to and taking the same course as the artery itself. Carrying the eye along the latter vessel we find, at a short distance from the first of these crest branches, a second, leaving the main trunk and entering' the crest, when a corresponding retmrning vessel conveys the blood across the arterial trunk into the vessel lying beside it, as in the former instance. A number of these branches may be traced from one crest to the other. But it is now seen that the trumk from which these arterial branches spring diminishes in size as it proceeds in its course (like the gill artery in fishes), while the vessel running parallel to it and receiving the stream as it returns from the crest enlarges to some extent. Thus, the artery or afferent ressel which brings the blood to the gill is large at its entrance, but gradually diminishes and dwindles to a point at the opposite end of the crest; while the venous or efferent vessel, beginning as a mero radical, gradually enlarges, and thus becomes the trunk that conveys the blood out of the gill to its ultimate destination. This vessel is the upper branchial vein so long as it remains in contact with the gill; subsequently it changes its name on leaving the gill and as it passes upwards for distribution to the head, when it is designated the cephatic artery. The middle branchial artery and vein proceed in like
mamer in comnection with the middle erest, and the lower arlery and vein in conncetion with the lower erest. The middle and lower venous trunks, having reached the extremity of the crests, curve downwards and inwards, and leave the gill. The former trunk, converging towards the spine, meets its fellow, and with it forms the ventrol corte The latter gives origin to the mulmonury artery, and supplies also the integments of the neek. Curious and interesting is the final stage of the metamorphosis, when the waning tadpole aud ineipient frog cocxist, and are actually seen together in the same subject. The dwindling gills and the shrinking tail-the last remnants of the tadpole formare yet seen, in company with the coloured, spotted skin, the newly formed and slender legs, the flat head, the wide and toothless mouth, and the erouching attitude of the all but perfect reptile." *

To observe the eirculation and how it is carried on during life in the gills, the outer covering must be carefully raised, or even stripped off. This will be better accomplished by putting the tadpole under the influence of cocaine or chloroform-a drop of the fluid is sufficiont for the purpose.

The metamorphosis in the embryo of the frog is by no means exceptional. The ascidian begins life in the form of a tadpole, with a muscular tail ; subsequently it fixes itself by its head to a rock, and its tail disappears. The changes the tadpole of the frog passes through are in every respect, except in one or two minor details, similar to those of adult amphibia which pass their whole lives in water. The newly-hatched flat-fish is symmetrical, an cyc being placed on each side of its head, with the adults of other fishes. The foetal whale has well-developed hind limbs, and which, after passing into a condition almost perfect in proportion to the rest of the body, gradually dwindle away again to the merest rudimentary structures. In all these, and a number of similar eases, it is seen that the earlier condition of cxisting animals ropresents, and is in agreement with that of its adult ancestor of a remote period in the past. Collected facts bearing upou this question have been made the groundwork of a theory of hereditury properties in the germ, and a disposition to go through the same phases of life as the parent.
*W. U. Whitney, "'rausactions of the Alicroscopical Society" for 1861 and 1867.

CHAPTER VI.

The Mineral and Geological Kingdoms.

The structure of roeks and the formation of crystals will be found to furnish an endless supply of instructive material for the microscope. In sciences of pure observation, as those of mineralogy and geology, the facts to be observed are of several different kinds, and where so many observers are at work all over the world, constant progress will necessarily be made, as woll as continued correction required from change and improvement in the methods of observation. It would be impossible to give even a slight sketch of what has been done in the two departments of nature reforred to during the past few years. Mincralogical and geological research have derived very great adrantage from having been assigned to professional teaching. But, as Professor Bomey reminds us, the progress made in geological work in particular, has been directly due to the revelations of the microscope. It called forth an instrument of special construction for the purpose, the petrological microscope (Fig. 79), well equipped with Nicol's prisms, and numerous other appliances demanded for the important investigations.
"Upon the history of the two main groups of rocks the microscope has thrown much light. For the igneous rocks it has simplified their classification and determined their mutual relations; while for the rudimentary group, it has shown the true nature of their constituents, and pointed out the sourees from which they were derived. But it is in helping to clucidate the problem of the metamorphic rocks, of which much less was known, that the microscope has been of the most service. It has likewise greatly assisted in the attempt to determine the history and mutual relation of these rocks. Onc of the most important results within the last few yoars has been the demonstration that without exception these crystallin
schists are very old, all probably older than the first roeks in which traces of life have been found. The eonclusion arrived at, is that " the enviromment neeessary for ehanging an ordinary sediment into a erystalline sehist existed generally only in the earliest ages, and but very rarely and locally, if ever, sinee palaozoie time began."

The erystalline selists then are the relies still preserved to us of the early days of the earth's listory, when the temperature near the surface was still high. Since that time the zone for marked mineralogieal ehinges has been eontinnally sinking, until at the present day it has reaehed a depth praetieally unattainable. "The subterranean laboratory still exists, but the way to it was virtually closed at a comparatively early period in the earth's history." Greater progress has been made since the mieroscope was pressed into the serviee of geology, and inspires the hope that we shall yet learn something more of the earliest ages, when the mystery of life began.
"It may be regarded as one of the most remarkable results of geologieal seienee, tlat an aequaintance with organic forms is at least as neeessary for a geologist as a knowledge of minerals, and that a eorreet knowledge of organie remains (portions of fossil plants and animals) shonld prove a more certain and unerring guide in unravelling the strueture of complieated distriets of eountries, than the most wide and general aequaintanee with inorganie substances. The eause of this, however, is obvious, as the mineral substanees produced at any one period of a rast suceession of ages, do not appear to have liad any essential difference from those formed under like eireumstanees at another. The animals and plants, however, living' at one period of the earth's history were widely different from those living at other periods. There has been a eontinuons succession of different races of living beings on the earth following each other in a certain regular and ascertainable order, and when that order has been determined, it is equally eertain that we ean at onee assign to its proper period of production, and therefore to its proper place in the series of rocks, any portion of earthy matter we may meet with eontaining any one, or even any recogrisable fragment of one, of these onec living beings."

The method of preparing seetions of mincrals and rocks for microseopic examination will be found at pp. 241, 307-309. The sections, it is almost needless to say, must be prepared thin enough
to permit the use of transmitted light, as well as for that of polarised light: that is to say, they should range from about $\frac{1}{100}$ th to $\frac{1}{1000}$ th of an incl. Almost any lapidary will cut sections of any choice specimen.* The formation of crystals, and the method of preparing them for examination, has also been fully explained in the chapter on polarised light, pp. 219 et seq., and illustrated on Plate VIll. It is well known in miero-chemistry that "ahnost every substance, simple or compound, capable of existing in the solid state, assunes, under favourable conditions, a distinct geometrical figure, ustaally bounded by plane surfaees and having angles of constant value.

Mueh useful information may be gained upou micro-crystallography, as well as on almost everything having any relation to the technique of the mieroseope, in the "Journal of the Royal Microscopieal Society." To the June number (1898) Mr. T. Charters White contributes an article on crystals, and reminds us that the presence of mueh or little moisture will modify and alter forms, as much and as often as varying degrees of temperature. At the same time he offers a few useful suggestions for the purpose of securing better results, for which purpose he employs hippurie aeid, hydroquinine, and picrie aeid alone or in combination with hippurie aeid, and an aqueous solution of bichromate of potassium, erystallised in a tolerably thick emulsion of gum arabic. This is the only aqueous solution ; the other solvents have been methylated spirit, acetone, and absolute aleohol, taking these three solvents as types of the greatest volatility, because in making eertain crystals it is necessary that the solvent should evaporate quiekly, otherwise the erystals will assume their original forms. It is further desirable to make saturated, or even super-saturated solutions of the three ehemicals named, as the colours produced under polarised light are of a deeper and richer character than they are if made from weaker solutions. Of the three ehemicals named he prefers hippuric aeid, for reasons stated, that it is the most manageable, and allows of more time being taken in modifying the formation of the crystals. It is also advisable to slightly warm the glass slide before the drop of fluid is applied. On the whole, picrie aeid appears to furnish a greater variety of crystals whon used in combination with bichromate of potassium and a solution of gum arabic.

[^56]
APPENDICES AND TABLES USEFUL TO THE MICROSCOPIST.

Appendix A.
HLLUMINATION ARRANGEMENTS OF' 'HE
MCROSCOPE.

A Doubt has of late been expressed among practical microscopists as to the value of the illumination arrangements of the lamp and the microscope, so as to secure the more perfect definition of the flagellate organ of the monas and other minute forms of infusorial life. We have been told that better results will be obtained by turning the mirror aside, and so disposing the microscope and lamp in the horizontal position, that the central rays of light from the mirror-edge of the lamp-flame shall pass through the optical axis of the achromatic condenser, the focus of which must be accurately brought upon the field of view by means of the substage centring screws and rackwork, and in such a manner, that by employing a 1 -incl objective, a sharply-defined image of the lamp-flame, edge-on, is projected ou to the centre of the field in association with the specimen under examination. If the 1 -inch objective be uow replaced by a 1-12th or 1-16th inch immersion and once again focussed iuto place, aud a slight re-adjustment of the centring made, it will be fouud that the field is brilliantly illuminated, aud the most minute portions of infusorial life are well defined, and with a sharpuess otherwise unattainable. At the sane time the graduating or iris diaphragm must be brought into use.

Dr. Clifford Mercer, the Presidcut of the American Microscopical Society, who has quite recently reinvestigated the question of illuminatiou, utterly coudemus the narrow cone, as well as that of oblique light in all such investigatious, and cousiders the 3 -4ths axil cone as the most suitable method for microscopical illumination, and he bases his resolving limit accordiugly. Some important experiments are brought forward by Dr. Mereer, which at the same time demonstrate the correctness of Lord Rayleigh's limit of resolution (referred to in a previous chapter, p. 44), for circular apertures as contrasted with that calculated by the late Sir George Airy.

With regard to the Abbe Theory, Dr. Mercer says: "Resolution in the Abbe Theory may be said to increase by bounds. So long as the central innage of the source of light alone is to be seen at the back of the objective, resolution is not present. The aperture may be increased without change in the contraction of the diffraction pattern, and in acompanying resolution, so long as the central inage alone is to be seen at the back of the objective; but the moment the increase in aperture is sufficient to uncover or admit one flanking spectrum image, resolution is present. With greater increase in aperture, no improvement in the picture as to the contraction of the diffraction pattern is to be seen until another spectrum image is uncovered or admitted. Dr. Mercer gives his reasons for considering that the advantageous reduction in a cone of light between an object and the objective should not exceed, in the case of first-class objectives, onc-fourth to one-third (ncver more than one-half) of the dimmeter of the cone. On the other hand, with full cone illumination, resolution increnses continuously, and not by jumps or by periodic accessions. With regard to the use of oblique light, he says his Photos 2,3, and 4^{*} are a pictorial warning for a second time against the use of oblique illumination in ordinary work as a means of increasing,

[^57]or of attempting to cxhaust the resolving power of the microscope. At the same time it becomes evident that every substage should be provided with a moans by which its condenser may be accurntcly centred, and that every student using the microscope should be fumiliar with a method of centring his substage condenser.

Dr. Mercer summarises the results of his experiments thus:-

1. "Diffraction rays on leaving an object may be considered in the same category with other rays changed in direction by an object.
2. "The diffraction plicnomena seen in a projected inage are essentially the effect of changes in light above the objective, due to \approx function of aperture, and not to changes below the objective, due to diffraction of light in the plane of the object.
3. "Diffraction in the plane of the object does, under some circumstances, furnish light to certain parts of an aperture from which primary rays are absent, and this enables apertme to more fully determine the character of the projected image, resulting in a more nearly truthful image, or, on the other hand, in false appearances. This is the gist of the Abbe phenomena of microscopic vision.
4. "But such phenomena are not peculime to microscopic vision, notwithstanding Professor Abbe's claim to the contrary.
5. "With any positive lens similar and more brilliant results may be got by utilising corresponding pencils of prinary rays, instead of isolated pencils of diffracted rays.
6. "Still more trustworthy results may be got by using primary rays in place of the isolated pencils of primary rays.
7. "An advantage peculiar to using narow cone illumination with an objectire of wide aperture (the ouly illumination admissible in the Abbe theory), consists in giving, under suitable conditions, approximately the acme of resolving power sinultaneously in each several diameters. Thus a circular apertnre is approximately squared or made rectangular as to resolving power in sereral of its diameters simultaneously.
8. "Special attention is called to the fact that the Abbe theory deals with complex objects; for only such objects are subject to resolution. Single particles and uniform areas are outside its domain. These latter, however, are microscopic objects, and all objects are essentially different shaped aggregations of points. An isolated point-like particle, no matter what its minuteness, may be seen if it present sufficient contrast with the surrounding microscopic field. The size of the disc image is no less than a limit determined finally by aperture. That limit in size varying iurersely with aperture, determines the limit of resolving power. This is the gist of the theort of microscopic vision which harmonises with our experimental study of aperture."

Appendix B.

MICRO-PHOTOGRAPHY.

Owing in some measure to the more complete knowledge of the subject gained by the experience of years, and the extreme value of micro-photography in the delineation of bacteria, and perhaps in a measure to the adrent of the perfected dry-plate process, photography is being rapidly pressed forward in conjunction with the microscope. In the course of the year [1898] no less than six, more or less, new forms of micro-photographic apparatus have appeared; two are simple, one for daylight, one for lamp, one for electric, and one for lime-light illumination. Passing over the simpler forms, for n notice of which I am umable to find room, there is one piece of new apparatus, that of Mr. E. B. Stringer, which is not only new, but is in every way adapted to the work of micro-photography. It is in fact a well-arranged camera, fitted with a powcrful condensing arrangenent, each portion of which is capable of being independently centred and controlled. Indeed, the specially interesting feature of the apparatus is the control of the gas and the beantiful and uniformally illuminating disc of zircon, abont a quarter of an incl in dianeter.

This efficient photo-micrographic apparatus (Fig. 446) is made by Messrs. W. Watson \& Sons, under the instructions of Mr. E. B. Stringer: The illuminating condensing system is mounted on a square brass bar, the illuminant being oxygenhydrogen light burning on zirconium. Immediately in front of this is a condenser, c,

finur and a half inches diamoter, with an iris diaphram, 1 , immediatcly in front of it. The holder, s , carries the light filtering mediu through which the beam passes and enters the condenser, F. It then goes through a tank of water contained in the cone, F to H , and emerges a practically parallel beam of great intensity through a plano-concave lens, 15 , of such a diameter as to exactly fill the back lens of the substage condenser. There is an iris diaphragn, T , for cutting off stray light.

The whole of the apparatus is fitted with centring screws and clamps, and after laving been once adjusted it is ready for use at any moment without preparation. By means of this apparatus, instantaneous pictures can be taken of living rotifers, so billinnt is the illumination, while photogrnphs of such fine objects as the flagella of bacteria cannot be secured with the same amount of certainty by any other microphotographic apparatus with which I have made myself acquainted.

Appendix C.

FORMULE AND METHODS:-CEMENTING, CLEARING, HARDENING AND MOUNTING.*

CLEARING AGENTS.

The object of employing a clearing agent is to replace the alcohol in the deliydrated section by a liquid which has a refractive index about the same as the balsam into which it is to be placed, and which will readily mix with it.
Oil of Bergamot will clear quickly from 90 per cent. of alcohol. Clove oil cleurs more rapidly, but it dissolves out aniline colours to a considerable extent. Xylol is without action on aniline colours. This strength of alcohol is chosen because of its being that of the methylated spirit sold in London, and which is much used in washing and dehydrating on account of its cheapness.
Oil of Cedar Wood, although an essential oil, resembles xylol, but evaporates slowly. It has very little solvent action on the aniline colours. It clears rapidiy from absolute alcohol, but not well from 90 per cent. Sections can be left in it for several days. It is a convenient medium in which to examine tissues before mounting them permanently. It clears celloidin without dissolving it; and as a connecting fluid between the object and objective nothing better has been discovered.
Other clearing agents have been tried, but as they dissolve out the aniline colours, are no longer used.

CEMENTS.

Grove's Mastic and Bismuth.-Dissolve gum mastic in chloroform, and thicken with nitrate of bismuth. The solution of mastic should be nearly satmrated.
Grove's Oxide of Zinc, Dammar, and Drying Oif.-Rub up well-ground oxide of zinc, 2 ozs., with drying oil, to the consistence of thick paint. Then add an equal quantity of gum dammar, previously dissolved in benzoline, and of the thickness of syrup. Strain through close-meshed muslin. Keep in well-corked bottle, and, if necessary, thin with benzoline.

Isinglass Cenent.-Heat the isinglass in a covered vessel on the water-bath with a little glacial acetic acid, until it is thoroughly softened and forms a stiff mass, then gradually add more acid until it produces a thick solntion which is of uniform consistence, and just fluid while hot. Then run into wide-mouth bottles and close with good corks.

Kitton's Cement of white lead and red lead in powder, and litharge powder in equal parts. Grind together with a little turpentine, until thoroughly incorporated, and mix with gold size. The mixture should be thin enough to use with a brush: in using, one coat should be allowed to dry before applying another. No more cement should be mixed with the gold size than is required for immediate use, as it sets quickly, and becomes unworkable.

[^58]Frönic's Cement.-Gradually add ordimary resin, 7 to 9 parts, to melted becswax, 2 parts, then sterm and cool.

Shellac Cement.-Dissolvo shellac in an equal weight of methylated spirit, then pour off the clewr portion and add a few drops of balsam and castor oil.

Marine Glue.-Dissolvo indiarubber in mineral miphtha, and add twice tho quantity of powdered shellac; or make chlorolorm the solvent, and use mastic instead of shellac. For casting buttcry trays, use a composition of 4 parts resin and 1 of gutta percha, with a little boiled oil.

Selier (Cleaning Glass Slides).-New slides or cover-glasses must be placed for a few hours in a mixture of 1 part of potassimm bichromate, 1 of sulphuric acid, and 25 of water. Subsequently wash with water and wipe dry with a linen rag, after draining off the excess of moisture. Covcrs that have bcen used should be previously immersed for a few days in a mixture of equal parts of alcohol and hydrochloric acid. Scrape old slicles free of mounting medium before immersing them in the bichromate solution.

Elsching's Celloidin Solution.-Allow the celloidin shavings to swell up for 24 hours in the necessary quantity of absolute alcohol, then add the proper amount of ether.

Koch's Copal.-Stain small pieces of material in bnlk, and delydrate with alcohol, then immerse in a thin solution of copal in chloroform. Eraporate with a gentle heat until the solution is so far concentrated as to draw out into threads that are brittle on cooling. Then remove the objects and leave on a tile for a few days to dry. Sections may then be cut by means of a fine saw. If objects are imbedded unstained, remove copal from sections by soaking in chloroform, clecalcify if necessary, and stain.

Eulenstein's Cement.-Mix equal parts of Brunswick black and gold size with a very little Canada balsam.

DECALCIFYING AND BLEACHING.

In the case of bony structures, or tissues so impregnated with calcium salts, the material should be decalcified by an acid capable of dissolving out the mineral matter. Hydrochloric acid with alcohol is in more general use. The older the bone the stronger will be the acid required, nitric with alcohol and chromic acid. Picric acid is preferred for foetal bone.

Andeer, J. J., finds an aqueous solution of phloroglucin acts as a powerful decalcifying agent on the bones of animals, but is without action on the most delicate organic tissue. If treatment with hydrochloric acid be employed as well, the residual "ossein" will be without a trace of either calcium phosplate or carbonate.

Ebner's Fluids.-(1) Mix 100 C.c. of cold saturated aqueous solution of sodium chloride, 100 C.c. of water, and 4 C.c. of hydrochloric acid. Preparations are placed in the Hluid, and 1 to 2 C.c. of hydrochloric acid added daily until they are soft. (2) Mix 2.5 parts of hydrochloric acid (sp. gr. $1 \cdot 16$) with 500 of alcohol (90 per cent.), 100 of water, and 25 of soditum chloride.

Fol's Liquid.-Mix 70 volnmes of 1 per cent. chromic acid, 3 of nitric acid, and 200 of water.

Mayer's Desilification Process.-Place the objects in alcohol contained iu a glass vessel coated intemally with paraffin, then add hydrofnoric acid drop by drop until desilification is complete, avoiding the fumes meanwhile.

Marsh's Chlorine Method.-Chlorine is generated in a small bottle by treating crystals of potassium chlorate with strong HCl., and the gas is led through a piece of glass tubing, bent twice at right angles, to the bottom of a bottle containing the sections immersed in water.

Ranvien's Fluid.-Use 50 per cent. lydrocliloric acid witl the addition of sodium chloride to comnteract its swelling action.

SQuire's Fhuid.-(1) Mix 95 parts of glycerine with 5 parts of lyydrochloric acid; used for softening teeth. (2) Use a 4 per cent. aqueous solation of arscnic acid at a temperature of 30° to $40^{\circ} \mathrm{C}$. After softening tissues in this solution, keep them in alcohol.

Wamdeyer.-To a $0 \cdot 1$ per cont. solution of palladian chloride, add one-tenth its volume of liydrochloric neid.

HARDENING, FREEZING, AND FMBEDDING.
Artmann (Fixing Solution).-A mixture of equal purts of 5 per cent. potassium bichromate solution mud 2 per cent. osmic acid.

Alcohol.-Strengths of alcoholic solutions, as given by Squire, will be found of practical value. Absolute alcohol (sp. gr. 0.797) containing about 98 per cent. of ethylic alcohol is taken as the basis in most instances. Alcohol of 90 per cent. (sp. gr. 0.823) is prepared by mixing 14 volumes of absolute alcohol and 1 volume of distilled water; 84 per cent. alcolol (sp. gr. 0.838) is rectified spirit B.P. ; 70 per cent. alcolol (sp.gr. 0.872) mary be obtained by adding 1 volume of distilled water to 3 volumes of absolute alcohol, 6 volumes of rectificd spirit, or 4 volumes of methylated spirit; 50 per cent. alcohol (sp. gr. 0.918) is prepared by adding 4 volumes of distilled water to 5 volumes of absolute alcohol, 3 volumes of watcr to 5 volumes of rectified spirit, or 3.5 volumes of water to 5 volumes of methylated spirit. Absolute alcohol, 75 C.c., mixed with acetic acid, 25 C.c., serves as an exccllent fixing agent for nuclei. Immerse tissues in it for 6 to 12 hours, then transfer to 90 per cent. alcohol until hardencd, afterwards preserving in 70 per cent. alcohol till wanted.

Betz's Hardening Fluid.-A mixture of equal parts of sulphuric cther and alcohol. This is used for lardening the brain of insects prior to cutting scctions.

Cole's Freezing Process.-Dissolve picked gum acacia, 4 ozs., in distilled water, 6 ozs., and to each 5 parts of the resulting mucilage add 3 parts of syrup made by dissolving loaf sugar, 1 lb ., in distilled water, 1 pint. To each ounce of the medium add 5 grains of pure carbolic acid, and soak the tissues in it prior to freezing. For tissues liable to come to pieces, mix 4 parts of syrup with 5 of mucilage.

Flemming's Fixing Solution.-Osmic acid (1 per cent. solution), 80 C.c.; chromic acid (10 per cent. solution), 15 C.c.; glacial acetic acid, 10 C.c.; distilled water, 95 C.c.

Fol's Fixing-Osmic acid (1 per cent. solution), 4 C.c. ; chromic acid (10 per cent. solution), 5 C.c.; glacial acetic acid, 10 C.c.; distilled water, 181 C.c.

Fischer's Imbedding Mass.-Dissolve 15 parts of transparent soap in 17.5 parts of 96 per cent. alcohol.

Klein's Hardening.-Mix 1 C.c. of 10 per cent. chromic acid solution with 60 C.c. of water, and add 30 C.c. of 90 per cent alcohol.

Müller's Fluid Formula, see page 288.-This solution is sometimes mixed with one-third its volume of 90 per cent. alcohol, its hardening action being then much more rapid.

Rabl's Hardening Fluid.-Chromic acid solution (10 per cent.), 7 C.c.; water, 200 C.c. ; formic acid (sp. gr. 1•2), 5 drops.

Rollett's Freezing Process.-Simall portions of tissue placed on the stage of microtome, after immersion in the white of an egg, then frozen and cut with a very cold knife.

Ryder (Double Embedding).-After the celloidin bath, soak objects in chloroform, then remove into a mixture of chloroform and paraffin, heated to not more than $40^{\circ} \mathrm{C}$., and finally into a bath of pure paraffin.

Stricker (Imbedding Mass).-Prepare the objects in alcolol and imbed in a concentrated solution in gum arabic in a paper case, then throw the whole into alcohol and cutafter 2 or 3 days.

Webs (Dextrin Freezing).-A thick solution of dextrin (1:40) in aqueous solution of carbolic acid is used for imbedding, and subsequently frozen.

MOUNTING MEDIA.

Sections are usually mounted in balsam, dammar, glycerine, $\mathbb{C c}$. , but it is not a necessity that the cover-glass should be fixed or cemented down. Some cements (caoutchouc by preference) should beemployed when glycerineor aqueous (Farrant's) medir are used.

Alleger's Gelatine Process.-Add a few drops of formalin to each gramme of $0 \cdot 5$ to 1 per cent. gelatine solution. After mounting the section in this, apply heat to the slide until the paraffin is softened, and allow the superfluous gelatine to drain from the edge of the slide.

Apáthy's Mounting Medium.-Picked gum arabic, 50 Gm ; came-sugar, 50 Gm ; distilled water, 50 Gm . ; dissolve over a wam bath and add 0.05 Gm . of thymol. This medium sets very hard, and combined witl a paper cell it may be used for ringing glycerine momnts.

Cole's Slow or Exposure Method of Mounting.-Dissolve dried Camada balsam, 3 ozs., in benzole, 3 fl . ozs., and filter. Apply a clean cover-glass to a slide that has been moistened by breathing on it, and place a few drops of the balsum solution on the cover-glass. Then remove a section from turpentine, and put it into the balsam. Put aside for 12 hours to allow the benzole to evaporate, and haring
warmed a slide and added a drop of fresh balsan solution to that on the cover-glass, bring the fluid balsam in contact with the warmed slide. Press the cover down carefully to aroid the inclusion of air bubbles, and when the excess of balsan is squeezed out, put the slide aside to cool, after which it may be cleaned with a canclhair brush or soft rug moistened with methylated spirit.

Farrint's Solutron.-Take of gum arabic 5 parts; water 5 parts; when the gum is fairly dissolved add 10 parts of a 5 per cent. solution of carbolic acid.

Flemang's Glycemine Preshrytive.-Mix equal parts of alcohol, glycerine, and water: Lee recommends the addition of 0.5 to 0.75 per cent. of acctic acid.
Lee's Turpentine Colophonium Mounting Medium.-This is highly recommended for general work, and is prepared by adding small pieces of colophonium to rectified oil of turpentine, heating in a stove, and when the solution is sufficiently thick filtering twice in the stove.
Seaman (Glycerine Jelly).-Dissolve isinglass in water so as to make a jelly that remains stiff at the ordinary temparature of the room, and add one-tenth part of glyeerine, together with ${ }^{\circ}$ a little solution of borax, carbolic acid, or camphor water. Filter through muslin whilst warm and add a little alcohol.
Seller (Alcohol Balsam).-Heat Camada balsam until it becomes brittle when cold, then dissolve in warm absolnte alcohol and filter throngh absorbent cottonwool. This is chiefly useful as a mounting medium for objects stained with cammine.
Squire (Farvant's Medium).-Dissolve in 200 C.c. of distilled water 1 Gm . of arsenious acid and 130 cm . of gum arabic, then add $100 \mathrm{C} . \mathrm{c}$. of glycerine. Filter through fine Swedish filter paper upon which has been deposited a thin layer of talc.
Squne (Glycerine and Gum).-Dissolve 130 Gm. of gum arabic in 200 C.c. of chloroform water (1 in 200), then add 100 C.c. of glycerine and filter.
Squire (Glycerine Jelly). -Soak 100 Gm . of French gelatine in chloroform water, drain when soft, and dissolve with heat in 750 Gm . of glycerine. Add 400 Gm . of chloroform water, with which has been incorporated about 50 Gm . of fresh egg albumen, mix thoroughly, and heat to boiling point for abont 5 minntes. Make np the total weight to 1550 Gm . with chloroform water and filter in a warm chamber.
Squire (Canada Balsam).-Dry the balsam over a water bath mitil brittle when cooled, then to each 200 Gm . add 100 C.c. of benzole or rather less xylol.
Squire (Dammar"Solution).-(1) Dissolve 100 Gm . of dammar in 100 C.c. of benzole. (2) Dissolve 100 Gm . of dammar in 200 C.c. of turpentine oil, and add 50 Gm . of mastic dissolved in 200 C.c. of chloroform.
Squire (Potussium Acetate Solution).-Dissolve 250 Gm . of potassimm acetate in 100 C.c. of water, by the aid of gentle heat, and filter. This is used as a monnting medium.
Squire (Treatment of Sections).-Imbed tissues to be cut in paraffin melting between 45° and $50^{\circ} \mathrm{C}$., according to the temperature of the room and the nature of the material. Afterwarts preserve the sections, prior to staining and mounting, in 50 per cent. alcohol, or in a mixtmre of equal volumes of glycerine and thymol water (1 in 1500). Sections may be conveniently washed in alcohol, dehydrated, and cleared, in small wide-mouthed bottles.
Topping's Solution.-Mix 1 part of absolnte alcohol with 5 parts of water, or 4 parts of water and 1 part of aluminium acetate. Add an equal volume of glycerine before use.

stains and staining Methods.

Apáthy's Hematoxylan Stan.-After staining in I per cent. solution of hamatoxylin in 70 or 80 per cent. alcohol, wash ont in 1 per cent. solution of potassimm bichromate in alcolol of the same strength. The bichromate solution should be freshly made by mixing 1 part of a 5 per cent. aqueous solution with about 4 parts of 80 to 90 per cent. alcohol.
Alferow (Silver Staining). - An acid solution of silver picrate, lactate, acetate, or citrate, is prepared by adding to 800 C.c. of the solution 10 to 15 drops of a concentrated solution of the acid of the salt taken.
Bethe's Stan fon Cminn.-Place series of mounted sections on slides in a freshly prepared 10 per cent. solution of aniline hydrochloride, contaiuing 1 drop of liydrochloric acid for each 10 C.c., for 3 or 4 minutess, then rinse in water, und put the slide with sections downwards in a 10 per cent. solution of potassium bichromate. The process may be repented if the stain is not sufficiently intense, but the sections must be well rinsed with water after each immersion.

Beale's Ammoxis Curmae.-Cimmine, 10 grs.; strong solution of ammonia, 30 mins.; distilled water, 2 ozs. ; ulcohol, $0 \cdot 5 \mathrm{oz}$; glycerine, 2 ozs . Dissolve the carnine in the ammonia by the aid of heat, hoil for a few seconds, and let the solution cool. Then allow the excess of ammonia to evaporate, add the other ingredients, and filter: If any carmine should deposit on keeping add one or two drops of ammonia solution to redissolve it.

Bends's Cobper Hamatoxilin- - Harden the material with chromic acid or Flemming's solution and leave sections for 24 honis in a 5 per eent. solution of neutral copper acctate at a temperature of about $40^{\circ} \mathrm{C}$., wash out well with distilled water, and stain to a dark grey or blackish tint in a saturated aqneous hwenatoxylin solution. Decolourise the sections in 0.2 per cent. hydrochloric acid until light yellow, put back into the copper solution until they turn blnish-grey, then wash, dehydrate, clearr, and mount in balsam.
Bismarch Brown.-Vesuvine 0.5 Gm., rectified spirit 2, and distilled water 80 C.c. ; or a concentrated alcoholic solution may be kept ready for dilution.

Bochmer's Hematoxilin.-Dissolve (a) erystallised hematoxylin, 1 (rm., in absolute alcohol, 10 C.c., and (b) alnm ammonia, $10 \mathrm{Gm}$. , in distilled water, 200 C.c. Mix the two solutions, and allow to ripen for some days before use. Filter after standing a week. Wash ont with aqueons solntion of alum (0.5 per cent.) or with acids.

Calbsirla's Indulin Stain.-Dilute a concentrated aqueous solution with 6 volumes of water and stain sections for 5 to 20 minutes. Afterwards wash in water or alcohol, and examine in glycerine or clove oil.

Calberla's Macerating Mixture (for nerve and muscle of embryos). Dissolve potassium chloride, 0.4 Gm ., sodiun chloride, 0.3 Gm ., sodium phosphate, 0.2 Gm ., and calcium chloride, 0.2 Gm , in water, 100 Gm ., saturated with carbon dioxide just before using. Mix one volume of this solntion with half a volume of Iuiller's solution and one volune of water. The Miiller's solution may be replaced by a 2.5 per cent. solution of ammonium chromate. Tissnes macerated in this mixture are isolated by teasing and shaking, and mount specimens in concentrated potassium acetate solution.

Canol's Salt Solution.-Add a trace of osmic acid to a 0.75 per cent. solution of sodium chloride in water.

Chenzinsky's Methylene Blue and Eosine.-Mix saturated aqneous solution of methylene blue, 40 parts, with 0.5 per cent. solution of eosine in 70 per cent. alcohol, 20 parts, and distilled water or glycerine, 40 parts.

Cohnhemis Gold Method.-Place pieces of tissue in 0.5 per cent. gold chloride solution until quite yellow, then expose to light in water acidulated with acetic acid until the gold is thoronghly rednced. Mount specimens in acidulated glycerine.

Croomshani's Method of Staining Flagella.-Cover-glass preparations are stained with a drop of concentrated alcoholic solution of gentian riolet, then rinsed in water, allowed to dry, and mounted in balsam.

Czorer's Alum Cochineal.-Dissolve alum 1 Gm . in distilled water, 100 C.c., add powdered cochineal, 1 Gm ., and boil ; evaporate down to lialf of its original bulk, filter, and add $\frac{1}{2}$ C.c. of liqnid carbolic acid.

Delafield's Hematoxilin.-Dissolve hrmatoxylin, 4 Gm ., in absolute alcohol, $2 \overline{5}$ C.c., and add the solution to 400 C.c. of a saturated aqueons solution of ammonia alnm. Expose the mixture to light and air for 3 or 4 days, then filter and add glycerine, 100 C.c., and methylic alcohol, 100 C.c. Again expose the solution to light until it becomes dark-coloured, then filter and preserve in a stoppered bottle.

Ehrlich's Acid Hematoxylin.-Dissolve hrmatoxylin, 2 Gm., in absolute alcohol, 100 C.c., and add glycerine, 100 C.c., distilled water, 100 C.c., ammonia alum, 2 Gm. , glacial acetic acid, $10 \mathrm{C} . \mathrm{c}$. Expose to daylight for at least a month before use, removing the stopper at intervals.

Ehblich's Hematoxilin (Ammonited).-Dissolve ammonium carbonate, 0.4 Gm , and hematoxylin, 2 Gm ., in proof spirit, 40 C.c., and expose to the air in a shallow dish for 24 hours. Then make up the volume to 40 C.c. with proof spirit (waming if necessary to re-dissolve any separate crystals), and add ammonir alum, 2 Gm ., dissolved in distilled water, 80 C.c., together with glycerine, 100 C.c., rectified spirit, 80 C.c., and glacial acetic acid, 10 C.c.

Ehrlich-Biondi Mixture (or Ehrlich-Biondi-Heidenheim mixture).-Dissolve (a) methyl green, $0.5 \mathrm{Gm} .$, in distilled water, $100 \mathrm{C} . \mathrm{c}$; (h) acid fuclisine, 0.5 Gm ., in distilled water, 40 C.c. ; (c) orange, 2 Gm., in distilled water, 200 C.c. Mix the three solutions and filter before use. Stain sections for 12 hours, then wasln, delydrate, clear, and mount.

Ehblich-TVegert-Koch's Gentho-Violet-Anhine-IVither. - Aniline water,

100 C.c., concentrated alcoholic solution of gentian violet, 11 C.c.; absolute alcolnol. 10 C.c.

Everabd, Demooh, and Massaby's Hamatoxilin-Eosine.-Dissolve alum, 20 Gm , in water, 200 Gm ., by the aid of heat, then filter, and after 24 hours add a solution of lnematoxylin, 1 (imn, in alcohol, 10 Gm. Let the solution stand for 8 days, again filter, mad mix with an equal volume of tho following solution:-Eosine, 1 Gm., alcohol, 25 Gm., water, 75 Gim., glycerine, 50 Gm.

Flemang's (empian Viohet Method.-Use a concentrated alcoholic solution of Gentian Violat diluted with about one half its bulk of water. Differentiate the stained objects in alcohol acidulated with about 0.5 per cent. of lyydrochloric acid, followed by pure alcohol and clove oil.

Flemming's Orange Methon.-Stain for days or weeks in strong alcoliolic saframiue solution diluted with half its bulk of aniline water (saturated); then rinse in distilled water, differcutiate in absolute alcolol containing 0.1 per cent. of hydrochloric acid, stain for 1 to 3 hours in strong aqueous gentian violet solution, again wash iu distilled water, and fiually treat with concentrated uqueous solution of Orange After a few minntes transfer sections to absolute alcohol, then clear in clove or bergamot oil, and mount in dammar or balsam.

Fol's Ferric Chloride Fining and Staining Process.- Preparations are treated with tiucture of ferric chloride diluted with 5 to 10 times its bulk of 70 per cent. alcohol, and then transfer for 24 hours to alcohol containing a trace of gallic acid.

Frey's Fuchsine Solution.-A solution of 0.01 Gm , of crystallised fuchsine, 20 to $2 \overline{5}$ drops absolute alcohol, and 15 C.c. of water.

Friedlaender's Staining Methods-Cover-glass preparations are treated for 3 minutes with a 1 per cent. solution of acetic acid, and allowed to dry after removal of excess of liquid by filter paper. Next place them in gentian violet aniline water(aniline water, 100 C.c., concentrated alcoliolic solution of gentian violet, 11 C.c.; absolute alcohol, 10 C.c.) for half a minute, wash in water, mount and dry in balsam. Sections are kept for 24 hours in a warm place, in the following solution :-Concentrated alcoholic solution of gentian violet, 50 C.c.; distilled water, 100 C.c.; glacial acetic acid, 10 C.c. Then treat for 1 or 2 minutes with 0.1 per cent, acetic acid, dehydrate, clear, and mount in balsam.

Gaffix's Staining Methods.-Sections of material hardened in alcohol are left for 20 to 24 hours in a deep blue opaque solution, freshly made by adding saturated alcoholic solution of methylene blue to distilled water. Then wash in distilled water, dehydraet in absolute alcohol, clear in turpentine oil, and mount in balsam.

Glacom's Staining Method.-Stain cover-glass preparations for a few uinutes in a hot solution of fuchsine, then place in water containing a few drops of ferric chloride solution, and afterwards decolourise in strong ferric chloride solution. If any precipitate be formed with the iron solution, complete the decolourisatiou in alcohol. Counterstain with vesuvine.

Gibbes' Double Staining Method.-Well mix magenta, 2 Gm , and methylene blue, 1 Gm ., then add slowly aniline oil, 3 C.c., dissolve in rectified spirit, 15 C.c. Subsequently add 15 C.c. of distilled water and keep the stain in a stoppered bottle. Cover-glass preparations are placed for 4 minutes in the slightly heated stain and sections left for some hours in the stain at the ordinary temperature. Afterwards wash in methylated spirit until no more colour comes away, then delyydrate, clear in cedar oil, and mount in balsam.

Gibbes' Magenta Stain.-Mix magenta, 2 Gm ; ; aniline oil, 3 Gm ; rectified spirit, 20 C.c. ; and distilled water, 20 C.c.
Golci's Sublimated Method.-Small cubes of tissue are hardened for 15 to 30 days in Mitller's fluid, which should be frequently changed. Then transfer for 8 to 10 days to 0.25 to 1 per cent. aqueous mercmic chloride solution, which must be changed, as it becomes coloured. If desired, treat subsequently with weak sodium sulphide solution to darken the stain and make it sharper. After cutting sections from material thas prepared they must be well washed with water.
Grams Stain ron Bacteria.-This is prepared by shaking 15 drops of aniline oil with 15 Gm. of water, filtering the solution and adding to the filtrate 4 to 5 drops of saturaterl alcololic solution of gentian violet. Or slake $3 \cdot 3$ C.c. of aniline with 100 C.e. of distilled water and, after filtering, add 11 C.c. of concentrated alcoholic solntion of gentian violet and 10 C.c. of absolute alcohol. Aftcr preparations lave been stanced for 1 to 3 minntes in one of the above they are quickly rinsed in absolute alcohol and then placed in Gram's solution of iodine in poitassium iodine (iodine, 1 Gin. ; potassium iodine, 2 (mm ; water, $300 \mathrm{C} . \mathrm{c}$)), mitil they have acquired a brown
colour. This takes about 1 to 3 minutes, mad they are next washed in 90 per cont. alcohol until they become pale yellow, then delydrated, clewred, and mounted in balsum. Countcrstain with cosine or vesuvine if desired.

Gran's Solution.-Iodinc, 1 Gm.; potassium iodine, 2 Gm. ; distilled water, 300 Gmı.

Grenacher's Arum Carmine.-Dissolve 5 (rm. of ammonium alum in 100 C.c. of distilled water, add 1 Gm . of carmine, and boil for 20 minutes, filter when cool, and add distilled water to make up to 100 C.c.

Grenacher's Alcoholic Bonax Carmine.-Dissolve 4 Gm. of borax in 100 C.c. of distilled water, then add 3 Gm . of carmine, and heat gently. Finally, uld 100 C.c. of 70 per cent. alcohol, filter the solntion, if necessary, before use. Piecos of tissues are stained in this for 1 to 3 days, and then transferred to 70 per cent. alcoliol, contrining 0.5 to 1 per cent. of hydrochloric acid.

Heidenhan's Hematoxylin Method.-Dissolye (a) hæmatoxylin, 1 Gm., in distilled water, 300 C.c.; (b) potassium chromate, 1 Gm., in distilled water, 200 C.c. Small pieces of tissue hardened in ulcohol or picric acid are placed in (a) for 12 to 24 hours, and then transferred for a similar length of time to (b). Wash thoroughly in water, deliydrate in alcohol, and imbed in paraffin.

Henle's Stain (for nervous tissue).-Sections are left in palladium chloride solution ($1: 300$ to $1: 600$) till they are of a straw colour, then rimsed in water and stained with strong ammonia carmine.

Henneguy's Alum Carmine.-Excess of carmine is boiled in saturated solution of potash alum, and 10 per cent. of glacial acetic acid added on cooling. Allow to settle for some days, and then filter.

Henneguy's Permanganate Method.-Treat sections for 5 minutes with 1 per cent. potassimm permanganate solution, then wash in water and stain with safranine, rubin, geutian violet, vesuvine, preference being given to a safranine solution prepared with aniline water.

Hemmann's Platino-aceto-osific Mixture.-Mix 15 parts of 1 per cent. platinic chloride solution, 1 part of glacial acetic acid, and 2 or 4 parts of 2 per cent. osmic acid.

Hehtwig's Macliating Fluid.-Mix equal parts of 0.05 per cent. osmic acid, and 0.2 per cent. acetic acid. Meduse are treated with this mixture for 2 or 3 minutes, then washed in 0.1 per cent. acetic acid until free from osmic acid. Leave them for 24 hours in the dilute acetic acid, then wash in water, stain with Beale's carmine, and momnt in glycerine. For Actinire use 0.04 per cent. osmic acid and make both solutions with sea water. Wash ont with 0.2 per cent. acetic acid, and stain with picro-carmine.

Hessert's Method for Staining Flagella.-Fix the film by treating coverglass preparations with a saturated alcoholic solution of mercuric chloride, wash, and stain for 30 or 40 minutes in a hot 10 per cent. aqueous solution of saturated alcoholic solution of fuchsine.

Hoffmann's Blue Staln.-Dissolve 1 Gm. of Hoffmam's blue in 20 C.c. of rectified spirit and 80 C.c. of distilled water, then add 0.5 C.c. of glacial acetic acid. As a nuclear stain immerse sections for 10 minutes or more, rinse in water, wash in 90 per cent. alcohol, delydrate, clear, and mount in balsam. To stain siere areas, less time is required, 5 to 10 minutes, rinse in distilled water, and mount in glycerine; or dehydrate, clear, and mount in bresam.

Hoyer's Shellac Injection Mass.-Dissolve shellac in 80 per cent. alcohol to the consistency of a thin syrup, and strain throngh muslin of medium thickness. Colour with aniline colours in alcoholic solution; or by means of vermilion or other pigment suspencled in alcohol.

Hoyer's Silver Nitrate Gelatine Mass.-Mix a concentrated solution of gelatine with an equal volume of a 4 per cent. silver nitrate solution and warm, then add a very small quantity of aqueous pyrogallic acid solution to reduce the silver salt, and add chloral and glycerine as in the carmine gelatine mass.

Hoyer's Silver Stann.-Add ammonia to a solution of silver nitrate of known strength, until the precipitate formed just re-dissolves, then dilute the solution until it contains 0.75 to 0.50 per cent. of the salt.

Kalser's Bismaluci Brown Stain. Sections are staned for 48 hours, at a temperature of 60 C , in a saturated solution of Bismarck brown in 60 per cent. alcolsol, and washed out in 60 per cent. alcohol containing 2 per cent. of H.C.L., or 3 per cent. of acetic acid.

Kalsen's Neme Stann.-This is a modification of Weigert's process. The material is hartened in Miiller's solution for 2 or 3 days, then cut into slices 2 to $\&$ Mm. thick,
and treated with the solution for 5 or 6 days more. Subsequently immerse in Marchi's solution for 8 days, then wash, pass throughalcohol, and imbed in celloidin. Sections are mordanted for 5 minutes in the following mixture:-Solutions of ferric chloride, 1 part; distilled water, 1 part; rectified spirit, 3 parts. Next wash in Weigert's lumatoxylin, and warm in a fresh quantity of the same for a few minutes, wash with water, differentiate in Pal's solution, and neutralise the oxalic acid by washing in water containing a little ammonia.

Kalser's Stain for 'the Spinal Comd.-Sections are stained for a few hours in
solution of niphthylamine brown, 1 part, in water, 200 parts, and alcolool, 100 parts. Afterwards wash with alcohol and clear with origamum oil.

Kallin's Neurologica, Method.-Dissolve hydroquinone, 5 Gm ., sodium sulphite, 40 Gm ., and potassium carbonate, 75 Gm ., in 25 Gm . of distilled water. At the time of using, dilute this solution with one-third to one-half its bulk of absolute alcohol; immerse sections of silvered material for several miuntes until reduction is complete. Then place them in 70 per cent. alcohol for 10 to 15 minutes, and subsequently leave in aqueous solution of sodium hyposulphite ($1: 5$) for 24 honss or more. Finally dehydrate and momnt. Camme may be used as an afterstain.

Kleinenberg's Solution (Improved Formula).-Hrematoxylin, $2 \frac{1}{2}$ Gm.; crystallised calcium ehloride, 20 Gm . in $10 \mathrm{C} . \mathrm{c}$. of distilled water; alum, 3 Gm . in 16 C.c. of distilled water; rectified spirit, 240 C.c. Dissolve the calcium chloride and alun in their respective quantities of water by the aid of heat; mix the solutions and inmediately dilute with rectified spirit; after an hour filter and add the hæmatoxylin. This makes a good working solution which keeps well. Of course it contains the alumina in solution, not as alum but aluminium chloride. If in special cases the colour is considered too strong, the dilution (wheu stainiug in bulk) must be made with some of the solution to which hematoxyliu has not been added.

Koch's Method for Staning Flagella.-Immerse cover-glass preparations in a 1 per cent. aqueous solution of hematoxylin, then transfer to a 5 per cent. solution of chromic acid or to Miiller's fluid; dry and mount in balsam.

Koch-Ehrlich, Bacilli.-Place sections, or cover-glass preparations, for at least 12 hours in gentian violet, or fuchsine aniline water (aniline water, 100 C.c. ; concentrated alcoholic solution of gentian violet, or fuchsine, 11 C.c.; absolute alcohol, 10 C.c.), then immerse in a mixture of pure nitric acid (sp. gr. 1.42), 10 C.c., and distilled water, 30 C.c., for some seconds. Rinse in 60 per cent. alcoliol for a few minutes, and then counterstain with vesuvine (resuvine, 0.5 Gm ; rectified spirit, 20 C.c.; distilled water, 80 C.c.) after gentian violet; or methylene blue (methylene blue, 0.25 Gm .; rectified spirit, 20 C.c.; distilled water, 80 C.c.) after fuchsine. Finally rinse in water, delydrate, clear, and momet in balsam. According to Squire, who points out that nitric acid is apt to injure delicate sections, Watson Cheyne recommends that sections should be transferred from fuchsiue aniline water to distilled water, then rinsed in alcohol, and placed in the following coutrast stain for 1 or 2 hours:-Saturated alcoholic solution of methylene blue, 20 C.c.; distilled water, 100 C.c.; formic acid (sp. gr. 1-2), 1 C.c.

Kühne's Cabbolic Methylene Blue.-Rub up 1.5 Gm . of methylene blue with 10 C.c. of absolute alcohol, and add 100 C.c. of a 5 per cent. aqueous solution of carbolie acid.

Kühne's Methyl Violet Solution.-Dissolve 1 Gm . of methyl violet in 90 C.c. of distilled water and $100 \mathrm{C} . \mathrm{c}$. of alcohol.

Kühne's Aniline Oil Solutions.-Rub up as much methylene blue, methyl green, or safranine as will go upon the point of a knife, with 10° C.c. of aniline, and allow to settle.

Kühne's Carbolic Fuchsine on Black Brown.-Dissolve 1 Gm . of fuchsine or black brown in 10 C.c. of absolute alcohol, and add 100 C.c. of a 5 per cent. aqueous solution of carbolic acid.

Künne's Modification of Gram's Method.-Stain nuclei with emmine, then treat sections for 5 minutes in methyl violet solution, diluted one-sixth with a 1 per cent. aqueous solution of ammoninm carbonate, or in a solution of Victoria blue, 0.25 Gm ., in rectified spirit, 20 C.c., and distilled water, 80 C.c. Nextrinse thoroughly in water and trmasfer to Gran's solution for 2 to 3 minutes; again rinse in water and extract excess of stain with solution of yellow fluorescine, 1 Cm ., in absolute alcoliol, 50 C.c. Finally, pass through pure alcohol, aniline, terebenc, and xylol, and momit in balsam.

Lörfler's Solution.-Concentrated alcoliolic solution of methylene bluc, 30 C.c.; solution of (caustic potash1) potassium hydrate ($1: 10,000$), 100 C.c. Mix and filter
shortly before usc. Sections are stained for a few minutes (tuberele sections for some hours), and excess of stain can be removed by immersion for a few seconds in 0.5 per cont. acetic acid. Dehydrate in absolute alcohol, clear in cedar oil, and mount in balsam. Liffler found that most bacteria stained better in this solution than in the weaker solntions used by Koch for turberele bacillus.

Lavdowskis Bilberry Juice Stain. - Well wash the fresh berries of Vaccinimen myrtillus, then express the juice and mix with twice its bulk of distilled water, mixed with a little 90 per cent. alcolol. Heat for a short time and filter whilst wam. Dilute the stain with 2 or 3 volumes of distilled water before use.

Lee's Formaldehide Solutions.-(1) Mix 1 part of 40 per cent. formaldehydo solution with two parts of 1 per cent. chromic acid solution, and add 4 per cent. of acetic acid. (2) Mix 1 part of 40 per cent. formaldelyde solution with 4 parts of 1 per cent. platinic chlorite solution, and add 2 per cent. of acetic acid.

Lefe's Osmic Acid and Progallol Stain.--Fix the tissues in Hermann's mixture or Flemming's mixture for half an hour, then place in a weak solution of pyrogallol, which may be prepared with alcohol in some cases. Saframine may be used as a secoud stain.

Martinotit's Picro-nigrosine Stain.-Pathological objects are stained for 2 or 3 hours or days, in a saturated solntion of nigrosine in saturated alcoholic picric acid solution. Then wash out iu a mixture of 1 part of formic acid with 2 parts of alcohol until the grey matter appears clearly differentiated from the white to the maked eye.

Mayer's Aluminium Chloride Carmine.-Dissolve 1 Gm. of caminic acid and 3 Gm . of aluminium chloride in 200 C.c. of water.
Mayer's Berlin Blue Injection.-Add a solution of 10 C.c. of tincture of ferric chloride in 500 C.c. of water, to a solution of 20 Gm . of potassium ferrocyanide in 500 C.c. of water, allow to stand for 12 hours, decant, wash the deposit for 1 or 2 days with distilled water mutil the washings come through dark blue, then dissolve the blue iu about Ω litre of water.

Mayer's Carnalua.-Dissolve 1 Gm . of carminic acid and 10 Gm . of alum in 200 C.c. of distilled water; decant, or filter, and add a few crystals of thymol, 0.1 per cent. of salicylic acid, or 0.5 per cent. of sodium salicylate. A weaker solution contains 3 to 5 times as much alum and 5 times as much water.

Merbel's Caraine and Indigo Fluids (give a blue and yed stain, and are very selective).-To prepare the red fluid, take-Carunine, 2 dr.; borax, 2 dr.; distilled water, 4 ozs. For the blue fluid, take-1ndigo carmuine, 2 dr. : borax, 2 dr ; distilled water, 4 ozs. Mix each in a mortar, and allow it to stand, then pour off the supermatant fluid. If the sections have been hardened in chromic acid, picric acid, or a bichromate, they unst be washed in water till no tinge appears. Place theur in alcohol for fifteen or twenty minutes, then in the two fluids mixed in equal proportions, after which wash them in a saturated aqueous solution of oxalie acid, where they should remain a rather shorter time than in the staining fluids. Wheu sufficiently bleached, wash them in water, to get rid of the acid, then pass them through spirit and oil of cloves, and mount in balsam or dammar:

Mitrophanow's Gold Process for Prickle-Cells and Intercellular Canals. --Wash the tail of an axolotl lava with distilled water, place for an hour in a watelglassful of 0.25 per cent. solution of gold chloride, containing 1 drop of hydrochloric acid; wash, and reduce iu a mixture of 1 part of formic acid with 6 parts of water:

Mitiophanow's Maceration Method for Epitheliuni-Fix the embryo for 15 minutes in 3 per cent. nitric acid; then place for an hour in a mixture of alcolnol, 1 volume, and water 2 volumes, and finally treat with stronger alcohol for 24 hours to separate the epidermis.

Müller's Berlin Blue foir lnjections.-Precipitate a concentrated solution of Berlin blue by means of 90 per cent. alcolol. The precipitate is very finely divided, whilst the floid is perfectly nentral and much easier to prepure than that of Beale.

Neilsen's Solution of Metiril Violet. Dissolve fuchsine, 1 part, in alcohol, 10 parts, and add a 5 per cent. watery solution of carbolic acid, 100 parts.

Neisser's Doubife-Staining vor Spore-Bearing Bacilali-Cover-glass preparations are immersed for 20 minutes in fuchsine aniline water (concentrated alcololic solution of fuchsine, 11 C.c.; alsolute alcohol, 10 C.c.; minine water, 100 C.c. ; then heat to 80° or $90^{\circ} \mathrm{C}$.; next rinse in water, alcohol, or weak acid, according to the nature of the bacilli, comterstain with aqueous solution of methylene blue, rinse in water, dry and mount in balsami). The spores are stained red and the rest of the bacilli bluc.

Nissids Fuchsine Shan for Nbive Cellas-(1) Fresh material in picces measuring 1 C.c. are hardened in a "cluromic solution in 70 per cent. alcoliol" for 2 days, then thansferred to absolute alcolol for 5 days, and afterwards cut. Stain the sections singly in a saturated solution of fuchsine, wamning in a deep watelh-glass until vapours begin to be given off. Next plunge the section into absolnte alcohol for 1 or 2 minutes, then place it on a slide, flood with clove oil, and when no moro colour is given off, druin and monnt in balsum.

Ohlahcher's Formaldehyde Staning.-Fommalin in a 2 to 4 per cent. solution is used as a mordant for tar colours. The tissmes may be mordanted separately by treatment for 1 minute or longer, or the formalin may be added to the stain. Dissolve 1 Gmu. of fuchsine in 10 C.c. of absolute alcohol, and add to 100 C.c. of 4 per cent. formalin solation. Or, udd saturated alcoholic solntion of gentian violet or methyl riolet 5 B . to the formalin solution, in the proportion of $1: 10$. In the case of methylene blue, dissolve 1 G.m. in 100 C.c. of the formalin solntion. Sections stain in half a minute, and are said to resist alcohol much more than if formalin were not used.

Oppitz's Silder Stanning.-Reduction is very rapidly effected by placing the preparations for 2 or 3 minutes in a 0.25 to 0.5 per cent. solntion of chloride of tin.

Pal's Hematoxylin Stain.-Dissolve 0.75 Gm . of hæmntoxylin in 90 C.c. of distilled water and 10 C.c. of absolute alcoliol. Just before use add saturated solution of lithiuns carbonate in the proportion of 3 drops to each 10 C.c. of hæmatoxylin solution. (See Weigert.)

Pal's Healatoxilin Method.-Proceed at first as in Weigert's process for nerve fibre, omitting the copper bath, and stain in Pal's hæmatoxylin solution (see above) for 5 or 6 hours. Then wash the sections in distilled water (containing a trace of lithimm carbonate if the sections are not deep blue), next treat for 15 to 30 seconds with a 0.25 per cent. potassium permanganate solution, rinse in water, and decolourise in Pal's bleaching solution. (If black spots appear replace in the pemanganate solution, again bleach, and wash for 15 minutes in water.) The grey substance of the sections is decolourised in a few sections; the sections should then be well washed out, and may be double-stained with picro-carmine or acetic acid carmine (see Schmeider), Magdala red, or eosine. The nuclei may be stained with alum carmine. Finally deliydrate, clear, and mount.

Pal-Exner's Osmic Acld Method.-Spinal cort or brain in 0.25 inch cubes is immersed in 0.5 per cent. osmic acid solntion for 2 days, the solntion being changer each day; then wash in water, transfer to absolute alcohol, and imbed in celloidin or paraffin. Place sections as cut in glycerine, then wash in water, treat with potassium permanganate and Pal's solution, as in Pal's hrematoxylin method, comter-stain with carmine, dehydrate, clear, and mount in balsam.
Plant's Method of Statning Actinonycosis.- Sections are placed for 10 minutes in Gibbes' magenta solution or carbolic fuchsine, at $45 \mathrm{C} . ;$ next they are rinsed in water and placed in saturated aqucons solution of picric acid, mixed with an equal rolume of absolute alcohol, for 5 or 10 minutes; they are then washed once more, passed through 50 per cent. alcohol into absolute alcohol, cleared in cedar oil, and mounted in balsam.

Ranvier's Lemon Juice Method.-Soak pieces of fresh tissuc in fresh lemon juice until transparent (5 to 10 minutes), then rapidly wash in distilled water, treat for 10 to 60 minntes with 1 per cent. gold chloride solntion, again wash and expose to light in a bottle containing 50 C.c. of distilled water and 2 drops of acetic acid. Reduction is complete in 24 to 48 hours. If it is not desired to retain the superficial epithelium, reduction may be more completely effected in the dark, by treatment with formic acid (sp. gr. $1 \cdot 2$), diluted with 3 times its volmme of water. The lemon juice in the above process may be replaced by un aqueons solution of citric acid (40 grains in each ounce).

Renvier's Picro-Carmine.-Crmmine, 1 part; distilled water, 10 parts; solution of ammonia, 3 parts; mix and add of a cold saturated solution of picric acid 200 parts.

Renaut's Hematoxilic Eosine.-Mix 30 C.e. of concentrated aqueous solution of cosine, 40 C.c. of saturated alcololic solution of hrmatoxylin (which has been kept for some time and precipitated), and 130 C.c. of saturated solution of potash alum in glycerine (sp. gr. $1 \cdot 26$). Stand for 5 or 6 weeks in a partially covered vessel, protected from dust, intil the alcohol is evaporated, and then filter. The filtrate can be diluted with glycerine if desired. Mount oljects in this fluid diluted with 1 or 2 volumes of oflycorine, or, stain scparately for some days or wecks and mount in balsam, after washing in alcohol charged with a sufficient quantity of cosinc.

Ranvier and Vignafos Osmium Mixture.-Fix tissues in a freshly-prepared mixture of equal volumes of 1 per cent. osmic acid and 90 per cent. alcoliol, then wash out in 80 per cent. alcohol, next with water, and stain for 48 hours with picro-carmine or hæmntoxylin. This method has been applicd to the histology of insects.
Renauts Geychine Hzmatoximin. - To a saturated solution of potash aluin in glyecrine, add a saturated solution of hamatoxylin in 90 per cent. alcolol drop by drop, so as to form a deeply coloured solution. Expose to daylight for a week, and then filter. This solution, like Renaut's lrematoxylic cosine, may be used for mounting mastained sections, whieln after some time absorb the colour from the liquid and become stained.

Safrinine.-Safrimine, 0.5 Gm . ; rectified spirit, 20 C.c.; distilled water, 80 C.c.
Schïfer's Acid Logwood Solution is especially useful for certain structures, as tendon, cells, \&c. It is thensprepared :-A 1 per cont. solution of acetic acid is coloured by the addition of $1 \cdot 3$ of its volume of loywood solution.
Schäfer's Aniline Dyes, whether in aqueons or alcoholic solutions, give good results, and are prepared as follows:-Roseanilin or magentu (1 gr . to 1 oz . of alcoliol), red ; acetate of mavein (4 gr ., alcohol 1 oz ., acid nitric 2 drops), blue ; aniline black (2 gr ., water 1 oz .), grey-black; Nicholson's soluble blue ($1-6 \mathrm{gr}$., alcohol 1 oz ., and nitric 2 m .), blue. These stains slould be used weak; and after sections are stained they should be passed through alcohol and oil of cloves as rapidly as possible; otherwise the colour will dissolve ont before they can be mounted in balsan.

Schultze (Staining Bacilli).-Stain sections and cover-glass preparations for some hours in aqueous methylene blue solution, differentiate in 0.5 per cent. acetic acid, dehydrate in alcohol, clear in cedar oil, and monnt in balsam.

Sclayo's Stain for Flagella.-Leave the preparations for 1 minnte in a solution of 1 Gm . of tamin in 100 C.c. of 50 per cent. alcohol ; wash in distilled water; transfer for 1 minute to 50 per cent. phospho-molybdic acid; again wash, and stain for 3 to 5 minutes in a hot saturated solution of fuchsine in aniline water. Then wash in water, dry on filter paper, and mount in balsam.
Squire's Picro-Carmmne.-(1) Dissolve 1 Gm. of carmine with a gentle heat in 3 C.c. of strong solntion of ammonia, and 5 C.c. of distilled water, then add 200 C.c. of saturated aqueous solution of picric acid, heat to boiling, and filter. (2) Dissolve 10 Gm . of carmine in a solntion of 1 Gm . of caustic soda in 1000 C.c. of distilled water; boil, filter and make up to 1000 C.c. with water. Mix the solution with an equal quantity of water, and add 1 per cent. aqueous solution of picric acid so long as the turbidity produced disappears on agitation.
Squire's Blueing of Sections.-After staining with hæmatoxylin, treat for a few seconds with a solution of sodium bicarbonate ($1: 1000$) in distilled water.
Valentine (Fuchsine).-Ether shaken with a solution containing fuchsine is coloured violet after adding ferrous iodide, but not before.

Victoria Blue.-Victoria blue, 0.25 Gm.; rectified spirit, 20 C.c.; distilled water, 80 C.c.
Wedl's Orseille of Orchella Stain.-Mix 5 C.c. of acetic acid, 20 C.c. of absolute alcohol, and 40 C.c. of distilled water; then add sumicient archil, from which excess of ammonia has been driven off, to form a dark reddish fluid.
Weigert's Hematoxilin.-Dissolve 1 part of hæmatoxylin in 10 parts of absolute alcohol ; then add 90 parts of distilled water and 1 part of aqueous solution $(1: 70)$ of lithinm carbonate.

Weigert (Gram's Mcthod). - In this modification aniline is substituted for alcohol, in order to avoid prolonged washing with the latter, and the process is conducted on a slide. The section is placed on \& slide, stained with a few drops of gentian volet aniline water, prepared as in Gram's method, the excess of fluid remored, mud a few drops of Gram's solution applied. Subsequently remove the liquid by gently blotting it off, then wash the section by allowing aniline to flow backwards and forwards over it, and when colour ceases to come away, repeat the operation with aylol for about 1 minute, then mount in balsam.

Weigert (Staining in Actinomycosis). Immerse sections for 1 hour in Weal's Orseille stain, then quickly rinse with alcohol and counterstain with gentian riolet. If it be desirerl to stain the mycclium also, afterwards submit the scctions to Weigert's modification of Gram's method. Sec page 335.
Wergent (Staining Brain Tissuc).-Pieces of brain nad spinal cord are hardened in bichromate solution, followed by alcohol, then inbedded meclloidin or gmm. If imbedded in celloidin, the pieces are subsequently taken from the spirit in which they are immersed, and placed for one or two days in saturated aqueons solution of copper ncetate, diluted with an equal bulk of water, the mixture being kept at about
$40^{\circ} \mathrm{C}$. Afterwards trunsfor the pieces to 80 per cent. alcohol until required for cutting. Or, the scctions can be cut first, and then treated with copper acetate. To stann the sections, after being well washed in 90 per cent. alcohol, they are transferred to Weigert's hematoxylin and left from at few homs to two days, according to the differentiation required. When opaque and of a deep blue-black colour, they should be well wasled for two or three days in distilled water. Next decolourise for 0.5 to 2 hours in a solution of 2 Gm . of borax and 2.5 Gm . of potassium ferrocyanide in 200 C.c. of water. As soon as the grey and white substances are sharply defined, again wash the sections in water for half an hour, then dehydrate, clear, and mount in balsam.

Woodhead's Method of Staining Tubercle Bacilli.-Take a small quantity of sputum rich in bacilli, and spread it out by pressure between two cover-glasses, so that a fairly thin film remains on each. Then carefully slip one over the other until they come apart. Thoroughly dry the covers, and pass them rapidly three times through the flame of a spirit lamp, care being taken not to scorch the film, then float them face downwards on the staining solution, whiel has been previously prepared and filtered into a watch-glass. The stain should consist of saturated alcoholic solution of basic fuchsine, 1 part; absolute alcohol or rectified spirit, 10 parts; carbolic acid solution (5 per cent.), 10 parts. Leave the preparations in the watch-glass for 12 to 24 hours, unless time is an object. In the latter case heat the fluid gently until vapour is given off, then drop the films on the surface, and leave them for 3 to 5 minntes only. Next transfer the covers to mi aqueous solution of sulphuric acid (25 per cent.), rud when decolourisation is complete, rs evidenced by tbe pink colouration not returning when the specimens are plunged into a bowl of tap-water containing a single drop of ammonia solution, thoroughly rinse in the slightly alkaline water and counter-stain in an aqueous solution of methylene blue. Finally, wash in water, carefully dry and mount in Canada balsam. Tbe bacilli should stand out as bright red rods on a blue brelkground of cells.

Ziehl-Neelsen (Staining Bacilli).-Sections are removed from weak spirit into Neelsen's carbolic fuchsine and left for 10 or 15 minutes; next decolourise in sulphuric acid ($\mathrm{sp} . \mathrm{gr} .1 .84$) or nitric acid (sp. gr. 1.42) diluted with 3 rolumes of water, rinse in 60 per cent. alcohol, and wash in a large volume of water to remove the acid. Tubercle and leprosy bacilli are the only micro-organisms that can retain the stain after treatment with acid. If the presence of traces of nitrous acid in the nitric acid be suspected, Squire recommends the use of saturated aqucous solution of sulphanilic acid mixed with one-third its bull of nitric acid. The sulphanilic acid destroys any free nitrous acid, which would otherwise exercise a bleaching action on the fuchsinestained bacilli. The sections may be counterstained with a solution of 0.5 Gm . of methyl green (or 0.25 Cm , of methylene blue) in 20 C.c. of rectified spirit and 80 C.c. of distilled water. Finally dehydrate in absolute alcohol, clear in cedar oil, and mount in balsam.

Appendix D.

THE METRIC SYSTEM OF WEIGHTS AND MEASURES.

The initial unit of the Metric System is the Metre or unit of length, which represents one ten millionth part of the earth's quadrant, or one forty-millionth part of the circumference of the earth around the poles. The multiples and sub-divisions of this and all the other units are obtained by the nse of dccimals, and for this reason the system is also lnown as the decincil system. The multiples are designated by the Grcel prefixes, deca $=10$; hecto $=100$; liilo $=1000 ;$ myria $=10,000$. For the sul)-divisions Latin prefixes are employed, as follows: deci $=1 / 10$; comt $i=1 / 100 ;$ milli $=1 / 1000$. Thus for measures of length we have the following expressions, slowing the abbreviations commonly cmployed, mat the equivalents in the ordinary Englishistandards of measurement-

Myrimmetre,	Mm.		10,000.0	M. $=$	6.2137	miles.
1 Kilometre,	Km.		1,000.0	M. =	0.6213	mile.
1 Hectometre,	Hin.	=	100.0	M.	109.362	wids.
Decanctre,	Dm.	$=$	10.0	M.	32.8086	
Mustre,	M.	=	1.0	M.	39.3704	nclies.
1 Decimetre,	din.	$=$	0.1	M.	3.9370	"
1 Centimetre,	cill.	$=$	0.01		0.3937	"
1 Millimetre,	mı1	$=$	0.001	M.	0.0393	

From the mit of linear measure of metre is rerived the unit of the measure of capacity or Lirras. Thais represents the cube of one-tenth part of a metre, or a cubic recimetre, and its multiples and sub-divisions with their corresponding equivalents in Imperial fluid measure are as follows :-

The unit of weight in the metric system is the Gramme. This is also derived from the metre, and represents the wcight of one cubic centimetre, of water, or the quantity of distilled water, at its maximum density, $4^{\circ} \mathrm{C} .\left(39 \cdot 2^{\circ} \mathrm{F}\right.$.), which would fill the cube of one-hundredth part of a metre. The relative value of the gramme, together with its multiples and sub-divisions, as compared with the English standards of weight, may be seen from the following table-

Myriagramme,	Mg .	10,000.0	Gm. =	22.0461	pounds.
1 Kilogramme,	Kg .	1,000.0	", =	2.2046	
1 Hectogramme,	Hg .	100.0	" =	3.5273	ounces a
1 Decagramme,	Dg.	10.0	" =	154.3235	grains.
1 Gramime,	Gm.	1.0	", $=$	15.4323	:
1 Decigramme,	dg.	0.1	" -	1.5432	,
1 Centigramme,	cg.	0.01	", $=$	0.1543	
1 Milligramme,	mg.	0.001	" =	0.0154	

The expression micromillimetre is used for microscopic measurements, and denotes the thousand th part of a millimetre. Of the measures of capacity, the terms most commonly employed are the litre and the cubic contimetre. Thus a decalitremuy also be expressed as 10 litres, a centilitre as 10 cubic centimetres, etc. Of the metric weights the gramme and its fractional parts, with their respective prefixes, are mucli used in analytical work. The kilogramme is largely employed in commercial transactions, and is commonly abbreviated kilo.

As a comparison of the values of some of the more frequently employed cxpressions of the metric and English systems, the following may be found convenient for reference:-

1 mm . (millimetre) $=1 / 25$ of an inch.
$1 \mathrm{~cm} .($ centimetre $)=2 / 5$ of an inch.
1 inch $=25$ millimetres of $2 \frac{1}{2}$ centimetres.
1 mg . (milligranme) $=0.01543$ grain (or approx. $1,6 \pm$ grain).
1 gi. $($ gramme $)=15.4324$ grains.
1 Kg. ("Kilo" or kilogramme) $=2 \mathrm{lbs} .3 \frac{1}{4} \mathrm{ozs}$. av.
1 pound avoir. $=453,592$ grammes.
1 ounce avoir. $=28,350$ grammes.
1 grain $=0.06479$ gramme or 64.79 milligrammes.
1 cc. (cubic centimetre) $=16.9$ minims limperial measure.
1 L. (litre) $=35.21$ fluid ounces Imperinl measure, or 33.815 fluid ounces Wine measure.
1 fluid ounce Imperial measure $=28.350$ grammes.
1 pint Imperial mensure $=567.0$ grammes.
1 gallon Imperial measure $=4.536$ litres, ar 10 lbs a avoir. of pure water at $62^{\circ} \mathrm{F}$. and under an atmospheric pressure of 30 inches of mercury.
It may be well to bear in mind that on the Continent liquids are always weighed, not measured.

The imperial gallon contains $27.2788+$ chbic inches, and the inmerial pint 20 find ounces, whereas the wine gallon has 231 culbic inches and the pint 16 thid ounces. In wine me:lsure 1 litre $=33.815$ thid ounces

Appendix E.

COMPARISON BETWEEN THE CENTIGRADE AND FAHRENHEIT THERMOMETERS.
F.
212
200
150
112
110
108
106
105
104
103
102
101
100
99
98
96
94
92
90
88
C.
100
93.3
65.6
44.4
43.3
43.2
41.1
40.5
40
39.4
38.9
38.3
37.8
37.2
36.7
35.6
34.4
33.3
32.2
31.1
F.
86
84
82
80
78
76
74
72
70
68
66
64
62
60
58
56
54
52
32
25
C.
30
28.9
27.8
26.7
25.6
24.1
23.3
22.2
21.1
20
18.9
17.8
16.7
15.6
14.4
13.3
12.2
11.1
0
3.9

Ins. Culpener's Aicroscone 1738 .

INDEX.

Abbé on microscopical vision, 37
Abbés apertometer, 59

- condenser 176
- steteoscopic eye-picces, 64
- test-plate, 164

Aberration, chromatic, 25

- of the eye, chromatic, 33
- spherical, 23

Abraxas grossulariata, 598
Absolute alcolol as a hardening reagent, 287
Acarus domesticus, 625
Accessories of the microscope, 197
Achromatic condenser, Beck's, 180

-	-	Gillett's, 173
-	-	method of using,
		190
-	-	Powell's, 178
-	-	Ross's, 176 -
-		Beck's, 173
	Watson's, 177	

Achromatic objective, thic, 152
Acineta, 49.
Actiniæ, 52 2
Actinophrys-sol, 489
Adams's book on the microscope, 8
Adipose tissue, 644
Wdogoniaceæ, 409
Aerobic sporcs, 399
Agar-agar, to prepare nutrient, 330
Air bubbles, 348
Alcyonella, 534
Algæ, 399

- media for prescrving, 343
- red, 413

Alvarez's discovery of bacillns, 392
Amici prism, the, 190

Ameba, 480
Amphibian changes, 669
Amphistonta, 570
Amyot finder, the, 205
Anacharis alsinastrum, 419
Anemones, sea, 526
Angle of vision, 72
Anguillula, 567
Animal structures, staining, 292
Annulosa, 562
Antenne of insects, 584
Antenna of silkworm moth, 605
Antluax bacillus, 369
Antlirozoa, 523
Apertometer, Abbé's, 59
Aperture, definition of, 45

- measmrement of, 57
- mumerical, 57
- table, 58

Aphiles, 587
Aplirophora bifasciata, 618
Aplis nillifica, 598
Aplysiidæ, 549

- dipilans, 549

Apparatus for mounting, 352
Appendices, 673
Arachnide, 618
Aragonitc, 232
Aicclla, 483
Arenicola, 575
Argyroneta aquatica, 621
Arteniæ, 581
Arterics, 622
Artery-needle, 303
Arthropoda, 583
Arthrospores, 366
Ascidian, 669
Astroides calyculcaris, 529

BABE's method of staining bacteria, 334
Bacillus, mutlurax, 369

- of plaguc, 372
- - in rat's hloorl, 372
- splenic fever, 369
- typhoid, 370

Bactcria, 317

- acrobic, 399
- classincation of, 373
- Coln on multiplication of, 367
- cultivation of, 327
- - in tubes, 331
- - on plates, 331
- faculties of, 373
- in butter, 393
- in cliecsc, 393
- in milk, 393
- in sections of tissue, 337
- invasion or potato-tubers by, 398
- microscopical examination of, 333
- phosphorcscent, 373
- reproduction of, 365
-- size of, 365
- staining, 334
- Winogradsky's investigations of, 398
Bacterial action in taming skins, 393
- fermentations, 391

Bactcriological investigations, apparatus for, 318

- - mounting media, 320
- - reagents used, 320
- microscope, the, 135

Bacteriology of the dairy, 393
Baker's advanced student's miçroscope, 123

- collecting stick, 350
- histological microscope, 125
- micro-photographic apparatus, 217
- microscope lamp, 191
- microscopes, 120
- Nelson condenscr, 184
- - model microscope, 120
- objectives, 168
- student's condenser, 184

Baird, Dr:, on daphinia, "is1
Barnacle, 539
Bartley's warm-starge, 281
Batrachosperinæ, 409
Beck's linocular dissectiug microscope, 101

- - National microscope, 99
- completc microscope lamp, 202
- compressor, 275
- disc-holder, 198
- large Continental model microscope, 98
- microscopes, 95
- objectives, 167
- pathological microscope, 95
- Star microscope, 101

Beggiatoa, 400
Benjamin Martin's microscope, 5
Beroidæ, 519
Biaxial crystals, 228
Billiarzia hæmatobra, 573
Binocular microscope, advantage of, 69

-	-	Carpenter on, 69
-	-	Nachet's, 62
-	-	Pillischer's, 128
-	-	Riddell's, 62
-	-	Stephenson's crecting, 71 -
	-	Wenliam's, 65

- vision, 60

Bismarck-brown for staining protoplasm, 306
Bivalves, 538
Bleaching process, 315
Blood as a test, 263

- circulation of, iu frog s foot, 605
- - - tadpolc, 665
- corpuscles, 638
- - double staining, 295
- - size of, 640
- crystals, 641
- spectrum, 252

Bombay plague, 371
Bone, 658

- of fish, 661
- of reptilia, 660
- structurc of, 659

Borax, 231

Boring sponges, 513
Bottcrill's live-trough, 276
Brachiopoda, 538
Branchipodide, 580
Brewster's microscope, 11
Brittleworts, 427
Browning - Huggins micro-spectroscope, 245
Browning's pocket lens, 76
Bryophyta, 444
Bryozoa, 531
Buchmer's experiments on yeast, 389
Bull's-eyo condensing-lens, 199
Butter, bacteria in, 393
Butterfly's tongue, 605

- wings, 610

Calc-spale, 231
Cambridge rocking microtome, 290
Camera lucida, the, 207

- - the Abbé, 208
- - the Wollaston, 207
- Swift's horizontal, 213

Canada balsam, 293
Carbonate of lead, 232
Carmine as a nuclear stain, 312
Cartilase, 655
Catheart's freezing microtome, 291
Cerlar oil, use of, 171
Cell, definition of, 358
Cell-making turn-table, Walmsley's 340
Cells, cpithelial, o336

- for living objects, 275
- for mounting, 340
- live, 277

Cellulose, 357

- staining, 314

Cements, 347

- list of, 676

Centipedes, 578
Cercarie, 571
Ccreal parasites, 381
Chretophoracere, 409
Cham, frnctification of, 417

- momuting, 347
- vulgaris, 415

Characce, 415

Checsc, bacterin in, 393

- mite, 625

Chilinidæ, 551
Chitonidar, 545
Chloride of gold as stain, 297

- of palladium as stain, 298

Chromatic abcration, 25

- - of the cye, 33

Chromic acil as hardening reagent, 288
Ciliata, 498
Circulation of the blood, 665
Cistnla catenata, 558
Cladoccra, 580
Clavatella proliferi, 521
Clearing agents, list of, 676
Clepsinidæ, 576
Clionæ, 513
Closterium, 424

- Innula, 425

Cnidaria, 519
Cockchafer's eye, 590
Coddingtou lens, the, 76
Codosiga, 497
Colentcrata, 515
Cohn on multiplication of bacteria, 367
Cole's direction for seetion cutting, 285

- section-cutting microtome, 289

Collecting stick, Baker's, 350
Collection of objects, 349
Compound microscope, is
Compressor, Beck's, 275
Compressolium, 274

- Ross's, 275
- Rousselet's, 275

Concave lenses, 23

- surfaces, 17

Condenser, Abbé's, 176

- Baker's Nelson, 184
- - student's, 184
- Beck's achromatic, 180
- Gillett's nchromatic, 173
- method of using, 190
-- Powell's achromatic, 178
- Loss's achromatic, 176
- Smith \& Beck's achromatic, 173.
- - substage, 193

Condenser, Swift's, 183
('omienser, Watson's achromatic, 177

- parachromatic, 182
- Webster-Collins, 186
- Wenham's immersion, 189
- - parabolic, 186

Confervacer, 408
Conjugate foci, 17

- real and virtual, 21

Continental microseopes, 130
Contrast stains, 313
Convex lens, 18
Copepoda, 580
Corals, 515, 525

- true, 528
- typical forms of, 533

Correction collar, Lister's, 155
Coryne stauridia, 534
Cotton fibres, 474
Cover glass gauge, Zeiss's, 165
Crinoids, 542
Critical angle, 14
Crookshank's incubator, 324

- method of staining baeteria, 335

Crustacer, 578
Crystals, formation and polarisation of, 239
Ctenophora, 518
Cuckoo-spit, 618
Culex pipiens, 596
Cultivation of bacteria, 327

- of micro-organisms, 327

Cutleria diehotoma, 413
Cutting sections of hard woods, 316
Cuttle•fish, 556
Cyclops, 580
Cyclosis, phenomenon of, 359
Cyclostomata, 537
Cyelotus translucidus, 558
Cydippidæ, 518
Cymba olla, 557
Cymothordre, 580
Dairy, bacteriology of, 393
Daphnia, enemies of, 581 - ephippial egros of, 580

Diphnia pulex, 580
De Bary's investigations in parasitism, 395

Dccalcifying and bleaching agents, list of, 677
Deealcifying solution is hardening reagent, 288
Demorlex folliculorum, 627
Dental strncture, 652
Dermestes lardarius, 627
Dermis, the human, 647
Desmidiaceæ, 420

- reproduction of, 423

Diamond microscope, Pritchard's, 9
Diaphragm, the, 194

- tlic iris, 176

Diatomaceæ, 420, 427

- fossilised, 437
- Max Schultze's researehes, 430
- where found, 428

Diatoms, mounting medinm, 3 ± 3

- movements of, 431

Didymoprium grevelli, 420
Difllugia, 482
Digestive system of insects, 587
Dipping-tubes, 279
Disc-holder, Beck's, 198
Dissceting-knives, 284
Dog•tick, 624
Double convex lens, 19
Draparnaldia glomerata, 409
Draw-tube, Swift's, 116

- Watson's, 104

Drone fly, 594
Dytiscus marginalis, 607
Echinucoccus, 565
Echinodermata, 539
Eggs of insects, 612
Elcmentary optics, 12
Embedding fluids, list of, 678

- in paraflin wax, 285

Entomological specimens, mounting, 341
Entozoa, 562
Eosin stain, 315
Eozoon, 492
Epeira diadema, 619
Epidermis of plants, 455
Epithclial cells, 636
Epithelium, mounting, 295

Eipuisotacere, 449
Ergot of ryc, 38:
Eristalis tenax, 594
Erysiphe Tuckeri, 3S0
Eudorina, 406
Englypta, 482
Eurotium repens, 383
Exposure table for photo-micograpliy, 213
Eye, ehromatic abermation of the, 33
-- of coekehafer, 590

- of Hy, 588
- of whirligig beetle, 608
- the human, 30

Eye-piece, Abbé's stereoscopie, 64

- compensating, 147
- - Zeiss's, 147
- Huyghenian, 139
- Jackson's mierometer', 143
- Ramsclen, 142
- - mierometer, 145
- Ross's, 68
- Wenham's double, 63
- Zeiss's, 147

Eye-pieces, 139

- achromatic, 149
- magnifying powers of, 169
- projections, 150
- to elean, 259

Eyes of inseets, 584
FAVELLIDIUM, 415
Feet of insects, observation ol, 604
Felices, 446
Fermentation experiments, 361
Fermentations, bacterial, 391
Ferns, 446

- development of, 446

Fibro-cartilage, 657
Fibrous tissue, 642

- - mounting, 290

Filaria sanguinis hominis, 568
Finder, the, 204

- the Anyot, 205
- the Maltwood, 204
- the Okeden, 205
- Pantacsek's, 205

Fission formation, 365

Fixing solutions, list ol, 678
Flabellum, 528
Flagella, staining of, 336
Flagellate infusoria, 495
Flatness of field, 262
Flax, fibres of, 474
Flea, 629
Florider, 413
Flowering plants, 451
Fluke, the, 569
Flustra, 532
Fly; eye of, 588

- foot of, 602

Focal lengtli of lenses, 22
Focus, method of finding, 271
Foot of fly, 602
Foraminifera, 483
Forceps, 283

- for momnting, 294
- stage, 198

Formation and polarisation of crystals, 239
Fossil plants, 475°
Fossilised diatomaceæ, 438
Freczing agents, list of, 678

- microtome, Catheart's, 291
- - lirections for using, 291
Frog-bit, 418
- plate, 277

Froth-fy, 618
Fungi, industrial uses of, 391
Fungoid cliseases, 374
Fungus on plants, 376

- root, benefit to trees from, 396
- scwage, 400
-- where found, 379
GALL-FLY, 596
Gapeworm, 572
Gelatine, to prepare mutrient, 328
German yeast, 388
Gillett's achromatic condenser; 773
Globigerina, 486
Glycerine agar-agar, 330
- jelly, to make, 297

Gnat, 596
Gnathia, 579

Cronioncter, Dr. Leeson's, 150
Gorgoniidre, 530
Crosse on noctiluea, 496
Grim's method of staining bacteria, 335, 33 S
Grant's researches on sponges, 507
Gregarine, 482, 563
Cromia, 484
Grove's recommendations for mounting, 299
Gyrinus, eye of, 608

- leg of, 608

Hematoxilin stain, 312
Hairs, structure of, 648
Haliotis splendens, 559

- tuberculatus, 557

Hansen's investigations of yeast, 387
Hard structures, mounting, 307

- woods, cutting sections of, 316

Hardening agents, list of, 677

- - absolute alcolol, 2S7
-- - chomic acid as, 288
- - decaleifying solntion as, 288
- - methylated spirit as, 288
- - Muller's finid as, 288
- - potassium bichromate, 288
Harrlening reagents, 287
- tissue, 283

Hartea elegans, 535
Heliozoa, 489
Helix absoluta, 558

- pomatia, 558

Hepatice, 442
Hexactinia, 526
Hirudina medieinalis, 576
Hirudinids, 575
His's method of staining baeteria, 334
Holland's simple microscope, 75
Holman's life slide, 277

- moist chamber, 277
- syphon slide, 278

Holothurioidea, 543
Honey bee, 5.8
Horse-tails, 449

House tly, eye of, 585

- proboscis of, 5.91
- tongue of, 592

Hnman eye, the, 30
-- hair as a test, 269
Huyghenian eye-piece, 139
Hydra, 516
-- fasca, 516

- stinging, 519
- viridis, 516

Hydractinia eehinata, 52:3
Hydroid polyps, eolony of, 537
Hydrozoa, 515
IAnthinide, 550
Iceland spar, 221
Illumination arrangements of the microscope, 673

- Mercer on, 673

Incubation, apparatus for, 322

- test for, 263

Ineubator; Crookshank's, 324
Incubators, 324
Indigo plant, 392
Infusoria, 493
Infusorial life, 349
Injecting, directions for, 304

- inseets, 306
- lower animals, 305
- mollusea, 305
- small animal bodies, 302
- - -- syringe for, 302
- with different colons, 304

Injections, to prepare, 303

- - subjects for, 303

Injurious insects, 632
Insects, 578, 583

- antennæ of, 5S4
- digestive systems, 586
- distinctive character of, 553
- eggs of, 612
- eyes of, 58t
- injecting, 306
- injurious, 632
- mouths of, 554
- muscles of. 585
- reproduction of, 587

Inscets, respiriatory system of, 607

- thorax of, 585
- wings of, 609

Intcrpretation, errors of, 263
Iris diaphragm, 176
Isthmia encrvis, 436
Ixodidæ, 62.
Ixodes riciuus, 624
Jackson's micrometer eye-piecc, 143
Jelly-fish, 519, 523
Jungermannia, 442
Kocr's method of staining flagella, 336
L.tMP, Baker's microscope, 191

- Beck's complete microscope, 202
- shells, 539
- the microscope, 201
- Watson's microscoppe, 203

Lard, embelding in, 285
Larve of sea-anemones, 529
Lathe for cutting sections of tecth, 308
Laticiferous tissues, 466
Leaf tissue, 466
Leeson's groniometer, 150
Leeuwenloek's microscope, 4
Leitz's dissecting microscope, 132

- microscopes, 132

Lens, bull's-eyc condensing, 199

- Steinhcil's aplanatic, 77
- the Coddington, 76

Lenses, concalve, 23

- convex, 18
-- double convex, 19
- focal lengtlı of, 22
- forms of, 18
- meniscus form of, 24
- optical centre of, 20
- plano-convex, 19

Lepas, 539
Lepisma saccharina, 612

- scales of, as test, 264

Leptothrix buccalis, 400
Lichenaceet, 439
Lichens, 439

- erratic, 441

Lieberkiilu's microscopre, 4

Licherkiiln, the, 198
Light, polarisation of, 219
Linax maximus, 558

- rufus, 558

Limmten, teeth of, 554
Limnaide, 551
Limmeus stagnalis, 551
Lingula pyraniidata, 538
Lingulidx, 538
List of salts, 240
Lister's correction collar, 155

- flasks, 322
- microscope, 81
- object glass, 154

Live-cages, 274
Live-cells, 277
Live-trough, Botterill's, 276
Livcrworts, 442
Lobosa, 482
Lüttley's incthod of staining flagella, 336
Logwood, staining by, 293
Lophopus crystallinus, 535
Lyda campestris, 598
Lymph corpuscles, 638
Maddox growing stage, the, 280
Magnifying powers of eye-pieces and objectives, 169
Maltwood finder; the, 204
Maple aplis, 617
Mapping spectra, 253
Marchantia polymorphia, 442
Martin's microscope, 5
Marzoni's objective, 152
Mayall's illumiuntor, 184

- mechanical stage, 124

Medusæ, 515, 521

- at colony of budding, 537

Melicerta ringens, 505
Melolontha vulgans, cyc of, 590
Meniscus form of lens, 24
Merecr on illumination, 673
Mesoglaca, 525
Mesoglia vernicularis, 410
Methylated spirit as lardening reagent, 283
Metric system of weights and measures, 687

Nicrometer, Ramsilen's, 115, 206

- the stage: 200

Nicrometers, 205
Micro-organisms, 373
-- cultivation of, 327
Micro-photograpliy, 210, 674

- Baker's apparatus for, 217
- exposure table, 213
- Pringle's apparatus, 217
- rules for, 214
- Stringer-Watson's apparatus for, 674
- Swift's apparatus for, 213

Nicroscope, accessories of the, 197

- Bakcr's advanced student's, 123
- - histological, 125
- - Nelson model, 120
- Beck's binocular dissecting, 101
- - - National, 99
- - large Continental model, 98
- -- pathological, 95
- - Star, 101
- binocular, Pillischer's, 128
- - Wenham's, 65
- Carpenter on binocular, 69
- compound, 78
- early history of, 1
- Holland's simple, 75
- Hooke's water, 2
- illumination arrangenents of the, 673
- invention of, 2
- lamp, the, 201
- - Baker's, 191
- - Beck's, 202
- - Watson's, 203
- Leitz's dissecting, 132
- Leeuwenhoek's, 4
- Lieberkiiln's, 4
- Lister's, 81
- manipulation and mode of using the, 258
- Martin's, 5
- Nachet's, 133
- - binocular, 62
- Pillischer's binocular, 128
- - lntermational, 126

Microscope, Pillischer"s"Kiosmos," 128

- 'owell \& Lealand's, 85
- - student's, 88
- Pritehard's dianond, 9
- Riddell's binocular, 62
- Ross's "Eclipse," 89
- - New Industrial, 90
- Ross-Jackson, 82
- Ross-Jackson-Zentinayer, 83
- Ross-Zentmayer, 91
- Ronssclet's tank, 126
- simple, 30, 72, 77
- simple pocket, 73
- Sir David Brewster's, 11
- Stephenson's erecting binocular, 71
- Swift's advanced student's, 118
- - bacteriological, 116
- - four-legged, 114
- - histological student's, 116
- the bacteriological, 135
- Watson's bacteriological, 108
- - Edinburgh student's, 102
- - histological, 107
- - petrological, 111
--- - portable, 110
- - Van Heurck's, 108
- Wenham's binocular, 65
-- - radial, 90
- Wollaston's simple, 74
- Zciss's, 130

Microscopes, Baker's, 120

- Beek's, 95
- Contincntal, 130
- Leity's, 132
- Pillischer's, 126
- Ross's, 88
- Swift's, 113
- Watson's, 102

Microscopic forms of life, 353

- vision, principles of, 45
- - theory of, 37

Micro-spectroscope, the, 243
Miero-spectroscopic eye-piece, the Sorby-Browning, 247

- metliod of using, 250
- the Browning-Huggins, 245

Microtome, Cumbridge rocking, 290
-. Catheart's freezing, 291

- Cole's scetion-cutting, 289
- method of using, 289,

Nilk, bacteria in, 393
Millipedes, 578
Mincral and greological kingdous, 670
Mirror, manipulation of, 260

- the, 195

Mite, checse, 625
Mitcs and ticks, 622
Moist. stage, 280
Molecular rotation, 238
Mollusca, 545
--- injecting, 305

- shell of, 558

Monads in rat's blood, 372
Nonoxenia, 523
Mloss-auinals, 531
Mosses, 443
Noulds, 380, 381
Mounting apparatus, 352

- cells for, 340
- chara, 347
- entomological spccimens, 341
- epithelitum, 295
- fibrous tissue, 296
- forceps, 294
- hard structures, 307
- media, list of, 678
- nerve tissue, 296
- nour-striated muscle, 296
- objects, materials required, 339
- rock sections, 309
- spring clip for, 296, 342
- teeth scctions, 308
- vegctable tissues, 310

Mouse, lair of, 650
Mouth, lejitothrix, 400
Nouths of insects, 584
Niiller's fluid, a liardening reagent, 288
Musca domestica, 588
Musei, 443
Muscidx, 588
Mluscles of insects, 585
Muscular fibre, 6 ± 4

- - mounting, 296

Mycetoma, 378

Nycetozo: 482
Mycorhiza, 396
Nachet's binocular miceroseope, 62
Nails, structure of, 648
Navicula, 427
Neckera antiphyreticil, 445
Ncedles for teasing out sections, 286
Nematoid worms, 556
Nerve tissuc, mounting, 296
Nicol prism, 2?0
Nitella, 418
Nitrate of silver as stain, 297, 298
Noctiluca, 496
Non-striated muscle, mounting, 296
Nosc-pieces, 203
Nuclear stains, 311

- - carmine, 312
- - hæmatoxylin, 312

Nudibranchiata, 547
Nutrient agar-agar, to prepare, 330

- gelatinc, to prepare, 328
- jelly, to inoculate with bacteria, 331

Object glass, Lister's, 154

- to clean, 260

Objective, achromatic, 152

- changers, 203
- Powell \& Lealand's oil immcrsion, 166
Objectives, Baker's, 168
- Beck's, 167
- English and German, 159
- high power, 171
- magnifying powers of, 169
- Pillischer's, 169
- Ross's, 166
- Swift's, 168
-- Watson's, 167
Objects, collection of, 349
Oblique illunination, 186
Oidium albicans, $38-1$
Okeden finter, the, 205
Onion, raphides of, 472
Opisthobranchiata, 548
Optical centre of leuses, 20
Opties, elcmentary, 12

Oscillaincea, 407
Osmic aeid as stain, 298
Palates of gastiapods, 556
Palmellacer, 407
Palmogrien macrococea, 401
Pandorina morum, 406
Parabolic reffector, 188
Parafliu wax, embedding int, 285
Parasites, cereal, 381

- sponge, 512
- vine, 380

Parasitic diseases of plants, 372

- fungi of men and animals, 383

Parasitism, De Bary's investigations in, 395
Patella radiata, 556
Pearls, structure of, 559
Pectinibranchs, 550
Pediastrex, 422
Pedicellauæ, 543
Peltogaster curvatus, 539
Penetration in objective, 261
Pennatulidee, 530
Pentacrinoids, 540
Pepperworts, 451
Peronospora viticola, 381
Petiole, 466
Planeroyanir, 451
Phanerogams, structure of, 453
Phlocm of plants, 454
Pholadidæ, 545
Phomanvicola, 3S1
Photo-micragraphy, 210

- apparatus for, 213
- Baker's apparatus for, 217
- exposure table, 213
- lules for, 214
- Swift's apparatus for, 213

Plyylactolrmata, 533
Phylloxera vastatrix, 381
Physalia, 521
Plysidie, 551
Piero-carmine as stain, 299
Pigment colls, $4+6$
Pillischer's binocnlar microscope, 128

- International microsconc, 126
- "Kosmos" microscope, 128

Pillischer's objectives, 169
Pinna ingens, 559
Pinnularise, 434
Pipstte, 319

- Pastenr's bulb, 322

Plague, bacillus of, 370

- the Bombay, 371

Planarie, 575
Plano-convex lens, 19
Plants, cpidermis of, 455

- fibro-vascular system of, 460
- Howering, 451
- fossil, 475
- ground tissuc, system of, 455
- hairs, 457, 473
- parasitic diseases of: 3 T 4
- raphicles in, 472
- reproductive organs of, 467
- spores of parasitic fungus on, 376
- strincture of, 453
- tissuc systems of, 454
- vascular system of, 464

Plasmodia, 482
Pleurobranclus aurantiacus, $5 \nleftarrow S$

- plumula, 557

Pleurosigma angulatum, 429

- as a test, 267
- attenuatum, 429

Plumularia, 521
Pocket lens, Browning's, 76
Coddington's, 76
Podura-scale test, 268
-- villosa, 611
Polarisation apparatus, 223

- of light, 219
- prism, 220
- - method of employing, 224
- rotation of plane of, 231

Polarised crystal of quiniline, 235
Polarising apparatus, Watson's, 2.24
Pollen grains, 467

- - metlool of mounting, $46 \overline{7}$

Polyeystina, 489
Polymorpliina, 4S6
Polypomedıse, 519
Polytrichum undulatum, 445
Polyzoa collecting, 350

Pond-snails, 551
Porifera, 506
Portable microscope, Watson's, 110
Potassium bichromate as hardcning reagent, 288

- nitrate, crystal of, 232

Powell \& Lealant's microscope, 85
oil imnersion objective, 166

- student's microseope, 88
- formula for objective, 166
Preparing tissue, 283
Primordial ccll, 357
Principal focus, 18
Pringle's micro-pliotograply apparatus, 217
Prism, 15
- Nicol's, 220

Pritchard's diamond microscope, 9
Proboscis of house fly, 591
Proteolepas, 539
Protococcus invalis, 380

- pluvialis, 401

Protoplasm, 356

- staining living, 306
l'rotozon, 478
Puccinia graminis, 375
l'yrocystis, 496
QUALETZ, 231
Quekett on Miurtin's microscope, 6 Quinidine, crystals of, 235

Padiolaria, 490
Ransden cyc-picce, 142

- micrometer cyc-picce, 145

Raphides in plants, 472
Rayleigl's theory of formation of optical images, 44
Reflection, 16
Reflector, Sorlhy's, 199
Refraction, 13

- throngle prism, 15

Reproductive organs of plants, 467
Resolving power, 262
Retiform tissuc, 644
Rezncr's inechanical finger, 343

Rhizocarpere, 151
lhizopoda, 482
Riddell's binocular microscope, 62
Rochelle salt, 232
Rock limpet, 556

- sections, monnting, 309

Ross's achromatic condenser, 176

- compressorium, 275
- Eclipsc microscope, 89
- cye-pieces, 68
- microscopes, 88
- object glass, 154
- objectives, 166

Ross-Hepworth arc lamp, 218
Ross-Jackson microscope, 82
Ross-Jackson-Zcntmaycr microscope, 83
Ross-Zentmayer microscope, 91
Rotatoria, mounting, 345
Rotifera, 502
Rousselet's compressorium, 275

- method of mounting rotatoria, 345
- tank inicroscope, 126

Rye, ergot of, 382
SACCHAROMYCES cerevisiæ, 384

- ellipsoideus, 385
- mycoderma, 384

Saccharomycetcs, industrial uses of, 391
Salts, list of, 240
Saprolegnia ferox, 411
Sarcode, 357
Saw-fly, 598
Scalariidre, 550
Scales of butterfly's wings, 610
Scapander ligniarius, 557
Schäfer's warm-stage, 282
Scyphomerlusie, 523
Sca-ancmone, larver of, 529
Sen-anemones, 526
Sca-cucmmber, 540, 543
Sca-hares, 549
Sca-mats, 532
Sca-mrchin, 540
Sca-weeds, 409
Scction cutting, 283

- - Cole's directions for, 285

Section-cntting microtome, Cole's, 289

- lifters, 319
- scissors, 283

Scetions of hatd wood, cutting, 316
Selenitc, 225
Sepia officinalis, 556
Scrtularia, 521
Sliadbolt's turn-table, 295
Sheep-tick, 624
Shell, structure of, 558

- formation in limmra, 552

Sieve-tubes, 465
Silk filaments, 474
Silk-worm, 605
Silk-worms, disease of, 363
Silver-side reflector, 198
Simple microscopes, 30,72 , 7
Siphonophora, 521
Sirax gigas, 597
Skin, 646
Smith \& Bcek's achromatic condenscr, 173
Show crystals, 237
Sorlby-Browning micro-spectroscopie eye-piece, 247
Sorby's reflector, 199
Spectroseope, cells for use with, 251 - the, 244

Speetrum of cluromule, 255
Spheroplea annulina, 409
Sphrerosira volvex, 406
Splagnacer, 446
Spherical aberration, 23
Spiders, 619
Spirilla, 368
Spiro-bacteria, 368
Splenic fever bacillus, 369
Sponges, 506

- boring, 513
- Geodia Barretti, 510
- Grant's researches on, 507
- hyaloncma, 512
- parasitc on, 512
- reproduction of, 510

Spongia coalita, 507
Spongiadæ, 506
Spore of parasitic fungus on plants, 576
Spores, 366

Spores, aerobie, 399

- endogenons, 366
- staining of, 336

Spring clip for mounting, 296, 342
Stage, Bartlcy's warm, 281

- forceps, 198
- Maddox growing, 280
- Mayall's mechanical, 124
- moist and warm, 280
- Sehäfer's, 282
-- Stricker's, 282
- Watson's semi-meclianical, 107

Stain, cosin, 315
Staining animal structures, 292

- bacteria, 334, 338
- by logwood, 293
- cellulose, 314
- double, 293
- double and treble, 300
--- living protoplasm, 306
- of Hagella, 336
- of spores, 336
- tissue, 283

Stains and staining methods, list of, 679
Stains, ehloride of gold, 297

- ehloride of palladium, 295
- contrast, 313
- double and treble, 300
- mitrate of silver, 297, 29 S
- osmic acid, 298
- picro-carmine, 299
- single, 298

Starch, 238

- granulcs, 469
- - of arrowroot, 470
- - of potato, 470
- - of wheat, 470

Star-fish, 540
Steinheil's aplanatic lens, 77
Stentors, 501
Stephanoceros, 50.1
Stephanosphera pluvialis, 403
Stephenson's erecting binocnlar mieroscope, 71
Stcreoscope, the, 60
Stercoscopic binocular vision, 60
Sterilised instruments, 321

Stcrilisers, 324

- Hearson's, 325
- sterm, 825
- - Dr. Rochls, 325

Sting of bee, 596

- of wasp, 596

Stock-bottle, 279
Stomata of iris, 456

- water procs, 457

Stone-lilics, 542
Stonewort, 415
Stricker"s waru stage, 282
Stringer's apparatus for micro-plotography, 674
Stylonychia mytilus, 500
Stylopilie, 628
Substage condenser, 193
Subterranean fungi, 397
Sun-animalculcs, 489
Swift's advanced student's microscope, 118

- bacteriological microscope, 116
- diaw-tubc, 116
- four-legred microscope, 114
- listological student's microscope, 116
- horizontal camera, 213
-- illuminating apparatus, 183
- microscopes, 113
- objectives, 168

Tables, apcrture, 58
Tqenia, 564
Tanning skins, 393
Tardigrada, 631
Teasing ont sections, needles for, 236

- - - under condensed light, 237
Teeth, 652
- lathe for cutting sections of, 308
- method of cutting sections of, 308
- mounting, 308

Tenent-lairs, 603
Terebella littoralis, 577
Terebratulata rubicuna, 559
Testacella mangei, 556
Test for illumination, 263
Test object, hlood as a, 263

Tcst object, hnman hair as, 269

- - lcpisuna as, 264
- - pleurosigma, 267
- - podura-scale, 268

Tcst-plate, Abbé's, 164
Thrcadworm, 566
Thorax of insects, 5S5
Thuricola valvata, 500
Tick, dog, 624

- sheep, 624

Ticks, 622
Tissue, adipose, 644

- bacteria in sections of, ${ }^{5} 337$
- fibrous, 642
- hardening, 283
- preparing, 283
- retiform, 644
- staining, 283
- systems of plants, 454

Tongue of butterfly, 60\%

- of house fly, 592
- of wasp, 595

Tooth substance, 654
Topaz, 231
Tourmaline, 225
Trematode worms, 569
Trichina spiralis, 567
Trichomes of plants, 457
Troughs, 274
Truftle, 397
Tubcr cibarium, 397
Tubicola, 576
Tubipora, 530
Tubularia dumorticrii, 537
Tunicata, 549
T'urbo marmoratus, 557
Turn-table, Shadbolt's, 295 .
Typhoid bacillus, 370
Ulvacese, the, 411
Ulva lactuca, 411

- thermalis, 411

Urinary salts, 236

Vallisnebla, 418
Varlcy's live-box, 274
Varnishes, 339
Vascular system ol plants, 464

Vaucheria, 410
Vegretable tissucs, staining and mome ing, 310
Veins, 662
Velutina lævigata, 557
Vertcbrata, 633
Vine parasites, 380
Violet sea-smail, 550
Visual angle, 72

- judgment, 37

Volvocinere, 404
Vorticellidæ, 499
WalmsLey's turn-tab!e, 340
Warm chamber; Pfeiffer's, 323
-. stage, 280

- - Bartley's, 281
- - Schäfer's, 282
- - Stricker's, 282

Wasp, sting of, 596

- tongue of, 595

Water thyme, 419
Watson's achromatic condenser, 177

- bacteriological Van Heurck's mieroscope, 108
- Edinlurgh student's microscope, 102
- histological microscope, 107
- mechanical draw-tube, 104
- microscope lamp, 203
- microscopes, 102
- parachromatic condenscr, 182
- petrological microscope, 111
- portable microscope, 110
- scmi-mechanical stage, 107

Webster-Collins condenscr, 186
Weights and measures, metric system of, 687
Wenlram's binocular microscope, 65

- double cje-picce, 189
- immersion condenser, 189
- parabolic condenser, 186
- - reflector, 187
- radial microscope, 90

Wheat rust, 374

- starch, 470

Whecl animalcules, 502
Whirligig-beetle, eyes of, 608

- - lerg of, 608

Wings of hutterfly, 610

- of insects, 609
- of moth, 610

Winogradsky's investigations of bacteria, 398
Wollaston's simple microscope, 74
Wood, formation of, 462
Wool, 474
Worms, 562
Wort-gelatine, 330
Xifen of plants, 462
YEAST cells, 384

- German, 388
- Hansen's investigations of, 387

ZeIss's compensating eye-piece, 147

- cover-glass gauge, 165
- microscope, 130

Zentmayer's Holman syphon slide, 27 - 8
Zoopliytes, 515

[^0]: * My earliest acquantance with the Microscope oceurred in the thirties, when I fortmately became possessed of a Cnlpeper-Scarlet instrument, fignred in the title-parge.

[^1]: * At the time this was written, scarcely a book of the kind lad been fublished at a price within the reach of the student.

[^2]: * "A Practical Treatise on the Use of the Microscope." Loudon, 1855.

[^3]: * For further information, I must refer my readers to Parkinson's "'leatise on Opties;" Herschel's "Frmiliar Lectures on Light;" "Cyelopredia Britannica:" Everett's translation of Deschancl's " Physies ; " and Niigeli and Schwendener's "Theory and Practice of the Microscope," translated by Frank Crisp, LL.D.

[^4]: * Carpenter, "The Microseope," p. 65, 1891.

[^5]: * Professor Stokes wrote me in the following flattering terms :- " What you have submitted to me on the sulyect of apertures is so somd, clear, and suceinct, that I have nothing to add to it. The method adapted as yon lave explained respecting the immersion system, I consider to be perfectly satisfactory." Subsequently, ant at my request, Sir George Stokes contributed a valuable paper on the suhject to the "Transactions of the Royal Microseopical Society", 1876, on "The Theoretical Limit of Aperture."

[^6]: * "On the Estimation of Aperture in the Mieroseope," "Journal of the Royal Mieroscopical Society," series ii. vol. i. ; "Notes on Aperture, Microscopic Vision, and the Value of Wide-angled Immersion Objectives," 1881.

[^7]: * "Journal of the Royal Mieroscopical Society."

[^8]: * "Joumal Roy. Micros. Soc.," P. 19, 1878, and p. 20, 1880.

[^9]: * "The Magnifying Power of Short Spaces" has been ably elucidated by John Gorham, Esq., M.R.C.S. "Jommal of Microseopical Society," October: 1854.

[^10]: * "Journal of the Royal Hicroscopical Socicty, 1890," 1. 420.

[^11]: * Apo-chromatic; from the Greck, signifying freedom from colour.

[^12]: * This coutring-glass cousists of a tubular eap with a minute iperture, containing two plano-emvex lenses, so adjusted that the image of the aperture in the objeet-glass and the images of the aperture of the lenses and the diaphragms contained in the tubs which holds the illuminating combination, may be all in focus at the same time, so that by the sime adjustment they may be brought sufficiently near to recognise their contricity.

[^13]: * Summary of the value of paralolic illumination and immersion illuminators, by the late Mr. J. Mayall, will le fome P. 27, "Journal of the Rogal Mieroscopical Society " (1879).

[^14]: *"Joumal of the lioyal Microscopical Society," P. 365, 1896.

[^15]: * Dr. G. A. Piersoll, "American Annual of Photography", 1890,

[^16]: * Herapath's test-fluid is a mixture of three drachms of purc acetic acil, ono drachm of alcohol, and three drops of sulphuric acil.

[^17]: * "Jourmal of the Royal Microscopic Socicty," 1867.

[^18]: * Born in 1787, at Straubing, a small town in Bararia.

[^19]: * Dr. Thudicum's "Tenth Report of the Medieal Oflicer of the Prity Council, 1867." Mr. Sorby "On Some Improvements in the Spectrum Method of Detecting Blool." "Jommal of the Royal Alicroscopical Society;" 1871.

[^20]: * "On the Reduetion and Oxitation of the Coloming-natter of the Blood" ("Proe, of the Royal Soc." vol. xiii. p. 355). The oxilising solution is made as follows:-'lo a solution of proto-sulphate of iron, enough tarturie acid is added to prevent precipitation by alkalies. A small quantity of this solution, made slightly alkatine by ammonia or earbonate of sock, is to be added to the weak solution of blood in water.

[^21]: * "Juurnal of the Royal Microscopical Sucicty," 1869.

[^22]: * Professor Sylvans Thompson, "On the Measurement of Lenses," "Journal of the Royal Microseopieal Socicty," 1892, 1, 109.
 \dagger "Journal of the lioyal Microseopical Society;" end Series, Vol, iv, 1. 5t\%.

[^23]: * It is पuite possible also for the stutent to make lis own mioroscope stamb. Mr. Vield in the "Raglish Mechanie," Pp. 171 et sef., 1897, furnishes mnmerous working drawings for the cunstruction of a high-class stand, fogether with patterns for the metal work.

[^24]: *"Journal of Anatomy and Physiology," x.x. 1SS1, p. 349.

[^25]: * 'Journal of the Quekett Club,'" July, 1893, nud March, 1895.

[^26]: * Mr. John Hood, 50, Dallfield Walk, Dundee, offers a weekly supply of infusorial life for a small anmual subseription, or a single tube by post at the trifling eost of one shilling.

[^27]: M.

[^28]: * l'rofessor Marshall Wad, R.R.S., "Address to the Botanical Section of the Britislı Association, 1897,"

[^29]: * "Pritish Medical Journal," March 26, 1859; "Medical Times and Gazette" and "Popular Science Review," 1862.
 † "Parasitic Diseases," "Journ, of the Roynl Micros. Soc. of Loud.," 1859-60.

[^30]: * There are several other kinds of bacteria infesting milk, some of which are motile, others non-motile, produeing acidity and colouring matter, as B. proeligiosus, red-milk; J3. symeonlhus, yellow milk; J. lectis acrogons, which are pathogenic ; J. lactis allus, which congulate milk; and another form, which is productive of slimy or ropy-milk.

[^31]: * "Parasitic Discases of the Skin," 1859-73,]. 30. Bailliere, Tindal, and

[^32]: * "Organic Gcrm Theory of Disease," "Medical Times and Gazette," p. 685, 1870.

[^33]: * F. Cohn on the "Natmal History of Protococcus pluvialis."

[^34]: * Pritchard's "Infusoria," p. 24, Plate 1., 4th edition.

[^35]: * In order to cleteet the presence of starelı-grains in plants, the tissue must be kept in aleohol exposed to light, mint the whole of the ehlorophyll is dissolved out ; it must then be treated for several hours in a strong solution of potasli. After neutralisation with aectie aeid, the tissue may be treated with iodine, whieln ealours it blue, or with eoralline solution, whieh colours it pink.

[^36]: * For instance, where the yellow l'almella is fomm the Chlorococeus will assume a yellow tinge in its soridial stage. Viewed by transmitted light the sori are seen as opaque balls, with an irregular outline.

[^37]: * "Contributions to the Knowledge of the Development of the Gonidia of Lichens." By J. Praxton Hicks, M.D., "Quarterly Journal of Microscopical Science," vol. viii., 860, [. 239.
 † Berkeley's "Introduction to C'ryptogamic Botany," 1857.

[^38]: * "A Manmal of the Infusoria," by W. Saville lient, F. L.S., S.e., 1850.

[^39]: * Among the more important works on Foraminifera for consultation will be fomnd D'Orbigny's "Foraminiferes Fossiles du Bassiu Tertiaire de V'iemue" (Antriche): Schultze, "Uelher den Organismus der Polythatanien," 1854 : Carpenter and Williamson's "Researehes on the l'oraminifera," "Phil. Trams. 1856 :" Parker and Rupert-Jones in the "Amals of Natural History." Specimens of Foraminifeta may be oltnined by shaking dried sponges; but if required alive they must be dredged for, or pieked off the fronds of living seatreeds, over the surface of which they are, ly the aid of a lens, seen to move.

[^40]: * W. Saville Kent, F.L.S., Op. Cit., p. 3:35.

[^41]: * Difficultics formerly associated with the microscopic examination of flagellate forms of infusorial life have becn overeome by improvenents in the objectives, by the knowledge gained of the monad groups, and by the exlianstive researches of Drs. Drysdale and Dallinger, whose joint investigations were published in the Journal of the lioyal Mieroseopical Society, 1873-75. By employing the highest and most perfectly eonstrueted powers of the microscope, and devoting an enormous amount of time and attention to unravelling mysteries so long associated with the production of the lowly organised flagellate organisms, monads, and patiently watching hour by hour, the life-history of mumerons species of these minnte infusorial animalcules were obtained. Not only was it discovered that these organisms inereased indefinitely by fission, but that under certain conditions two or more individuals were mited into eneystments, and whose contents broke up into a greater or less number of spore-like bodies, were speedily developed into the parent type. In the examination of these mimete bodies, it has been found that tale-films, that is, tale split into extremely fine lamine, offer the best kind of cover, in faet, supersede ordinary glass covers, and possess an advantage, that of bending readily, thus permitting the objective to be brought close down upon the object.

[^42]: * Siville Kent, of. cit., 1. 191.

[^43]: * Fritz Miiller first demonstratel a nervous system in the Polyzoa :- "The nervous system of each bianch consisting of -1st, a considerable sized ganglion sitnaterl at its origin; 2 ml , of a nervous trank ruming the entire length of

[^44]: * Mr. George Rainey many years ago made us acquainted with the faet that certain of the appearances presented by the shell or other hard structures of animals, and whieh had hitherto been referred to as cell-development, are really governed by the physical laws whieh govern the agroregation of eertain erystalline salts when exposed to the aetion of vegetable and animal substamees in a state of solution. Mr. Lainey furnished a process for obtaining artificially a crystalline substance which shall so closely resemble shell strueture that it can burely be distinguished from it. The chemical substances to be used in the preparation of the artiticial shell, or culeuli, are a solnble eompound of lime and carbonate of potash or soda, dissolved in scparate portions of water, and mixed with some viscid vergetable or anmal substance, as gum or albunen, and mixing the several solutions together. The meehanical eonditions required are that such a quantity of each of the viseid materials in each solution shall be of about the same density as that of the nascent carbonate of lime, and at perfect rest. This state of rest will reguire from two to three weeks or longer. Mr. Rainey shows the analogy or identity of his artificinlly formed erystals with those found in matmal products both in animals and vegretables, eliefly confining hinself to the structure and fommation of shells and bone, pigmental and other cells, and the structure and development of the crystalline lenses, which lie eontends are all formed upon precisely the same physical principles as the artificial erystals.

[^45]: * E. Ray Lankester, "On the Cregarime found in the common Earthworm." -"Mieros. 'Trans." rol, iii. p. 83.

[^46]: *For the fullest information of marine, land, and fiesh-water species, consult Dr. Bastian's "Monograph on the Anguillulide"; "Lin. Soc. Trans." rol. xxv. 1. 75 ; the "Anguillula Aceti," liy the author, in the "Popular Science Review," Jinuary, 1863.

[^47]: *See my paper "The Natural History of a Nematode Worm," "Jonrn. of Mieroscopy and Naturnl Mistory," October, 1888.

 + "The Parasites of Man and the Diseases which proceed from them," hy Professor lindolf Leuckart, 1886.

[^48]: * K. J. Pocock, "On Worms" (Wanne, Op. cit.), p. 465.

[^49]: *Dr. Bairl, "Natural Histnry of Pritish Entomostraca," [rinted for the Ray Society, 18.50.

[^50]: Tuffen West, del.

[^51]: * Sce Mr. B. T. Lowne's exhaustive treatise on "The Amatomy and Physiology of the Blow-fly," a volume of 7 tio pages and 52 plates, 1891.

[^52]: * 'Iuflen West, "Truns. Linn. Soc.," vol xxiii., 1. 393.

[^53]: * The term micropyle (a hittle gate) has heretufore only been used in its relation with the regetable kingilom : it is used to denote the opreuing or formuen towards which the radicle is always pointed.
 \dagger Dr. Halifax adopts the metlod of killing the insect with eliloroform ; he then immerses it in a bath of hot wax, in which it is allowed to remain until the wax hecomes cold and hard; with a sharp knife sections are easily mado in the reguited direction without in the least disturbing any of the more fragile parts, or internal organs of the specimen.

[^54]: * "Phil. Tritus.," 1859, 1. 341.

[^55]: * See my paper on "The Jggs of Insects," in "The Intellectual Observer;"

[^56]: * Mr. F. G. Cuttell, 52, New Compton Street, Soho, cuts and prepares excellent seetions.

[^57]: - Pullished with his paper in detail, "Inerture as a Factor in Microscopic Vision," "Journal of lkyal Micros. soc." June, Istin, MI. :it el kal.

[^58]: * "Squire's Methods and Formule;" "Modem Mieroscone", Cross and M. F. Cole :"The Mieresconists"
 street, ILatton Garden, supply all Scientific Apmaratus for Bacteriological Work.

